
Supplementary Material For
Stochastic Multiple Target Sampling Gradient Descent

These appendices provide supplementary details and results of MT-SGD, including our theory
development and additional experiments. This consists of the following sections:

• Appendix 1 contains the proofs and derivations of our theory development.
• Appendix 2 contains the network architectures, experiment settings of our experiments and

additional ablation studies.

1 Proofs of Our Theory Development

1.1 Derivations for the Taylor expansion formulation

We have

∇ϵDKL

(
q[T ]∥pi

) ∣∣∣
ϵ=0

= −⟨ϕ, ψi⟩Hd
k
. (1)

Proof of Equation (1): Since T is assumed to be an invertible mapping, we have the following
equations:

DKL

(
q[T ]∥pi

)
= DKL (T#q∥pi) = DKL(q||T−1#pi)

and

DKL(q||T−1#pi) = DKL(q||T−1#pi)
∣∣
ϵ=0

+ ϵ∇ϵDKL(q||T−1#pi)
∣∣
ϵ=0

+O(ϵ2). (2)

According to the change of variables formula, we have T−1#pi(θ) = pi(T (θ))|det∇θT (θ)|, then:

DKL(q||T−1#pi) = Eθ∼q[log q(θ)− log pi(T (θ))− log |det∇θT (θ)|].

Using this, the first term in Equation (2) is rewritten as:

DKL(q||pi) =DKL(T#q||pi)
∣∣
ϵ=0

= DKL(q||T−1#pi)
∣∣
ϵ=0

=Eθ∼q[log q(θ)− log pi(θ)− log |det∇θθ|] = Eθ∼q[log q(θ)− log pi(θ)]. (3)

Similarly, the second term in Equation (2) could be expressed as:

∇ϵDKL(q||T−1#pk)
∣∣
ϵ=0

= Eθ∼q[∇ϵ log q(θ)−∇ϵ log pi(T (θ))−∇ϵ log |det∇θT (θ)|
]∣∣

ϵ=0

= −Eθ∼q[∇ϵ log pi(T (θ)) +∇ϵ log |det∇θT (θ)|
]∣∣

ϵ=0

= −Eθ∼q[∇T log pi(T (θ))∇ϵT (θ)
]∣∣

ϵ=0

− Eθ∼q

[ 1

|det∇θT (θ)|
|det∇θT (θ)|
det∇θT (θ)

∇ϵ det∇θT (θ)
]∣∣

ϵ=0

(4)

= −Eθ∼q[∇T log pi(T (θ))ϕ(θ)]
∣∣
ϵ=0

− Eθ∼qp
[det∇θT (θ) tr((∇θT (θ)

−1∇ϵ∇θT (θ))

det∇θT (θθ)

]∣∣
ϵ=0

= −Eθ∼q[∇θ log pi(θ)ϕ(θ) + tr(∇θϕ(θ))].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



It could be shown from the reproducing property of the RKHS that ϕi(θ) = ⟨ϕi(·), k(θ, ·)⟩Hk
, then

we find that
∂ϕi(θ)

∂θ̂i
=

〈
ϕi(·),

∂k(θ, ·)
∂θ̂i

〉
Hk

. (5)

Let Ud×d = ∇θϕ(θ) whose uTi denotes the ith row vector and the particle θ ∈ Rd is represented by
{θ̂}di=1, the row vector uTi is given by:

uTi :=
∂ϕi(θ)

∂θ
=

∂ϕi(θ)

∂(θ̂1, θ̂2, . . . , θ̂d)
=

[∂ϕi(θ)
∂θ̂1

;
∂ϕi(θ)

∂θ̂2
; . . . ;

∂ϕi(θ)

∂θ̂d

]
. (6)

Combining Property (5) and Equation (6), we have:

uTi :=
[∂ϕi(θ)
∂θ̂1

;
∂ϕi(θ)

∂θ̂2
; . . . ;

∂ϕi(θ)

∂θ̂d

]
=

[〈
ϕi(·),

∂k(θ, ·)
∂θ̂1

〉
Hk

;

〈
ϕi(·),

∂k(θ, ·)
∂θ̂2

〉
Hk

; . . . ;

〈
ϕi(·),

∂k(θ, ·)
∂θ̂d

〉
Hk

]
. (7)

