
A Missing Proofs from Section 3.1 (Smooth GLMs)

A.1 Utility Lemmas

Fact 1. [SSBD14] For a H̃-smooth non-negative function f , and for any u ∈ dom(f), we have

‖∇f(u)‖ ≤
√

4H̃f(u).

A.2 Proof of Lemma 2

From the self-bounding property (Fact 1), the ‖Y‖2 bound on loss at zero, and smoothness, we have
the following bound on the gradient:

‖∇ℓ(w; (x, y)‖ ≤ ‖∇ℓ(0; (x, y))‖+ ‖∇ℓ(w; (x, y))−∇ℓ(0; (x, y))‖
≤ 2

√
H ‖x‖ ℓ(0; (x, y)) +H ‖x‖2 ‖w‖

≤ 2
(√

H ‖Y‖ ‖x‖+H ‖x‖2 ‖w‖
)
. (2)

Lemma 3. For any w ∈ BB and any (x, y) ∈ (X × Y) it holds that ℓ(w; (x, y)) ≤ 3(‖Y‖2 +
HB2‖X‖2).

Proof. Using the fact that the loss function is G = ‖Y‖
√
H‖X‖ + BH‖X‖2-Lipschitz in the

constraint set (Lemma 2) we have

ℓ(w; (x, y)) ≤ ℓ(0; (x, y)) + |ℓ(w; (x, y))− ℓ(0; (x, y))|
≤ ‖Y‖2 +G ‖w‖
≤ ‖Y‖2 + ‖Y‖

√
HB‖X‖+HB2‖X‖2

≤ 3
(
‖Y‖2 +HB2‖X‖2

)

where the last step follow from AM-GM inequality.

A.3 Low Dimension

Before presenting the proof of Theorem 1, we provide formal statements of its Corollaries.

Corollary 1, stated below, gives an upper bound on excess risk of gradient descent in the non-private
setting.

Corollary 1. Let ℓ be a non-negative convex H̃ smooth loss function, bounded at zero by ‖Y‖2. Let

n0 = H̃B2

‖Y‖2 , W = BB , T = n, and η = min
(

B
√
T
√

H̃‖Y‖
, 1

4H̃

)
. Given a dataset S of n ≥ n0 i.i.d

samples from an unknown distribution D, the excess risk of output of Algorithm 1 with σ = 0 is
bounded as,

E[L(ŵ;D)− L(w∗;D)] ≤ O

(√
H̃B‖Y‖√

n

)
.

Corollary 2 below gives an upper bound on excess risk of noisy gradient descent for non-negative
smooth GLMs.

Corollary 2. Let n0 = H‖X‖2B2

‖Y‖2 , η = min
(

B√
T max(

√
H‖X‖‖Y‖,σ

√
d)
, 1
4H‖X‖

)
, W = BB , σ2 =

8G2T log(1/δ)
n2ǫ2 and T = n. Let ℓ be a non-negative convex H smooth GLM, bounded at zero by ‖Y‖2.

Algorithm 1 satisfies (ǫ, δ)-differential privacy. Given a dataset S ∼ Dn, n ≥ n0, then the excess
risk of output of Algorithm 1 is bounded as,

E[L(ŵ;D)− L(w∗;D)] = O

(√
H‖X‖B‖Y‖√

n
+

(√
H‖X‖‖Y‖+H‖X‖2B2

)
B
√
d log (1/δ)

nǫ

)
.
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A.3.1 Proof of Theorem 1

Since Algorithm 1 uses a projection step, the iterates always lie in the constraint set {w : ‖w‖ ≤ B}.
Hence, the function over this constraint set is G-Lipschitz. From the analysis of Noisy (S)GD in
[BST14, BFTGT19], we have that the setting of noise variance σ2 ensures that the algorithm satisfies
(ǫ, δ)-DP

We now move to the utility part. We start with the decomposition of excess risk as

E[L(ŵ;D)− L(w∗;D)] = E[L(ŵ;D)− L̂(ŵ;S)] + E[L̂(ŵ;S)− L̂(w∗;S)] (3)

The key arguments are as follows: we first bound generalization gap, or on-average stability (first
term in the right hand side above), in terms of average argument stability and excess empirical risk
(Lemma 4). We then bound average argument stability in terms of average regret (Lemma 5). Finally,
in Lemma 6, we provide bounds on excess empirical risk and average regret of gradient descent.
Substituting these in the above equation gives the claimed bound. We now fill in the details.

