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Abstract

We introduce the problem of domain adaptation under Open Set Label Shift (OSLS)
where the label distribution can change arbitrarily and a new class may arrive dur-
ing deployment, but the class-conditional distributions ppx|yq are domain-invariant.
OSLS subsumes domain adaptation under label shift and Positive-Unlabeled (PU)
learning. The learner’s goals here are two-fold: (a) estimate the target label distri-
bution, including the novel class; and (b) learn a target classifier. First, we establish
necessary and sufficient conditions for identifying these quantities. Second, moti-
vated by advances in label shift and PU learning, we propose practical methods
for both tasks that leverage black-box predictors. Unlike typical open set domain
adaptation problems, which tend to be ill-posed and amenable only to heuristics,
OSLS offers a well-posed problem amenable to more principled machinery. Ex-
periments across numerous semi-synthetic benchmarks on vision, language, and
medical datasets demonstrate that our methods consistently outperform open set
domain adaptation baselines, achieving 10–25% improvements in target domain
accuracy. Finally, we analyze the proposed methods, establishing finite-sample
convergence to the true label marginal and convergence to optimal classifier for
linear models in a Gaussian setup1.

1 Introduction

Suppose that we wished to deploy a machine learning system to recognize diagnoses based on their
clinical manifestations. If the distribution of data were static over time, then we could rely on the
standard machinery of statistical prediction. However, disease prevalences are constantly changing,
violating the assumption of independent and identically distributed (iid) data. In such scenarios,
we might reasonably apply the label shift assumption, where prevalences can change but clinical
manifestations cannot. When only the relative proportion of previously seen diseases can change,
principled methods can detect and correcting for label shift on the fly [56, 78, 45, 4, 1, 27]. But what
if a new disease, like COVID-19, were to arrive suddenly?

Traditional label shift adaptation techniques break when faced with a previously unseen class. A
distinct literature on Open Set Domain Adaptation (OSDA) seeks to handle such cases [51, 5, 14,
70, 43, 73, 58, 59, 25]). Given access to labeled source data and unlabeled target data, the goal in
OSDA is to adapt classifiers in general settings where previous classes can shift in prevalence (and
even appearance), and novel classes separated out from those previously seen can appear. Most
work on OSDA is driven by the creation of and progress on benchmark datasets (e.g., DomainNet,
OfficeHome). Existing OSDA methods are heuristic in nature, addressing settings where the right
answers seem intuitive but are not identified mathematically. However, absent assumptions on: (i)
the nature of distribution shift among source classes and (ii) the relation between source classes and
novel class, standard impossibility results for domain adaptation condemn us to guesswork [8].

1Code is available at https://github.com/acmi-lab/Open-Set-Label-Shift.
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Figure 1: Left: Domain Adaptation under OSLS. An instantiation of OSDA that applies label shift
assumption but allows for a new class to show up in target domain. Right: Aggregated results across
seven semi-synthetic benchmark datasets. For both target classification and novel class prevalence
estimation, PULSE significantly outperforms other methods (lower error is better). For brevity, we
only include result for the best OSDA method. For detailed comparison, refer Sec. 7.

In this work, we introduce domain adaptation under Open Set Label Shift (OSLS), a coherent
instantiation of OSDA that applies the label shift assumption but allows for a new class to show
up in the target distribution. Formally, the label distribution may shift between source and target
pspyq ‰ ptpyq, but the class-conditional distributions among previously seen classes may not (i.e.,
@y P t1, 2, . . . , ku, pspx|yq “ ptpx|yq). Moreover, a new class y “ k ` 1 may arrive in the target
period. Notably, OSLS subsumes label shift [56, 67, 45] (when ptpy “ k`1q “ 0) and learning from
Positive and Unlabeled (PU) data [20, 42, 24] (when k “ 1). As with label shift and PU learning, our
goals are two-fold. Here, we must (i) estimate the target label distribution ptpyq (including the novel
class prevalence); (ii) train a pk ` 1q-way target-domain classifier.

First, we characterize when the parameters of interest are identified (Sec. 4). Namely, we define a
(necessary) weak positivity condition, which states that there exists a subset of each label’s support
that has zero probability mass under the novel class and that the submatrix of ppx|yq consisting only
of rows in that subset is full rank. Moreover, we prove that weak positivity alone is not sufficient. We
introduce two sufficient conditions: strong positivity and separability, either of which (independently)
ensures identifiability.

Focusing on cases with strong positivity, we show that OSLS reduces to k PU learning problems
(Sec. 5). However, we demonstrate that straightforward applications of this idea fail because (i) bias
accumulates across the k mixture proportion estimates leading to grossly underestimating the novel
class’s prevalence; and (ii) naive combinations of the k PU classifiers are biased and inaccurate.