Substituting Equation (7) to Equation (4), the linear term of the Taylor expansion could be derived as:
∇ϵDKL(q||T−1#pi)

∣∣
ϵ=0

= −Eθ∼q[∇θ log pi(θ)ϕ(θ) + tr(∇θϕ(θ))]

= −Eθ∼q

[ d∑
j=1

⟨ϕj(·), k(θ, ·)⟩Hk
(∇θ log pi(θ))j +

∂ϕj(θ)

∂θ̂j
)
]

= −
d∑

j=1

Eθ∼q

[
⟨ϕj(·), k(θ, ·)(∇θ log pi(θ))j⟩Hk

+

〈
ϕj(·),

(∂k(θ, ·)
∂θ

)
j

〉
Hk

]

= −
d∑

j=1

〈
ϕj(·),Eθ∼q

[
k(θ, ·)(∇θ log pi(θ))j +

(∂k(θ, ·)
∂θ

)
j

]〉
Hk

= −⟨ϕ(·), ψ(·)⟩Hd
k
,

where (v)j denotes the j-th element of v and ψ(·) ∈ Hd
k is a matrix whose jth column vector is given

by

Eθ∼q

[
k(θ, ·)(∇θ log pi(θ))j +

(∂k(θ, ·)
∂θ

)
j

]
.

In other word, the formula of ψ(·) becomes

Eθ∼q

[
k(θ, ·)∇θ log pi(θ) +

∂k(θ, ·)
∂θ

]
.

As a consequence, we obtain the conclusion of Equation (1).

1.2 Proof of Lemma 1

Before proving this lemma, let us re-state it:
Lemma 1. Let w∗ be the optimal solution of the optimization problem w∗ = argmin

w∈∆K

wTUw and

ϕ∗ =
∑K

i=1 w
∗
i ϕ

∗
i , where ∆K =

{
π ∈ RK

+ : ∥π∥1 = 1
}

and U ∈ RK×K with Uij =
〈
ϕ∗i , ϕ

∗
j

〉
Hd

k

,
then we have

⟨ϕ∗, ϕ∗i ⟩Hd
k
≥ ∥ϕ∗∥2Hd

k
, i = 1, ...,K.

Proof. For arbitrary ϵ ∈ [0, 1] and u ∈ ∆K , then ω := ϵu + (1 − ϵ)w∗ ∈ ∆K , we thus have the
following inequality:

w∗TUw∗ ≤ ωTUω

= (ϵu+ (1− ϵ)w∗)
T
U(ϵu+ (1− ϵ)w∗)

= (w∗ + ϵ(u− w∗)
T
U(w∗ + ϵ(u− w∗)

= w∗TUw∗ + 2ϵw∗TU(u− w∗) + ϵ2(u− w∗)TU(u− w∗),
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which is equivalent to

0 ≤ 2ϵw∗TU(u− w∗) + ϵ2(u− w∗)TU(u− w∗). (8)

Hence w∗TU(u − w∗) ≥ 0, since otherwise the R.H.S of inequality (8) will be negative with
sufficiently small ϵ. By that, we arrive at

w∗TUw∗ ≤ w∗TUu.

By choosing u to be a one hot vector at i, we obtain the conclusion of Lemma 1.

1.3 Derivations for the matrix Uij’s formulation in Equation (3)

We have

ϕ∗i (·) = Eθ∼q [k (θ, ·)∇ log pi (θ) +∇k (θ, ·)] ,
ϕ∗j (·) = Eθ′∼q [k (θ

′, ·)∇ log pj (θ
′) +∇k (θ′, ·)] .

Therefore, we find that

Uij =
〈
ϕ∗i , ϕ

∗
j

〉
Hd

k

= Eθ,θ′∼q

[
⟨k (θ, ·) , k (θ′, ·)⟩Hk

d∑
l=1

∇θl log pi(θ)∇θ′
l
log pj(θ

′)

+

d∑
l=1

∇θl log pi(θ)
〈
k (θ, ·) ,∇θ′

l
k (θ′, ·)

〉
Hk

+

d∑
l=1

∇θ′
l
log pj(θ

′) ⟨k (θ′, ·) ,∇θlk (θ, ·)⟩Hk

+

d∑
l=1

〈
∇θlk (θ, ·) ,∇θ′

l
k (θ′, ·)

〉
Hk

]
,

which is equivalent to

Uij = Eθ,θ′∼q

[
k (θ, θ′) ⟨∇ log pi(θ),∇ log pj(θ

′)⟩

+

〈
∇ log pi(θ),

∂k(θ, θ′)

∂θ′

〉
+

〈
∇ log pj(θ

′),
∂k(θ, θ′)

∂θ

〉
+

+

d∑
l=1

〈
∇θlk (θ, ·) ,∇θ′

l
k (θ′, ·)

〉
Hk

]
.