We start with Lemma 4 which gives the following bound on the generalization gap:

E[L(A(S);D)− L̂(ŵ;S)] ≤
√
H̃B√
n ‖Y‖

(
E[L̂(ŵ;S)− L̂(w∗;S)]

)
+

2
√
H̃n‖Y‖
B

εav−stab(A)2 +

√
H̃B‖Y‖√

n
(4)

Substituting the bound on εav−stab(A) from Lemma 5, the second term becomes,

2
√

H̃n‖Y‖
B

εav−stab(A)2 ≤ 16H̃3/2η2T‖Y‖√
nB

1

n

T∑

j=1

E[L̂(wj ;S)− L̂(w∗;S)] +
16H̃3/2η2T‖Y‖√

nB

≤ 16
√
H̃B√

n‖Y‖
1

n

T∑

j=1

E[L̂(wj ;S)− L̂(w∗;S)] +
16
√
H̃B√

n‖Y‖

≤ 16

n

T∑

j=1

E[L̂(wj ;S)− L̂(w∗;S)] +
16
√

H̃B√
n‖Y‖ .

Substituting the above in Eqn. (4) and using the fact that

√
H̃B√

n‖Y‖ ≤ 1 from the lower bound on n, we

get:

E[L(A(S);D)− L̂(ŵ;S)] ≤
(
E[L̂(ŵ;S)− L̂(w∗;S)]

)
+

16

n




T∑

j=1

E[L̂(wj ;S)− L̂(w∗;S)]




+
17
√
H̃B‖Y‖√
n

.

From the excess empirical risk guarantee (Lemma 6), the terms excess empirical risk E[L̂(ŵ;S)−
L̂(w∗;S)] and average regret 1

n

(∑T
j=1 E[L̂(wj ;S)− L̂(w∗;S)]

)
are both bounded by the same

quantity. Thus, substituting the above in Eqn. (3) and substituting the bound from 6, we have,

E[L(ŵ;D)− L(w∗;D)] ≤ 18

n

n∑

j=1

E[L̂(wj ;S)− L̂(w∗;S)] +
17
√
H̃B‖Y‖√
n

≤ O

(√
HB‖Y‖√

n
+

√
dGB log (1/δ)

nǫ

)
.

Substituting the value of G completes the proof.

Lemma 4. Let n ≥ H̃B2

‖Y‖2 . Let ℓ be a non-negative H̃ smooth convex loss function. Let S be a

dataset of n i.i.d. samples from an unknown distribution D, and w∗ denote the optimal population
risk minimizer. The generalization gap of algorithm A is bounded as,
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E[L(A(S);D)− L̂(A(S);S)] ≤
√
H̃B√
n ‖Y‖

(
E[L̂(A(S);S)− L̂(w∗;S)]

)
+

2
√

H̃n‖Y‖
B

εav−stab(A)2

+

√
H̃B‖Y‖√

n
.

Proof. Let ŵ := A(S), S(i) be the dataset where the i-th data point is replaced by an i.i.d. point

(x′, y′) and let ŵ(i) be the corresponding output of A.

A standard fact (see [SSBD14]) is that generalization gap is equal to on-average stability:

E[L(ŵ;D)− L̂(ŵ;S)] = E[ℓ(ŵ(i); (xi, yi))− ℓ(ŵ; (xi, yi)].

From smoothness and self-bounding property, we have,

ℓ(ŵ(i); (xi, yi))− ℓ(ŵ; (xi, yi) ≤ ‖∇ℓ(ŵ; (xi, yi))‖
∥∥∥ŵ − ŵ(i)

∥∥∥+ H̃

2

∥∥∥ŵ − ŵ(i)
∥∥∥
2

≤ 2

√
H̃ℓ((ŵ; (xi, yi))

∥∥∥ŵ − ŵ(i)
∥∥∥+ H̃

2

∥∥∥ŵ − ŵ(i)
∥∥∥
2

.