Thus motivated, we propose the PULSE framework, which combines methods from Positive and
Unlabeled learning and Label Shift Estimation, yielding two-stage techniques for both label marginal
estimation and classification (Sec. 6). Our methods build on recent advances in label shift [45, 4, 1, 27]
and PU learning [38, 35, 29], that leverage appropriately chosen black-box predictors to avoid the
curse of dimensionality. PULSE first estimates the label shift among previously seen classes, and
then re-samples the source data to formulate a single PU learning problem between (reweighted)
source and target data to estimate fraction of novel class and to learn the target classifier. In particular,
our procedure builds on the BBE and CVIR techniques proposed in Garg et al. [29]. PULSE is simple
to implement and compatible with arbitrary hypothesis classes (including deep networks).

We conduct extensive semi-synthetic experiments adapting seven benchmark datasets spanning
vision (CIFAR10, CIFAR100, Entity30), natural language (Newsgroups-20), biology (Tabula Muris),
and medicine (DermNet, BreakHis) (Sec. 7). Across numerous data modalities, draws of the label
distributions, and model architectures, PULSE consistently outperforms generic OSDA methods,
improving by 10–25% in accuracy on target domain. Moreover, PULSE outperforms methods that
naively solve k PU problems on both label distribution estimation and classification.

Finally, we analyze our framework (Sec. 8). First, we extend Garg et al. [29]’s analysis of BBE to
derive finite-sample error bounds for our estimates of the label marginal. Next, we develop new
analyses of the CVIR objective [29] that PULSE relies in the classification stage. Focusing on a
Gaussian setup and linear models optimized by gradient descent, we prove that CVIR converges to
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a true positive versus negative classifier in population. Addressing the overparameterized setting
where parameters exceed dataset size, we conduct an empirical study that helps to elucidate why, on
separable data, CVIR outperforms other consistent objectives, including nnPU [38] and uPU [21].

2 Related Work

(Closed Set) Domain Adaptation (DA) Under DA, the goal is to adapt a predictor from a
source distribution with labeled data to a target distribution from which we observe only unlabeled
examples. DA is classically explored under two distribution shift scenarios [67]: (i) Covariate
shift [78, 74, 19, 18, 32] where ppy|xq remains invariant among source and target; and (ii) Label
shift [56, 45, 4, 1, 27, 77] where ppx|yq is shared across source and target. In these settings most
theoretical analysis requires that the target distribution’s support is a subset of the source support [8].
However, recent empirically work in DA [48, 49, 68, 69, 80, 79, 26, 64] focuses on settings motivated
by benchmark datasets (e.g., WILDS [57, 39], Office-31 [55] OfficeHome [71], DomainNet [52])
where such overlap assumptions are violated. Instead, they rely on some intuitive notion of semantic
equivalence across domains. These problems are not well-specified and in practice, despite careful
hyperparameter tuning, these methods often do not improve over standard empirical risk minimization
on source data alone for practical, and importantly, previously unseen datasets [57].

Open Set Domain Adaptation (OSDA) OSDA [51, 9, 62] extends DA to settings where along
with distribution shift among previously seen classes, we may observe a novel class in the target
data. This setting is also known as universal domain adaptation [73, 59]. Rather than making precise
assumptions about the nature of shift between source and target as in OSLS, the OSDA literature is
primarily governed by semi-synthetic problems on benchmark DA datasets (e.g. DomainNet, Office-
31 and OfficeHome). Numerous OSDA methods have been proposed [5, 14, 70, 43, 73, 58, 59, 25, 11].
At a high level, most OSDA methods perform two steps: (i) align source and target representation
for previously seen classes; and (ii) train a discrimination to reject novel class from previously seen
classes. The second step typically uses novelty detection heuristics to identify novel samples.

PU Learning Positive and Unlabeled (PU) learning is the base case of OSLS. Here, we observe
labeled data a single source class and unlabeled target data contains data from both the novel class
and the source class. In PU learning, our goals are: (i) Mixture Proportion Estimation (MPE), i.e.,
determining the fraction of previously seen class in target ; and (ii) PU classification, i.e., learning
to discriminate between the novel and the positive (source) class. Several classical methods were
proposed for both MPE [24, 23, 63, 36, 6, 7] and classification [24, 22, 21]. However, classical MPE
methods do not scale to high-dimensional settings [53]. More recent methods alleviate these issues by
operating in classifier output space [29, 35]. For classification, traditional methods fail when deployed
with models classes with high capacity due to their capacity of fitting random labels [75]. Recent
methods [29, 38, 16], avoid over-fitting by employing regularization or self-training techniques.

Other related work A separate line of work looks at the problem of Out-Of-Distribution (OOD)
detection [34, 31, 41, 37, 50, 76]. Here, the goal is to identify novel examples, i.e., samples that lie
out of the support of training distribution. The main different between OOD detection and OSDA is
that in OOD detection we do not have access to unlabeled data containing a novel class. Recently,
Cao et al. [13] proposed open-world semi-supervised learning, where the task is to not only identify
novel classes in target but also to separate out different novel classes in an unsupervised manner.

Our work takes a step back from the hopelessly general OSDA setup, introducing OSLS, a well-
posed OSDA setting where the sought-after parameters can be identified.