Now, note that
⟨k (θ, .) , φ (.)⟩Hk

= φ (θ) ,

hence we gain
⟨∇θlk (θ, .) , φ (.)⟩Hk

= ∇θlφ (θ) ,

which follows that 〈
∇θlk (θ, ·) ,∇θ′

l
k (θ′, ·)

〉
Hk

= ∇2
θl,θ′

l
k (θ, θ′) ,

d∑
l=1

〈
∇θlk (θ, ·) ,∇θ′

l
k (θ′, ·)

〉
Hk

=

d∑
l=1

∇2
θl,θ′

l
k (θ, θ′) = tr

(
∂2k(θ, θ′)

∂θ∂θ′

)
.

Putting these results together, we obtain that

Uij =
〈
ϕ∗i , ϕ

∗
j

〉
Hd

k

= Eθ,θ′∼q

[
k (θ, θ′) ⟨∇ log pi(θ),∇ log pj(θ

′)⟩

+

〈
∇ log pi(θ),

∂k(θ, θ′)

∂θ′

〉
+

〈
∇ log pj(θ

′),
∂k(θ, θ′)

∂θ

〉
+ tr

(
∂2k(θ, θ′)

∂θ∂θ′

)]
.

As a consequence, we obtain the conclusion of Equation (3).
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1.4 Proof of Theorem 2

Before proving this theorem, let us re-state it:

Theorem 2. w ∈ ∆K such that
∑K

i=1 wiϕ
∗
i = 0, given a sufficiently small step size ϵ, all KL

divergences w.r.t. the target distributions are strictly decreased by at least A ∥ϕ∗∥2Hd
k
> 0 where A is

a positive constant.

Proof. We have for all i = 1, ...,K that

DKL

(
q[T ]∥pi

)
= DKL (q∥pi) +∇ϵDKL

(
q[T ]∥pi

) ∣∣∣
ϵ=0

ϵ+Oi

(
ϵ2
)

= DKL (q∥pi)− ⟨ϕ, ψi⟩Hd
k
ϵ+Oi

(
ϵ2
)

≤ DKL (q∥pi)− ∥ϕ∗∥2Hd
k
ϵ+Oi

(
ϵ2
)
.

Because limϵ→0
Oi(ϵ

2)
ϵ2 = Bi, there exists αi > 0 such that |ϵ| < αi implies

∣∣Oi(ϵ
2)
∣∣ < 3

2 |Bi| ϵ2.
By choosing, B = 3

2 maxi |Bi| and α = mini αi, we arrive at for all ϵ < α and all i

DKL

(
q[T ]∥pi

)
< DKL (q∥pi)− ∥ϕ∗∥2Hd

k
ϵ+Bϵ2.

Finally, by choosing sufficiently small ϵ > 0, we reach the conclusion of the theorem.

2 Implementation Details

In this appendix, we provide implementation details regarding the empirical evaluation in the main
paper along with additional comparison experiments.

2.1 Experiments on Toy Datasets

2.1.1 Sampling from Multiple Distribution

In this experiment, the three target distributions are created as presented in the main paper. The
particle’s coordinates are randomly sampled from the normal distribution N (0, 5). Adam optimizer
[5] with learning rate of 3e−2 and β1 = 0.9, β2 = 0.999 is used to update the particles. MOO-SVGD
and MT-SGD converged after 2000 and 1000 iterations, respectively.
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Figure 1: Running time of MT-SGD and MOO-SVGD for 1000 steps on: Intel(R) Xeon(R) CPU @
2.20GHz CPU and Tesla T4 16GB VRAM GPU. Results are averaged over 5 runs.