Taking expectation, using Cauchy-Schwarz inequality and substituting average argument stability, we
get,

E

[
ℓ(ŵ(i); (xi, yi))− ℓ(ŵ; (xi, yi)

]

≤ 2

√
H̃E[ℓ((ŵ; (xi, yi))]

√
E[
∥∥ŵ − ŵ(i)

∥∥2] + H̃

2
E

[∥∥∥ŵ − ŵ(i)
∥∥∥
2
]

(5)

≤ 2

√
H̃E[L̂(ŵ;S)]εav−stab(A) +

H̃εav−stab(A)2

2

≤
√

H̃BE[L̂(ŵ;S)]√
n ‖Y‖ +

√
H̃n ‖Y‖ εav−stab(A)2

B
+

H̃εav−stab(A)2

2

≤
√

H̃B√
n ‖Y‖

(
E[L̂(ŵ;S)− L̂(w∗;S)]

)
+

√
H̃n ‖Y‖ εav−stab(A)2

B
+

H̃εav−stab(A)2

2

+

√
H̃B√
n ‖Y‖E[L̂(w

∗;S)]

≤
√

H̃B√
n ‖Y‖

(
E[L̂(ŵ;S)− L̂(w∗;S)]

)
+

(√
H̃n‖Y‖
B

+
H̃

2

)
εav−stab(A)2

+

√
H̃B‖Y‖√

n
(6)

where the third inequality follows from AM-GM inequality, and last follows since w∗ is the optimal

solution: E[L̂(w∗;S)] = L(w∗;D) ≤ L(0;D) ≤ ‖Y‖2. Finally, using the lower bound on n, we

have H̃
2 ≤

√
H̃n‖Y‖
B , substituting which gives the claimed bound.

Lemma 5. The average argument stability for noisy GD (Algorithm 1) run for T iterations with step
size η ≤ 4

H̃
is bounded as

εav−stab(A)2 ≤ 8H̃η2T

n

1

n

T∑

j=1

E[L̂(wj ;S)− L̂(w∗;S)] +
8H̃η2T‖Y‖2

n
.

Proof. The uniform argument stability analysis for (Noisy) (S)GD is limited to the Lipschitz setting
[HRS15, BFTGT19, BFGT20] and therefore not directly applicable. We therefore need to modify
the arguments to give an average stability analysis in smooth (non-Lipschitz) case.
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Let ŵ := A(S), S(i) be the dataset where the i-th data point is replaced by an i.i.d. point (x′, y′)
and let ŵ(i) be the corresponding output of A. Moroever, let wi denote the iterate of noisy SGD on

dataset S and similarly w̃
(i)
i for dataset S(i).

We simply couple the Gaussian noise sampled at each iteration to be equal on both datasets. Using
the fact the the updates are non-expansive, we have

∥∥wt+1 − w′
t+1

∥∥ ≤ ‖wt − w′
t‖+

η (‖∇ℓ(wt; (xi, yi))‖+ ‖∇ℓ(w′
t; (x

′; y′))‖)
n

≤
η
∑t

j=1

(
‖∇ℓ(wj ; (xi, yi))‖+

∥∥∇ℓ(w′
j ; (x

′; y′))
∥∥)

n
.

From the self-bounding property (Fact 1), (‖∇ℓ(wj ; (xi, yi))‖) ≤ 2
√
H̃ℓ(wj ; (xi, yi))). Therefore,

we get,

E[‖wt − w′
t‖

2
] ≤ 4H̃η2T

n2

t∑

j=1

(
E[ℓ(wj ; (xi, yi)) + ℓ(w′

j ; (x
′, y′))]

)

=
8H̃η2T

n2

t∑

j=1

E[L̂(wj ;S)].

For the average iterate,

E

[∥∥∥ŵ − ŵ(i)
∥∥∥
2
]
≤ 1

T 2
T

T∑

t=1

E[‖wt − w′
t‖

2
] ≤ 8H̃η2T

n2

T∑

j=1

E[L̂(wj ;S)]

≤ 8H̃η2T

n

1

n

T∑

j=1

E[L̂(wj ;S)− L̂(w∗;S)] +
8H̃η2T

n
E[L̂(w∗;S)]

≤ 8H̃η2T

n

1

n

T∑

j=1

E[L̂(wj ;S)− L̂(w∗;S)] +
8H̃η2T‖Y‖2

n

where the last inequality follows since w∗ is the population risk minimizer: E[L̂(w∗;S)] =
L(w∗;D)] ≤ L(0;D) ≤ ‖Y‖2.