3 Open Set Label Shift

Notation For a vector v P Rd, we use vj to denote its jth entry, and for an event E, we let I rEs

denote the binary indicator of the event. By |A|, we denote the cardinality of set A.

Let X P Rd be the input space and Y “ t1, 2, . . . , k`1u be the output space for multiclass classifica-
tion. Let Ps and Pt be the source and target distributions and let ps and pt denote the corresponding
probability density (or mass) functions. By Es and Et, we denote expectations over the source and
target distributions. We assume that we are given a loss function ℓ : ∆k ˆY Ñ R, such that ℓpz, yq is
the loss incurred by predicting z when the true label is y. Unless specified otherwise, we assume that ℓ
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is the cross entropy loss. As in standard unsupervised domain adaptation, we are given independently
and identically distributed (iid) samples from labeled source data tpx1, y1q, px2, y2q, . . . , pxn, ynqu „

Pn
s and iid samples from unlabeled target data txn`1, xn`2, . . . , xn`mu „ Pm

t .

Before formally introducing OSLS, we describe label shift and PU learning settings. Under label
shift, we observe data from k classes in both source and target where the conditional distribution
remain invariant (i.e., pspx|yq “ ptpx|yq for all classes y P r1, ks) but the target label marginal may
change (i.e., ptpyq ‰ pspyq). Additionally, for all classes in source have a non-zero support , i.e., for
all y P r1, ks, pspyq ě c, where c ą 0. Under PU learning, we possess labeled source data from a
positive class and unlabeled target data from a mixture of positive and negative class with a goal of
learning a positive-versus-negative classifier on target. We now introduce the OSLS setting:

Definition 1 (Open set label shift). Define Yt “ Y and Ys “ Yztk ` 1u. Under OSLS, the label
distribution among source classes Ys may change but the class conditional ppx|yq for those classes
remain invariant between source and target, and the target domain may contain a novel class, i.e.,

pspx|y “ jq “ ptpx|y “ jq @j P Ys and pspy “ k ` 1q “ 0 . (1)

Additionally, we have non-zero support for all k (previously-seen) labels in the source distribution,
i.e., for all y P Ys, pspyq ě c for some c ą 0.

Note that the label shift and PU learning problems can be obtained as special cases of OSLS. When
no novel class is observed in target (i.e., when ptpy “ k`1q “ 0), we recover the label shift problem,
and when we observe only one class in source (i.e., when k “ 1), the OSLS problem reduces to PU
learning. Under OSLS, our goal naturally breaks down into two tasks: (i) estimate the target label
marginal ptpyq for each class y P Y; (ii) train a classifier f : X Ñ ∆k to approximate ptpy|xq.

4 Identifiablity of OSLS

We now introduce conditions for OSLS, under which the solution is identifiable. Throughout the
section, we will assume access to population distribution for labeled source data and unlabeled target
data, i.e., pspx, yq and ptpxq is given. To keep the discussion simple, we assume finite input domain
X which can then be relaxed to continuous inputs. We relegate proofs to App. B.

We first make a connection between target label marginal ptpyq estimation and learning the tar-
get classifier ptpy|xq showing that recovering ptpyq is enough to identify ptpy|xq. In population,
given access to ptpyq, the class conditional ptpx|y “ k ` 1q can be obtained in closed form as
pptpxq´

řk
j“1 ptpy“jqpspx|y“jqq{ptpy“k`1q. We can then apply Bayes rule to obtain ptpy|xq. Henceforth,

we will focus our discussion on identifiability of ptpyq which implies identifiability of ptpy|xq. In
following proposition, we present weak positivity, a necessary condition for ptpyq to be identifiable.

Proposition 1 (Necessary conditions). Assume ptpyq ą 0 for all y P Yt. Then ptpyq is identified
only if ptpx|y “ k ` 1q and pspx|yq for all y P Ys satisfy weak positivity, i.e., there must exists a
subdomain Xwp Ă X such that:

(i) ptpXwp|y “ k ` 1q “ 0; and
(ii) the matrix rpspx|yqsxPXwp,yPYs

is full column-rank.

Intuitively, Proposition 1 states that if the target marginal doesn’t lie on the vertex of the simplex
∆k, then their must exist a subdomain Xwp where the support of novel class is zero and within Xwp,
ptpyq for source classes is identifiable. While it may seem that existence of a subdomain Xwp is
enough, we show that for the OSLS problem, existence doesn’t imply uniqueness. In App. B.1, we
construct an example, where the weak positivity condition is not sufficient. In that example, we show
that there can exist two subdomains Xwp and X 1

wp satisfying weak positivity, both of which lead to
separate solutions for ptpyq. Next, we extend weak positivity to two stronger conditions, either of
which (alone) implies identifiability.