We also measure the running time between MOO-SVGD and our proposed method when varying
the number of particles from 5 to 100. In Figure 1, we plot the time consumption when running
MOO-SVGD and MT-SGD in 1000 iterations. As can be seen that, MOO-SVGD runtime grows
linearly with the number of particles, since it requires solving separate quadratic problems (Algorithm
1) for each particle. By contrast, there is only one quadratic programming problem solving in our
proposed method, which significantly reduces time complexity, especially when the number of
particles is high.
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2.1.2 Multi-objective Optimization

ZDT-3 [13] is a classic benchmark problem in multi-objective optimization with 30 variables θ =
(θ1, θ2, . . . , θ30) with a number of disconnected Pareto-optimal fronts. This problem is given by:

min f1(θ),

min f2(θ) = g(θ)h(f1(θ), g(θ)),

where

f1(θ) = θ1,

g(θ) = 1 +
9

29

30∑
i=2

θi,

h(f1, g) = 1−

√
f1
g

− f1
g

sin(10πf1),

0 ≤ θi ≤ 1, i = 1, 2, . . . , 30.

The Pareto optimal solutions are given by

0 ≤ θ1 ≤ 0.0830,

0.1822 ≤ θ1 ≤ 0.257,

0.4093 ≤ θ1 ≤ 0.4538,

0.6183 ≤ θ1 ≤ 0.6525,

0.8233 ≤ θ1 ≤ 0.8518,

θi = 0 for i = 2, . . . , 30.

For ZDT3 experiment, we utilize Adam [5], learning rate 5e−4 and update the 50 particles for 10000
iterations as in the comparative baseline [8].

2.1.3 Multivariate regression

We consider the SARCOS regression dataset [12], which contains 44,484 training samples and 4,449
testing samples with 21 input variables and 7 outputs (tasks). The train-test split in [10] is kept, with
40,036 training examples, 4,448 validation examples, and 4,449 test examples. We replicate the neural
network architecture from [10] as follows: 21× 256FC � ReLU � 256× 256FC � ReLU �
256× 256FC � ReLU � 256× 7FC (139,015 params). The network is optimized by Adam
[5] optimizer for 1000 epochs, with β1 = 0.9, β2 = 0.999, and the learning rate of 1e − 4. All
experimental results are obtained by running five times with different seeds.

Table 1: Mean square errors of MT-SGD and competing methods on SARCOS dataset [12]. We take
the best checkpoint in each approach based on the validation score. Results are averaged over 5 runs,
and we highlight the best method for each task in bold.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Average

Validation
MGDA 0.025 0.2789 0.0169 0.0026 1.158 0.264 0.005 0.25

MOO-SVGD 0.0177 0.2182 0.0113 0.0013 1.241 0.2292 0.0025 0.2459
MT-SGD 0.0173 0.2124 0.0112 0.0012 1.110 0.2208 0.0024 0.2251

Test
MGDA 0.0082 0.0675 0.0038 0.0009 0.2635 0.0455 0.0018 0.0559

MOO-SVGD 0.0043 0.0586 0.0019 0.0003 0.2584 0.0365 0.0007 0.0515
MT-SGD 0.0037 0.0515 0.0018 0.0002 0.2097 0.0318 0.0005 0.0428

Regarding the baselines for this experiment, we compare our method against MGDA [11], MOO-
SVGD [8]. We empirically set the batch size as 512 and M = 5 particles in MT-SGD and competing
methods. The mean square error for each task and the average results are shown in Table 1. We
find that our method achieves the lowest error on all tasks, with the largest gap on Task 4. MT-SGD
outperforms the second-best method, MOO-SVGD, with 0.2251 vs. 0.2459 on validation set and
0.0428 vs. 0.0515 on test set.
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2.2 Experiments on Real Datasets

2.2.1 Experiments on Multi-Fashion+Multi-MNIST Datasets

We follow the same training protocol with previous work [7, 8, 11], Lenet [6] is trained in 100 epochs
with SGD optimizer. The input images are in size 36× 36 and the training batch size is 256.
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Figure 2: Average accuracy (%) when varying the number of particles from 3 to 15. MT-SGD-m
denotes our method using m particle networks.

We now study the performance of our proposed method against variation in the number of particles
by conducting more experiments on Multi-MNIST/Fashion/Fashion+MNIST datasets. We vary the
number of neural networks in 3, 5, 7, 9, 15 and present the accuracy scores in Figure 2. From the
results, a simple conclusion that can be derived is that increasing the number of particle networks
from 3 � 5 improves the performance in all three datasets, surpassing the other two baselines, while
further increasing this hyperparameter does not help.