Lemma 6. Let n ≥ H̃B2

‖Y‖2 , η = min


 B

√
T max

(√
H̃‖Y‖,σ

√
d

) , 1

4H̃


, σ2 = 8G2T log(1/δ)

n2ǫ2 and T = n.

We have,

E

[
L̂(ŵ;S)− L̂(w∗;S)

]
≤ 1

T

T∑

j=1

E

[
L̂(wj ;S)− L̂(w∗;S)

]
≤ O

(√
HB‖Y‖√

n
+

√
dG log (1/δ)

nǫ

)
.

where w∗ is the (minimum norm) population risk minimizer.

Proof. From standard analysis of (S)GD,

E

[
‖wt+1 − w∗‖2

]
≤ E

[∥∥∥wt − η
(
∇L̂(wt;S) + ξt

)
− w∗

∥∥∥
2
]

≤ E

[
‖wt − w∗‖2

]
+ η2E

[∥∥∥∇L̂(wt;S)
∥∥∥
2
]
+ η2σ2d− 2ηE

[
L̂(wt;S)− L̂(w∗;S)

]

≤ E

[
‖wt − w∗‖2

]
+ 4η2H̃E[L̂(wt;S)] + η2σ2d− 2ηE

[
L̂(wt;S)− L̂(w∗;S)

]
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where the last inequality follows from self-bounding property (Fact 1). Rearranging, and using the

fact that E[L̂(w∗;S) = L(w∗;D)] ≤ L(0;D) ≤ ‖Y‖2 we get,

(
1− 2ηH̃

)
E

[
L̂(wt;S)− L̂(w∗;S)

]
≤

E

[
‖wt − w∗‖2 − ‖wt+1 − w∗‖2

]

2η
+ 2η

(
H̃‖Y‖2 + σ2d

)

From the choice of η, we have
(
1− 2ηH̃

)
≥ 1

2 . Averaging over T iterations, we get that the average

regret is,

1

T

T∑

j=1

E

[
L̂(wj ;S)− L̂(w∗;S)

]
≤ B2

ηT
+ 4η

(
H̃‖Y‖2 + σ2d

)
.

Setting η = min


 B

√
T max

(√
H̃‖Y‖,σ

√
d

) , 1

4H̃


, we get

1

T

T∑

j=1

E

[
L̂(wj ;S)− L̂(w∗;S)

]
= O

(√
H̃B‖Y‖√

T
+

B
√
dσ√
T

+
H̃B2

T

)
.

Finally, substituting σ2 = 8G2T log(1/δ)
n2ǫ2 , T = n and using the lower bound on n gives the claimed

bound on average regret. Applying convexity to lower bound average regret by excess empirical risk
of ŵ gives the same bound on excess empirical risk.

A.4 High Dimension

Proof of Theorem 2. Let α ≤ 1 be a parameter to be set later. From the JL property with k =

O
(

log(2n/δ)
α2

)
, with probability at least 1 − δ/2, for all data points xi, ‖Φxi‖ ≤ (1 + α) ‖xi‖ ≤

2 ‖X‖, and ‖Φw∗‖2 ≤ 2 ‖w∗‖2 ≤ 2B2.

Further, by Lemma 2, for any w in the embedding space with ‖w‖2 ≤ B, with probability at least

1− δ/2, the loss is G Lipschitz where G = 2 ‖Y‖
√
H ‖X‖+ 2HB ‖X‖2. The privacy guarantee

now follows from the privacy of Noisy SGD and post-processing.

For the utility guarantee, let L(w; ΦD) and L̂(w; ΦS) denote population and empirical risk (resp)
where test and training feature vectors (resp) are mapped using Φ. The excess risk can be decomposed
as:

E
[
L(Φ⊤w̃;D)− L(w∗;D)

]
= E [L(w̃; ΦD)− L(Φw∗; ΦD)] + E [L(Φw∗; ΦD)− L(w∗;D)] .

(7)

The first term in Eqn. (7) is bounded by the utility guarantee of the DP-SCO method. In particular,
from Lemma 7 (below), we have

E[L(w̃; ΦD)− L(Φw∗; ΦD)] = O



√
H‖X‖B‖Y‖√

n
+

(√
H‖X‖‖Y‖+H‖X‖2B2

)
B
√
k log (1/δ)

nǫ


 .