Proposition 2 (Sufficient conditions). The target marginal ptpyq is identified if for all y P Yztk ` 1u,
ptpx|y “ k ` 1q and pspx|yq satisfy either:

(i) Strong positivity, i.e., there exists Xsp Ă X such that ptpXsp|y “ k ` 1q “ 0 and the matrix
rpspx|yqsxPXsp,yPYs

is full-rank and diagonal; or
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(ii) Separability, i.e., there exists Xsep Ă X , such that ptpXsep|y “ k ` 1q “ 0 , pspXsepq “ 1 ,
and the matrix rpspx|yqsxPXsep,yPYs

is full column-rank.

Strong positivity generalizes the irreducibility condition [10], which is sufficient for identifiability
under PU learning, to k PU learning problems. Note that while the two conditions in Proposition 2
overlap, they cover independent set of OSLS problems. Informally, strong positivity extends weak
positivity by making an additional assumption that the matrix formed by ppx|yq on inputs in Xwp is
diagonal and the separability assumption extends the weak positivity condition to the full input domain
of source classes instead of just Xwp. Both of these conditions identify a support region of X which
purely belongs to source classes where we can either individually estimate the proportion of each
source classes (i.e., under strong positivity) or jointly estimate the proportion (i.e., under separability).

To extend our identifiability conditions for continuous distributions, the linear independence condi-
tions on the matrix rpspx|yqsxPXsep,yPYs

has the undesirable property of being sensitive to changes on
sets of measure zero. We may introduce stronger notions of linear independence as in Lemma 1 of
Garg et al. [27]. We discuss this in App. B.2.

5 Reduction of OSLS to k PU Problems

Under the strong positivity condition, the OSLS problem can be broken down into k PU problems as
follows: By treating a given source class yj P Ys as positive and grouping all other classes together
as negative we observe that the unlabeled target data is then a mixture of data from the positive and
negative classes. This yields a PU learning problem and the corresponding mixture proportion is
the fraction ptpy “ jq (proportion of class yj) among the target data. By iterating this process for
all source classes, we can solve for the entire target label marginal ptpyq. Thus, OSLS reduces to k
instances of PU learning problem. Formally, note that ptpxq can be written as:

ptpxq “ ptpy “ jqpspx|y “ jq ` p1 ´ ptpy “ jqq

ˆ

ÿ

iPYztju

ptpy “ iq

1 ´ ptpy “ jq
pspx|y “ iq

˙

, (2)

individually for all j P Ys. By repeating this reduction for all classes, we obtain k separate PU
learning problems. Hence, a natural choice is to leverage this structure and solve k PU problems
to solve the original OSLS problem. In particular, for each class j P Ys, we can first estimate its
prevalence pptpy “ jq in the unlabeled target. Then the target marginal for the novel class is given
by pptpy “ k ` 1q “ 1 ´

řk
i“1 pptpy “ iq. Similarly, for classification, we can train k PU learning

classifiers fi, where fi is trained to classify a source class i versus others in target. An example is
classified as belonging to the class y “ k ` 1, if it rejected by all classifiers fi as other in target. We
explain this procedure more formally in App. A.1.

This reduction has been mentioned in past work [60, 72]. However, to the best of our knowledge, no
previous work has empirically investigated both classification and target label marginal estimation
jointly. Sanderson and Scott [60] focuses only on target marginal estimation for tabular datasets and
Xu et al. [72] assumes that the target marginal is known and only trains k separate PU classifiers.

In our work, we perform the first large scale experiments to evaluate efficacy of the reduction of the
OSLS problem to k-PU problems. With plugin state-of-the-art PU learning algorithms, we observe
that this naive reduction doesn’t scale to datasets with large number of classes because of error
accumulation in each of the k MPEs and k one-versus-other PU classifiers. To mitigate the error
accumulation problem, we propose the PULSE framework in the next section.

6 The PULSE Framework for OSLS

We begin with presenting our framework for OSLS problem under strong positivity condition. First,
we explain the structure of OSLS that we leverage in PULSE framework and then elaborate design
decisions we make to exploit the identified structure.

Overview of PULSE framework Rather than simply dividing each OSLS instance into k PU
problems, we exploit the joint structure of the problem to obtain a single PU learning problem. To
begin, we note that if only we could apply a label shift correction to source, i.e., re-sample source
classes according to their relative proportion in the target data, then we could subsequently consider
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Algorithm 1 Positive and Unlabeled learning post Label Shift Estimation (PULSE) framework

input : Labeled source data tXS ,ySu and unlabeled target samples XT .
1: Randomly split data into training tXS

1 ,y
S
1 u, XT

1 and hold out partition tXS
2 ,y

S
2 u, XT

2 .
2: Train a source classifier fs on labeled source data tXS

1 ,y
S
1 u.

3: Estimate label shift pp1
tpy “ jq “

pptpy “ jq
ř

kPYs
pptpy “ kq

using Algorithm 2 and hence importance ratios

pwpjq among source classes j P Ys.
4: Re-sample training source data according to label distribution pp1

t to get trXS
1 , ry

S
1 u and trXS

2 , ry
S
2 u.