Metrics: In the main paper, we compare our proposed method against baselines in terms of Brier
score and expected calibration error (ECE). We here provide more details on how to calculate these
metrics. Assumed that the training dataset D consists of N i.i.d examples D = {xn, yn}Nn=1 where
yn ∈ {1, 2, . . . ,K} denotes corresponding labels for K-class classification problem. Let p(y = c|xi)
be the predicted confidence that xi belongs to class C.

• Brier score: The Brier score is computed as the squared error between a predicted probabil-
ity p(y|xi) and the one-hot vector ground truth:

BS =
1

N

N∑
i=1

K∑
c=1

(
1yi=c − p(y = c|xi)

)2

• Expected calibration error: Partitioning predictions into M equally-spaced bins Bm =(
m−1
M , m

M

]
(m = 1, 2 . . . ,M), the expected calibration error is computed as the average
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gap between the accuracy and the predicted confidence within each bin:

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)|

where acc(Bm) and conf(Bm) denote the accuracy and confidence of bin Bm
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Figure 3: Expected Calibration Error (%) when varying the number of particles from 3 to 15 on
Multi-MNIST. MT-SGD-m denotes our method using m particle networks. We set the number of
bins equal to 10 throughout the experiments.

Figure 3 displays ECE as a function of the number of particles. Similar to the average accuracy
metric, the Expected Calibration Error reduces when we increase the number of particle networks
from 3 to 5 yet does not decrease in the cases of MT-SGD-7, MT-SGD-9 and MT-SGD-15.

Computational complexity of MT-SGD: From the complexity point of view, MT-SGD introduces
a marginal computational overhead compared to MGDA since it requires calculating the matrix U ,
which has a complexity O(K2M2d), where the number of particles M is usually set to a small
positive integer. However, on the one hand, computing U ’s entries can be accelerated in practice
by calculating them in parallel since there is no interaction between them during forward pass. On
the other hand, the computation of the back-propagation is typically more costly than the forward
pass. Thus, the main bottlenecks in our method lie on the backward pass and solving the quadratic
programming problem - which is an iterative method [3, 11].
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Figure 4: Running time on each epoch of MT-SGD and compared baselines on Multi-MNIST dataset.
Results are averaged over 5 runs, with the standard deviation reported by error bars.

As a final remark in the Multi-Fashion+Multi-MNIST experiment, we compare our methods against
baselines in terms of the required running time in a single epoch and plot the result in Figure 4. We
observe that in our experiments on Multi-MNIST dataset, the computation time of methods that
enforce the diversity of obtained models is higher than that of the methods that do not (Pareto MTL,
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MOO-SVGD, MT-SGD vs Linear scalarization, MGDA). Nevertheless, this is a small price to pay
for the major gain in the ensemble performance, since our training involves the interaction between
models to impose diversity. Compared to Pareto MTL and MOO-SVGD, the running time of our
proposed MT-SGD is considerably better ( 2s less than MOO-SVGD and 6s less than Pareto MTL).

2.2.2 Experiment on CelebA Dataset

We performed our experiments on the CelebA dataset [9], which contains images annotated with 40
binary attributes. Resnet-18 backbone [2] without the final layer as a shared encoder and a 2048 x 2
dimensional fully connected layer for each task is employed as in [11]. We train this network for 100
epochs with Adam optimizer [5] of learning rate 5e− 4 and batch size 64. All images are resized to
64× 64× 3.

Due to space constraints, we report only the abbreviation of each task in the main paper, their full
names are presented below.

Table 2: CelebA binary classification tasks full names.
5S AE Att BUE Bald Bangs BL BN BlaH BloH

5 O’clock Shadow Arched Eyebrows Attractive Bags Under Eyes Bald Bangs Big Lips Big Nose Black Hair Blond Hair

Now we investigate the effectiveness of our proposed MT-SGD method on the whole CelebA dataset,
compared with prior work: Uniform scaling: minimizing the uniformly weighted sum of objective
functions, Single task: train separate models individually for each task, Uncertainty [4]: adaptive
reweighting with balanced uncertainty, Gradnorm [1]: balance the loss functions via gradient magni-
tude and MGDA [11]. The results from previous work are reported in [1]. For MGDA, we use their
officially released codebase at https://github.com/isl-org/MultiObjectiveOptimization.
For a fair comparison, we run the code with five different random seeds and present the obtained
scores in Figure 5.