The second term in Eqn. (7) is bounded by the JL property together with smoothness and the fact that
w∗ is the optimal solution thus ∇L(w∗;D) = 0. This gives us

E[L(Φw∗; ΦD)]− L(w∗;D)] ≤ H

2
E

[
|〈Φw∗,Φx〉 − 〈w∗, x〉|2

]
≤ α2H ‖w∗‖2 ‖X‖2

2
≤ Õ

(
HB2‖X‖2

k

)
.

Combining, we get,

E
[
L(Φ⊤w̃;D)− L(w∗;D)

]
≤ Õ



√
H‖X‖B‖Y‖√

n
+

(√
H‖X‖‖Y‖+H‖X‖2B

)
B
√

k log (1/δ)

nǫ
+

HB2‖X‖2
k


 .
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Setting k = O
(

BH‖X‖ log(2n/δ)nǫ
G

)2/3
completes the proof.

Lemma 7. Let Φ ∈ R
d×k be a data-oblivious JL matrix. Let S = {(xi, yi)}ni=1 of n i.i.d data

points and let ΦS := {(Φxi, yi)}ni=1. Let w̃ ∈ R
k be the average iterate returned by Algorithm 1

with σ2 = O
(

G2‖X‖2 log(1/δ)
n2ǫ2

)
on dataset ΦS. For k = Ω(log (n)), the excess risk of w̃ on ΦD is

bounded as,

E[L(w̃; ΦD)− L(Φw∗; ΦD)] ≤ O



√
HB‖X‖‖Y‖√

n
+

(√
H‖X‖‖Y‖+H‖X‖2B

)
B
√
k log (1/δ)

nǫ


 .

Proof. Let S(i) be the dataset where the i-th data point is replaced by an i.i.d. point (x′, y′) and

let w̃(i) be the corresponding output of Noisy-SGD on ΦS(i). Define S := {S, (x′, y′)} and

let H(Φ, S) denote an upper bound on the smoothness parameter of the family of loss function
{ℓ(w; (Φx; y))}(x,y)∈S .

We want to apply Theorem 1, but the theorem requires that n ≥ 2H‖X‖2B2

‖Y‖2 . In the proof below, we

will use it to bound H(Φ, S) ≤ n‖Y‖2

B2 . We use the JL property to get this. Let α ≤ 1 be a parameter

to be set later. Note that H(Φ, S) ≤ H sup(x,y)∈S ‖Φx‖2 ≤ H (1 + α) ‖X‖2 ≤ 2H ‖X‖2 with

probability at least 1 − δ for k = O
(

log(2n/δ)
α2

)
. Thus, if we assume n ≥ 2H‖X‖2B2

‖Y‖2 , then w.h.p.

H(Φ, S) ≤ n‖Y‖2

B2 . Also from the JL property, ‖Φw∗‖ ≤ 2B.

Decomposing excess risk and writing generalization gap as on-average stability, we have

EΦ,S [L(w̃; ΦD)− L(Φw∗; ΦD)] = EΦ,S [L(Φ
⊤w̃;D)− L̂(Φ⊤w̃;S)] + EΦ,S [L̂(Φ

⊤w̃;S)]− L̂(Φw∗; ΦS)]

= ES,Φ[ℓ(w̃
(i); (Φxi, yi))− ℓ(w̃; (Φxi, yi)) + L̂(Φ⊤w̃;S)− L̂(Φw∗; ΦS)].

We now fix the randomness of S and bound the terms in high probability w.r.t. the random Φ. Let

IAS(S, i) =
∥∥ŵ − ŵ(i)

∥∥ denote the instance argument stability. Repeating the analysis in Theorem
1, from Eqn. (5), the first term is bounded as,

ℓ(w̃(i); (Φxi, yi))− ℓ(w̃; (Φxi, yi)) ≤

√
H(Φ, S)B
√
nY

(
ℓ(ŵ; (Φxi, yi))− L̂(Φw∗; ΦS)

)

+




√
H(Φ, S)n‖Y‖

B
+

H(Φ, S)

2


 IAS(S, i)2 +

√
H(Φ, S)B‖Y‖

√
n

≤ 2
√
H‖X‖B√
nY

(
ℓ(ŵ; (Φxi, yi))− L̂(Φw∗; ΦS)

)

+
4
√
Hn‖X‖‖Y‖

B
IAS(S, i)2 +

2
√
HB‖Y‖‖X‖√

n
(8)

where the last inequality holds from application of JL property: with probability at least 1 − δ,

H(Φ, S) ≤ n‖Y‖2

B2 (from the lower bound on n) and H(Φ, S) ≤ 2H‖X‖2.