5: Using Algorithm 3, train a discriminator fd and estimate novel class fraction pptpy “ k ` 1q.

6: Assign rftpxqsj “ pfdpxqq
pwpjq ¨ rfspxqsj

ř

kPYs
pwpkq ¨ rfspxqsk

for all j P Ys and rftpxqsk`1 “ 1´ fdpxq. And

for all j P Ys, assign pptpy “ jq “ p1 ´ pptpy “ k ` 1qq ¨ pp1
tpy “ jq.

output : Target marginal estimate ppt P ∆k and target classifier ftp¨q P ∆k.

the unlabeled target data as a mixture of (i) the (reweighted) source distribution; and (ii) the novel
class distribution (i.e., ptpx|y “ k ` 1q). Formally, we have

ptpxq “
ÿ

jPYt

ptpy “ jqptpx|y “ jq “
ÿ

jPYs

ptpy “ jq

pspy “ jq
pspx, y “ jq ` ptpx|y “ k ` 1qptpy “ k ` 1q

“ p1 ´ ptpy “ k ` 1qqp1
spxq ` ptpy “ k ` 1qptpx|y “ k ` 1q , (3)

where p1
spxq is the label-shift-corrected source distribution, i.e., p1

spxq “
ř

jPYs
wpjqpspx, y “ jq,

where wpjq “ pptpy“jq{
ř

k ptpy“kqq{pspy “ jq for all j P Ys. Intuitively, p1
tpjq “ ptpy“jq{

ř

k ptpy“kq

is re-normalized label distribution in target among source classes and wpjq’s are the importance
weights. Hence, after applying a label shift correction to the source distribution p1

spxq, we have
reduced the OSLS problem to a single PU learning problem, where p1

spxq plays the part of the
positive distribution and ptpx|y “ k ` 1q acts as negative distribution with mixture coefficients
1 ´ ptpy “ k ` 1q and ptpy “ k ` 1q respectively. We now discuss our methods (i) to estimate the
importance ratios wpyq; and (ii) to tackle the PU learning instance obtained from OSLS.

Label shift correction: Target marginal estimation among source classes While traditional
methods for estimating label shift breakdown in high dimensional settings [78], recent methods
exploit black-box classifiers to avoid the curse of dimensionality [45, 4, 1]. However, these recent
techniques require overlapping label distributions, and a direct application would require demarcation
of samples from p1

spxq sub-population in target, creating a cyclic dependency. Instead, to estimate the
relative proportion of previously seen classes in target, we leverage the k PU reduction described in
Sec. 5 with two crucial distinctions. First, we normalize the obtained estimates of fraction previously
seen classes to obtain the relative proportions in p1

spyq. In particular, we do not leverage the estimates
of previously seen class proportions in target to directly estimate the proportion of novel class which
avoids issues due to error accumulation. Second, we exploit a k-way source classifier fs trained
on labeled source data instead of training k one-versus-other PU classifiers. We tailor the recently
proposed Best Bin Estimation (BBE) technique from Garg et al. [29]. We describe the modified BBE
procedure in App. C (Algorithm 2). After estimating the relative fraction of source classes in target
(i.e., pp1

tpjq “ pptpy“jq{
ř

kPYs
pptpy“kq for all j P Ys), we re-sample the source data according to pp1

tpyq

to mimic samples from distribution p1
spxq.

PU Learning: Separating the novel class from previously seen classes After obtaining a PU
learning problem instance, we resort to PU learning techniques to (i) estimate the fraction of novel
class ptpy “ k`1q; and (ii) learn a binary classifier fdpxq to discriminate between label shift corrected
source p1

spxq and novel class ptpx|y “ k ` 1q. With traditional methods for PU learning involving
domain discrimination, over-parameterized models can memorize the positive instances in unlabeled,
assigning them confidently to the negative class, which can severely hurt generalization on PN
data [38, 29]. Rather, we employ Conditional Value Ignoring Risk (CVIR) loss proposed in Garg et al.
[29] which was shown to outperform alternative approaches. First, we estimate the proportion of novel
class pptpy “ k ` 1q with BBE. Next, given an estimate pptpy “ k ` 1q, CVIR objective discards the
highest loss p1´ pptpy “ k ` 1qq fraction of examples on each training epoch, removing the incentive
to overfit to the examples from p1

spxq. Consequently, we employ the iterative procedure that alternates
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between estimating the prevalence of novel class pptpy “ k ` 1q (with BBE) and minimizing the
CVIR loss with estimated fraction of novel class. We detail this procedure in App. C (Algorithm 3).