Following [11], we divide 40 target binary attributes into two subgroups: hard and easy tasks for
easier visualization. As can be seen from Figure 5, we observe that the naively trained Uniform
scaling has relatively low performance on many tasks, e.g. “Mustache", “Big Lips", “Oval Face".
Compared to other baselines, our proposed method significantly reduces the prediction error in almost
all the tasks, especially on “Goatee", “Double Chi" and “No Beard". The detailed result for each
target attribute can be found in Table 3.
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Figure 5: Radar charts of prediction error on CelebA [9] for each individual binary classification task.
We divide attributes into two sets: easy tasks on the left, difficult tasks on the right, as in [11].
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Table 3: Average performance (lower is better) of each target attribute for all baselines. We use the
bold font to highlight the best-obtained score in each task.

Attribute Uniform scaling Single task Uncertainty Gradnorm MGDA MT-SGD

5 O’clock Shadow 7.11 7.16 7.18 6.54 6.47 6.03
Arched Eyebrows 17.30 14.38 16.77 14.80 15.80 14.11
Attractive 20.99 19.25 20.56 18.97 19.21 18.62
Bags Under Eyes 17.82 16.79 18.45 16.47 16.60 15.91
Bald 1.25 1.20 1.17 1.13 1.32 1.09
Bangs 4.91 4.75 4.95 4.19 4.41 4.02
Big Lips 20.97 14.24 15.17 14.07 15.32 13.82
Big Nose 18.53 17.74 18.84 17.33 17.70 17.14
Black Hair 10.22 8.87 10.19 8.67 9.31 8.22
Blond Hair 5.29 5.09 5.44 4.68 4.92 4.42
Blurry 4.14 4.02 4.33 3.77 3.90 3.61
Brown Hair 16.22 15.34 16.64 14.73 15.27 14.63
Bushy Eyebrows 8.42 7.68 8.85 7.23 7.69 7.42
Chubby 5.17 5.15 5.26 4.75 4.82 4.59
Double Chin 4.14 4.13 4.17 3.73 3.74 3.35
Eyeglasses 0.81 0.52 0.62 0.56 0.54 0.47
Goatee 4.00 3.94 3.99 3.72 3.79 3.34
Gray Hair 2.39 2.66 2.35 2.09 2.32 2.00
Heavy Makeup 8.79 9.01 8.84 8.00 8.29 7.65
High Cheekbones 13.78 12.27 13.86 11.79 12.18 11.45
Male 1.61 1.61 1.58 1.42 1.72 1.26
Mouth Slightly Open 7.18 6.20 7.73 6.91 6.86 5.91
Mustache 4.38 4.14 4.08 3.88 3.99 3.55
Narrow Eyes 8.32 6.57 8.80 6.54 6.88 6.64
No Beard 5.01 5.38 5.12 4.63 4.62 4.25
Oval Face 27.59 24.82 26.94 24.26 24.28 23.78
Pale Skin 3.54 3.40 3.78 3.22 3.37 3.13
Pointy Nose 26.74 22.74 26.21 23.12 23.41 22.48
Receding Hairline 6.14 5.82 6.17 5.43 5.52 5.28
Rosy Cheeks 5.55 5.18 5.40 5.13 5.10 4.82
Sideburns 3.29 3.79 3.24 2.94 3.26 2.87
Smiling 8.05 7.18 8.40 7.21 7.19 6.74
Straight Hair 18.21 17.25 18.15 15.93 16.82 16.32
Wavy Hair 16.53 15.55 16.19 13.93 15.28 13.19
Wearing Earrings 11.12 9.76 11.46 10.17 10.57 10.17
Wearing Hat 1.15 1.13 1.08 0.94 1.14 0.95
Wearing Lipstick 7.91 7.56 8.06 7.47 7.76 7.15
Wearing Necklace 13.27 11.90 13.47 11.61 11.75 11.32
Wearing Necktie 3.80 3.29 4.04 3.57 3.63 3.27
Young 13.25 13.40 13.78 12.26 12.53 11.83
Average 9.62 8.77 9.53 8.44 8.73 8.17
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