As in the proof of Lemma 5, IAS(S, i) is bounded as,

IAS(S, i)2

≤ 8H(Φ, S)η2T

n

1

n

T∑

j=1

E[ℓ(wj ; (Φxi, yi)) + ℓ(w′
j ; (Φx

′, y′))− 2L̂(Φw∗; ΦS)] +
8H(Φ, S)η2T‖Y‖2

n

≤ 16H‖X‖2η2T
n

1

n

T∑

j=1

E[ℓ(wj ; (Φxi, yi)) + ℓ(w′
j ; (Φx

′, y′))− 2L̂(Φw∗; ΦS)] +
16H‖X‖2η2T‖Y‖2

n
.
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Substituting the above in equation 8, taking expectation with respect to S and from manipulations as
in the proof of Theorem 1, we get that with probability at least 1− δ, we have

ES [L(Φ
⊤w̃;D)− L̂(Φ⊤w̃;S)] ≤ 2

(
E[L̂(ŵ; ΦS)− L̂(Φw∗; ΦS)]

)

+
32

n




T∑

j=1

E[L̂(wj ; ΦS)− L̂(w∗; ΦS)]


+

34
√

H̃B‖Y‖√
n

.

Let G(Φ, S) = G = 2 ‖Y‖
√
H(Φ, S) + 2H(Φ, S) ‖Φw∗‖ denote the Lispchitzness parameter of

the family of loss functions {ℓ(w; (Φx, y)}(x,y)∈S . From the analysis in Lemma 6, the average regret

and excess empirical risk terms are both bounded by the following quantity with high probability.

O




√
H(Φ, S)B‖Y‖

√
n

+

√
kG(Φ, S) log (1/δ)

nǫ


 ≤ O

(√
HB‖Y‖√

n
+

√
kG log (1/δ)

nǫ

)
.

This gives the following high probability bound,

E[L(w̃; ΦD)− L(Φw∗; ΦD)] ≤ O



√
HB‖X‖‖Y‖√

n
+

(√
H‖X‖‖Y‖+H‖X‖2B

)
B
√
k log (1/δ)

nǫ


 .

For the in-expectation bound, note that in the above proof the JL property was used for: with proba-

bility at least 1− δ, sup(x,y)∈S ‖Φx‖ ≤
(
1 +

√
log(n/δ)

k

)
‖X‖ and ‖Φw∗‖ ≤

(
1 +

√
log(n/δ)

k

)
B.

All these quantities appear in the numerator in the above bound. Therefore the excess risk random

variable w.r.t Φ has a tail with a poly

(√
log(n/δ)

k

)
term. This is a (non-centered) sub-Weibull

random variable and from equivalence of tail and moments bounds (e.g. Theorem 3.1 in [VGNA20])

and
log(n)

k ≤ O(1), we get the claimed expectation bound.

A.5 Constrained Regularized ERM with Output Perturbation

We here state a key result from [SST10]. Let Rn(B, ‖X‖) denote the expected Rademacher com-
plexity of linear predictors with norm bound by B, with n datapoints and norm of each point bounded
by ‖X‖.

Theorem 9. [[SST10]] Let ℓ be an H-smooth GLM and let R be a bound on the loss function. For a
dataset S of n i.i.d samples, with probability at least 1− β, for all w such that ‖w‖ ≤ B, we have

L(w;D) ≤ L̂(w;S)+O

(√
L̂(w;S)

(
√
H log1.5(n)Rn(B, ‖X‖) +

√
R log (1/β)

n

)

+H log3(n)R2
n(B, ‖X‖) + R log (1/β)

n

)
. (9)

Corollary 3. Let w̃ = argmin
w∈BB

{
L̂(w;S)

}
and n ≥ HB2‖X‖2

‖Y‖2 . Then with probability at least 1− β

under the randomness of S we have

L(w̃;D)− L̂(w̃;S) = Õ

(√
HB‖X‖‖Y‖

√
log (1/β)√

n
+

‖Y‖2 log (1/β)√
n

)
.