Combining PU learning and label shift correction Finally, to obtain a pk`1q-way classifier ftpxq

on target we combine discriminator fd and source classifier fs with importance-reweighted label shift
correction. In particular, for all j P Ys, rftpxqsj “ pfdpxqq

wpjq¨rfspxqsj
ř

kPYs
wpkq¨rfspxqsk

and rftpxqsk`1 “

1 ´ fdpxq. Overall, our approach outlined in Algorithm 1 proceeds as follows: First, we estimate
the label shift among previously seen classes. Then we employ importance re-weighting of source
data to formulate a single PU learning problem to estimate the fraction of novel class pptpy “ k ` 1q

and to learn a discriminator fd for the novel class. Combining discriminator and label shift corrected
source classifier we get pk ` 1q-way target classifier. We analyse crucial steps in PULSE in Sec. 8.

Our ideas for PULSE framework can be extended to separability condition since (3) continues to hold.
However, in our initial experiments, we observe that techniques proposed under strong positivity
were empirically stable and outperform methods developed under separability. This is intuitive for
many benchmark datasets where it is natural to assume that for each class there exists a subdomain
that only belongs to that class. We describe this in more detail in App. C.1.

7 Experiments

Baselines We compare PULSE with several popular methods from OSDA literature. While
these methods are not specifically proposed for OSLS, they are introduced for the more general
OSDA problem. In particular, we make comparions with DANCE [59], UAN [73], CMU [25],
STA [46], Backprop-ODA (or BODA) [58]. We use the open source implementation available
at https://github.com/thuml. For alternative baselines, we experiment with source classifier
directly deployed on the target data which may contain novel class and label shift among source
classes (referred to as source-only). We also train a domain discriminator classifier for source versus
target (referred to as domain disc.). This is adaptation of PU learning baseline[24] which assumes
no label shift among source classes. Finally, per the reduction presented in Sec. 5, we train k PU
classifiers (referred to as k-PU). We include detailed description of each method in App. F.1.

Datasets We conduct experiments with seven benchmark classification datasets across vision, natural
language, biology and medicine. For each dataset, we simulate an OSLS problem as described in next
paragraph. For vision, we use CIFAR10, CIFAR100 [40] and Entity30 [61]. For language, we exper-
iment with Newsgroups-20 (http://qwone.com/~jason/20Newsgroups/) dataset. Additionally,
inspired by applications of OSLS in biology and medicine, we experiment with Tabula Muris [17]
(Gene Ontology prediction), Dermnet (skin disease prediction https://dermnetnz.org/), and
BreakHis [66] (tumor cell classification). These datasets span language, image and table modalities.
We provide interpretation of OSLS problem for each dataset along with other details in App. F.2.

OSLS Setup To simulate an OSLS problem, we experiment with different fraction of novel class
prevalence, source label distribution, and target label distribution. We randomly choose classes that
constitute the novel target class. After randomly choosing source and novel classes, we first split
the training data from each source class randomly into two partitions. This creates a random label
distribution for shared classes among source and target. We then club novel classes to assign them a
new class (i.e. k ` 1). Finally, we throw away labels for the target data to obtain an unsupervised DA
problem. We repeat the same process on iid hold out data to obtain validation data with no target labels.

Training and Evaluation We use Resnet18 [33] for CIFAR10, CIFAR100, and Entity30. For
newsgroups, we use a convolutional architecture. For Tabular Muris and MNIST, we use a fully
connected MLP. For Dermnet and BreakHis, we use Resnet-50. For all methods, we use the same
backbone for discriminator and source classifier. For kPU, we use a separate final layer for each class
with the same backbone. We use default hyperparameters for all methods. For OSDA methods, we
use default method specific hyperparameters introduced in their works. Since OSDA methods do not
estimate the prevalence of novel class explicitly, we use the fraction of examples predicted in class
k ` 1 as a surrogate. We train models till the performance on validation source data (labeled) ceases
to increase. Unlike OSDA methods, note that we do not use early stopping based on performance
on held-out labeled target data. To evaluate classification performance, we report target accuracy
on all classes, seen classes and the novel class. For novel class prevalence estimation, we report
absolute difference between the true and estimated marginal. We open-source our code and by simply
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Table 1: Comparison of PULSE with other methods. Across all datasets, PULSE outperforms
alternatives for both target classification and novel class prevalence estimation. Acc (All) is target
accuracy, Acc (Seen) is target accuracy on examples from previously seen classes, and Acc (Novel)
is recall for novel examples. MPE (Novel) is absolute error for novel prevalence estimation. Results
reported by averaging across 3 seeds. Detailed results for each dataset with all methods in App. F.4.