Further, in expectation under the randomness of S it holds that

E[L(w̃;D)− L̂(w̃;S)] = Õ

(√
H‖Y‖B ‖X‖√

n
+

‖Y‖2√
n

)
.
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Proof. In our application, w will be the output of regularized ERM w̃, thus L̂(w̃;S) ≤ L̂λ(0;S) ≤
‖Y‖2.

From Lemma 3 we have that R ≤ 3(‖Y‖2 + HB2‖X‖2). Also, Rn(B, ‖X‖) ≤ O
(

B‖X‖√
n

)

[SSBD14]. We now plug in the quantities into the above theorem to get that with probability at least
1− β,

L(w̃;D)− L̂(w̃;S)

= Õ

(√
HB‖X‖√

n

(
‖Y‖+

√
HB‖X‖√

n

)

+

(
‖Y‖+

√
HB‖X‖

)√
log (1/β)

√
n


‖Y‖+

(
‖Y‖+

√
HB‖X‖

)√
log (1/β)

√
n



)

= Õ

(√
HB‖X‖‖Y‖

√
log (1/β)√

n
+

‖Y‖2 log (1/β)√
n

)

where the last follows by simplifications using the lower bound on n.

For the in expectation result, observe that the above Eqn (9) is a tail bound for a sub-Gamma

random variable with variance parameter O
(√

HB‖X‖‖Y‖√
n

)
and scale parameter O

(
‖Y‖2

√
n

)
. From

the equivalence of tail and moment bounds of sub-Gamma random variables, [BLM13] we get the
claimed in-expectation bound.

A.6 Proof of Theorem 3

Proof. Recall from Lemma 2 that the (un-regularized) loss is G-Lipschitz on the constraint set with

‖w‖ ≤ B, where G̃ :=
(√

H ‖Y‖+HB ‖X‖
)
‖X‖. Note that from a standard analysis [BE02],

we get that ℓ2 sensitivity (or uniform argument stability) is O
(

G
nλ

)
, hence σ2 = O

(
G2 log(1/δ)

λ2n2ǫ2

)

ensures (ǫ, δ)-DP.

For the utility analysis, the excess risk can be decomposed as follows,

E[L(ŵ;D)− L(w∗;D)] = E[L(w̃;D)− L̂(w̃;S)] + E[L̂(w̃;S)− L̂(w∗;S)] + E[L(w̃ + ξ;D)− L(w̃;D)].

The first term is bounded by the Rademacher complexity result (Corollary 3).

The second term is simply bounded by λ
2 ‖w̃‖2 ≤ λ

2B
2 since w̃ lies in the constraint set. The third

term is bounded using smoothness as follows:

E[L(w̃ + ξ;D)− L(w̃;D)] = E [φy (〈w̃ + ξ, x〉)− φy (〈w̃, x〉)]

≤ E

[
φ′
y(〈w̃, x〉) 〈ξ, x〉+

H

2
|〈ξ, x〉|2

]

≤ H

2
σ2 ‖X‖2 = O

(
HG2 ‖X‖2 log (1/δ)

λ2n2ǫ2

)

where the last inequality follows since Eξ = 0 and 〈ξ, x〉 ∼ N (0, σ2 ‖x‖2). We now plug in

λ =
(

G
√
H‖X‖
B

)2/3
(log(1/δ))1/3

(nǫ)2/3
. and G =

(√
H ‖Y‖+HB ‖X‖

)
‖X‖ to get,

E[L(ŵ;D)− L(w∗;D)] ≤ Õ

(√
HB ‖X‖ ‖Y‖+ ‖Y‖2√

n
+

(√
HB ‖X‖

)4/3
‖Y‖2/3 +

(√
HB ‖X‖

)2

(nǫ)2/3

)
.
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A.7 Proof of Theorem 4

Proof. Define F (w;S) = 1
n

∑
(x,y)∈S(〈w, x〉 − y)2. Let d′ < min {n, d} and b, p ∈ [0, 1] be

parameters to be chosen later. For any σ ∈ {±1}d
′

, define the dataset Sσ which consists of the
union of d′ subdatasets, S1, ..., Sd′ given as follows. Set pn

d′
of the feature vectors in Sj as ‖X‖ej

(the rescaled j’th standard basis vector) and the rest as the zero vector. Set pn
2d (1 + b) of the labels

as σj‖Y‖ and pn
2d (1 − b) labels as −σj‖Y‖. Let wσ = argminw∈Rd {F (w;Sσ)} be the ERM

minimizer of F (·;Sσ). Following from Lemma 2 of [Sha15] we have that for any w̄ ∈ R
d that