CIFAR-10 CIFAR-100

Method Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Novel)

Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Novel)

Source-Only 67.1 87.0 - - 46.6 66.4 - -

UAN [73] 15.4 19.7 25.2 0.214 18.1 40.6 14.8 0.133

BODA [58] 63.1 66.2 42.0 0.162 36.1 17.7 81.6 0.41

DANCE [59] 70.4 85.5 14.5 0.174 47.3 66.4 1.2 0.28

STA [46] 57.9 69.6 14.9 0.124 42.6 48.5 34.8 0.14

CMU [25] 62.1 77.9 41.2 0.183 35.4 46.0 15.5 0.161

Domain Disc. [24] 47.4 87.0 30.6 0.331 45.8 66.5 39.1 0.046

k-PU 83.6 79.4 98.9 0.036 36.3 22.6 99.1 0.298

PULSE (Ours) 86.1 91.8 88.4 0.008 63.4 67.2 63.5 0.078

Entity30 Newsgroups20 Tabula Muris BreakHis DermNet

Method Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

Source-Only 32.0 - 39.3 - 33.8 - 70.0 - 41.4 -

BODA [58] 42.2 0.189 43.4 0.16 76.5 0.079 71.5 0.077 43.8 0.207

Domain Disc. 43.2 0.135 50.9 0.176 73.0 0.071 56.5 0.091 40.6 0.083

k-PU 50.7 0.394 52.1 0.373 85.9 0.307 75.6 0.059 46.0 0.313

PULSE (Ours) 58.0 0.054 62.2 0.061 87.8 0.058 79.1 0.054 48.9 0.043

changing a single config file, new OSLS setups can be generated and experimented with. We provide
precise details about hyperparameters, OSLS setup for each dataset and code in App. F.3.

Results Across different datasets, we observe that PULSE consistently outperforms other methods
for the target classification and novel prevalence estimation (Table 1). For detection of novel classes
(Acc (Novel) column), kPU achieves superior performance as compared to alternative approaches
because of its bias to default to pk`1qth class. This is evident by the sharp decrease in performance on
previously seen classes. For each dataset, we plot evolution of performance with training in App. F.4.
We observe more stability in performance of PULSE as compared to other methods.

We observe that with default hyperparameters, popular OSDA methods significantly under perform
as compared to PULSE. We hypothesize that the primary reasons underlying the poor performance
of OSDA methods are (i) the heuristics employed to detect novel classes; and (ii) loss functions
incorporated to improve alignment between examples from common classes in source and target. To
detect novel classes, a standard heuristic employed in popular OSDA methods involves thresholding
uncertainty estimates (e.g., prediction entropy, softmax confidence [73, 25, 59]) at a predefined
threshold κ. However, a fixed κ, may not for different datasets and different fractions of the novel class.
In App. F.5, we ablate by (i) removing loss function terms incorporated with an aim to improve source
target alignment; and (ii) vary threshold κ and show improvements in performance of these methods.
In contrast, our two-stage method PULSE, first estimates the fraction of novel class which then guides
the classification of novel class versus previously seen classes avoiding the need to guess κ.

Ablations Different datasets, in our setup span different fraction of novel class prevalence ranging
from 0.22 (in CIFAR10) to 0.64 (in Tabula Muris). For each dataset, we perform more ablations on
the novel class proportion in App. F.6. For kPU and PULSE, in the main paper, we include results with
BBE and CVIR [29]. In App. F.8, we perform experiments with alternative PU learning approaches
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and highlight the superiority of BBE and CVIR over other methods. Moreover, since we have access
to unlabeled target data, we experiment with SimCLR [15] pre-training on the mixture of unlabeled
source and target dataset. We include setup details and results in App. F.7. While pre-trained backbone
architecture improves performance for all methods, PULSE continues to dominate other methods.

8 Analysis of PULSE Framework

In this section, we analyse key steps of our PULSE procedure for target label marginal estimation (Step
3, 5 Algorithm 1) and learning the domain discriminator classifier (Step 5, Algorithm 1). Due to space
constraints, we present informal results here and relegate formal statements and proofs to App. D.

Theoretical analysis for target marginal estimation Building on BBE results from Garg et al. [29],
we present finite sample results for target label marginal estimation. When the data satisfies strong
positivity, we observe that source classifiers often exhibit a threshold cy on softmax output of each
class y P Ys above which the top bin (i.e., rcy, 1s) contains mostly examples from that class y. We give
empirical evidence to this claim in App. D.1. Then, we show that the existence of (nearly) pure top
bin for each class in fs is sufficient for Step 3 in Algorithm 1 to produce (nearly) consistent estimates:
Theorem 1 (Informal). Assume that for each class y P Ys, there exists a threshold cy such that for
the classifier fs, if rfspxqsy ą cy for any x then the true label for that sample x is y. Then, we have

||ppt ´ pt||1 ď O
´

a

k3 logp4k{δq{n `
a

k2 logp4k{δq{m

¯

.

The proof technique simply builds on the proof of Theorem 1 in Garg et al. [29]. By assuming that
we recover close to ground truth label marginal for source classes, we can also extend the above
analysis to Step 5 of Algorithm 1 to show convergence of estimate pptpy “ k ` 1q to true prevalence
ptpy “ k ` 1q. We discuss this further in App. D.3.

Theoretical analysis of CVIR in population While the CVIR loss was proposed in Garg et al. [29],
no analysis was provided for convergence of the iterative gradient descent procedure. In our work,
we show that in population on a separable Gaussian dataset, CVIR will recover the optimal classifier.

We consider a binary classification problem where we have access to positive distribution (i.e., pp),
unlabeled distribution (i.e., pu :“ αpp ` p1 ´ αqpn), and mixture coefficient α. Making a parallel
connection to Step 5 of PULSE, positive distribution pp here refers to the label shift corrected source
distribution p1

s and pu refers to pt “ ptpy “ k`1qptpx|y “ k`1q ` p1´ptpy “ k`1qqp1
spxq. Our

goal is to recover the classifier that discriminates pp versus pn (parallel p1
s versus ptp¨|y “ k ` 1q).

First we introduce some notation. For a classifier f and loss function ℓ (i.e., logistic loss), define
VIRαpfq “ inftτ P R : Px„pupℓpx,´1; fq ď τq ě 1 ´ αu. Intuitively, VIRαpfq identifies a
threshold τ to capture bottom 1 ´ α fraction of the loss ℓpx,´1q for points x sampled from pu.
Additionally, define CVIR loss as Lpf, wq “ αEpp

rℓpx, 1; fqs`Epu
rwpxqℓpx,´1; fqs for classifier

f and some weights wpxq P t0, 1u. Formally, given a classifier ft at an iterate t, CVIR procedure
proceeds as follows:

wtpxq “ I rℓpx,´1; ftq ď VIRαpftqs , (4)
ft`1 “ ft ´ η∇Lf pft, wtq . (5)

We assume that x are drawn from two half multivariate Gaussian with mean zero and identity
covariance, i.e., x „ pp ô x “ γ0θopt ` z| θToptz ě 0, and x „ pn ô x “ ´γ0θopt ` z| θToptz ă

0, where z „ N p0, Idq. Here γ0 is the margin and θopt P Rd is the true separator. Here, we have
access to distribution pp, pu “ αpp ` p1 ´ αqpn, and the true proportion α.

Theorem 2 (Informal). In the data setup detailed above, a linear classifier fpx; θq “ σ
`

θTx
˘

trained
with CVIR procedure as in (4)-(5) will converge to an optimal positive versus negative classifier.

The proof uses a key idea that for any classifier θ not separating positive and negative data perfectly,
the gradient in (5) is non-zero. Hence, convergence of the CVIR procedure (implied by smoothness of
CVIR loss) implies converge to an optimal classifier. For separable datasets in general, we can extend
the above analysis with some modifications to the CVIR procedure. We discuss this in App. D.4.
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Empirical investigation in overparameterized models As noted in our ablation experiments
and in Garg et al. [29], domain discriminator trained with CVIR outperforms classifiers trained
with other consistent objectives (nnPU [38] and uPU [21]). While the above analysis highlights
consistency of CVIR procedure in population, it doesn’t capture the observed empirical efficacy of
CVIR over alternative methods in overparameterized models. In the Gaussian setup described above,
we train overparameterized linear models to compare CVIR with other methods. We discuss precise
experiments and results in App. E, but highlight the key takeaway here. First, we observe that when
a classifier is trained to distinguish positive and unlabeled data, early learning happens [47, 3, 28],
i.e., during the initial phase of learning classifier learns to classify positives in unlabeled correctly
as positives. Next, we show that post early learning rejection of large fraction of positives from
unlabeled training in equation (4) crucially helps CVIR.

9 Conclusion

In this work, we introduce OSLS a well-posed instantiation of OSDA that subsumes label shift and PU
learning into a framework for learning adaptive classifiers. We presented identifiability conditions for
OSLS and proposed PULSE, a simple and effective approach to tackle the OSLS problem. Moreover,
our extensive experiments demonstrate efficacy of PULSE over popular OSDA alternatives when
the OSLS assumptions are met. We would like to highlight the brittle nature of benchmark driven
progress in OSDA and hope that our work can help to stimulate more solid foundations and enable
systematic progress in this area. Finally, we hope that our open source code and benchmarks will
foster further progress on OSLS.

9.1 Limitations and Future Work

Here, we discuss limitations of the PULSE framework. First, to estimate the relative label shift among
source classes in target, we leverage k-PU reductions with several modifications. While we reduce the
issues due to overestimation bias by re-normalizing the label marginal among source classes in target,
in future, we may hope to replace this heuristic step to directly estimate the joint target marginal.

Second, since our methods use CVIR and BBE sub-routines, failure of these methods can lead to
failure of PULSE. For example, efficacy of BBE relies on the existence of an almost pure top bin
in the classifier output space. While this property seems to be satisfied across different datasets
spanning different modalities and applications, failure to identify an almost pure top bin can degrade
the performance of BBE and hence, our PULSE framework.

In future work, we also hope to bridge the gap between the necessary and sufficient identifiability
conditions. While we empirically investigate reasons for CVIR’s efficacy in overparameterized
models, we aim to extend our theory to overparameterized settings in future. In our work, we strictly
operate under the OSLS settings, where we performed semi-synthetic experiments on vision, language
and tabular datasets. In future, it will be interesting to experiment with our PULSE procedure in
relaxed settings where ppx|yq may shift in some natural-seeming ways from source to target.
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