F (w̄;Sσ)− F (wσ;Sσ) ≥
p‖X‖2
2d′

d′∑

j=1

(w̄j − wσ

j )
2. (10)

We will now show lower bounds on the per-coordinate error. Consider any σ and σ
′ which differ only

at index j for some j ∈ [d′]. Note that the datasets Sσ and Sσ
′ differ in ∆ = pn

2d′
[(1+ b)− (1− b)] =

pbn
d′

points. Let τ = wσ

j = ‖Y‖b
‖X‖ and τ ′ = wσ

′

j = −‖Y‖b
‖X‖ (i.e. the j components of the empirical

minimizers for S and S′
j respectively). Note that |wσ

j − wσ
′

j | = 2‖Y‖b
‖X‖ . We thus have by Lemma 1

that for a certain b = b(ǫ, n, d,B, p, ‖Y‖), A must satisfy

E

[
|A(Sσ)j − wσ

j |+ |A(Sσ
′)j − wσ

′

j |
]
≥ 1

4

‖Y‖b
‖X‖ . (11)

Since we need ∆ ≤ 1
ǫ , we must set b ≤ d′

pnǫ . Furthermore, if we are interested in problems with

minimizer norm at most B, we need b ≤ ‖X‖B
‖Y‖

√
d′

to ensure the norm of the minimizer is bounded

by B. Balancing these two restrictions, we set d′ =
(p‖X‖Bnǫ

‖Y‖
)2/3

which yields b =
( ‖X‖B
‖Y‖√pnǫ

)2/3
.

Assuming such settings of b and d′ are possible (e.g. b ∈ [0, 1]) we can apply Jensen’s inequality and
the fact that (a+ b)2 ≤ 2(a2 + b2) to Eqn. (11) to obtain

E

[
|A(Sσ)j − wσ

j |2 + |A(Sσ
′)j − wσ

′

j |2
]
≥ B4/3‖Y‖2/3

32(‖X‖pnǫ)2/3 .

We will now show this implies there exists a σ ∈ {±1}d
′

such that F (A(Sσ)) − F (wσ) =

Ω( (‖X‖B)4/3‖Y‖2/3p1/3

(nǫ)2/3
). To prove this, we have the following analysis. Let U = {±1}d

′

and let

σ−j denote the vector σ with its j’th component negated. We have

sup
σ∈U

{
E [F (A(Sσ))− F (wσ)]

}
≥ 1

|U |
∑

σ∈U

E [F (A(Sσ))− F (wσ)]

=
p‖X‖2
d′|U |

∑

j∈[d′]

∑

σ∈U

E
[
|A(Sσ)j − wσ

j |2
]

=
p‖X‖2
d′|U |

∑

j∈[d′]

∑

σ∈U :σj=1

E
[
|A(Sσ)j − wσ

j |2 + |A(Sσ−j )j − w
σ−j

j |2
]

≥ (‖X‖B)4/3‖Y‖2/3p1/3
128(nǫ)2/3

.

We recall this bound holds providing the settings of d′ and b fall into the range [1,min {n, d}] and
[0, 1] respectively. First note b > 0 always. Furthermore, d′ < min {n, d} and b < 1 whenever

‖X‖2B2

‖Y‖2nǫ ≤ p ≤ min

{
1,

d3/2‖Y‖
‖X‖Bnǫ

}
. (12)

In the following, assume B ≤ ‖Y‖min{√nǫ,
√
d}

‖X‖ . Note this is no loss of generality as we can

obtain problem instances with arbitrarily large B by adding a dummy point with x = c′ed′+1 and
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y = ‖Y‖ where c′ is arbitrarily small so that the minimizer norm is B. Under this assumption
on B, using the restrictions on p, it can be verified that d′ > 1 whenever ǫ > 1

n . Thus we

have b ∈ [0, 1] and d′ ∈ [1,min {n, d}] as required. Furthermore this assumption on B implies
‖X‖2B2

‖Y‖2nǫ ≤ min
{
1, d3/2‖Y‖

‖X‖Bnǫ

}
and thus a valid setting of p is possible. We now turn to setting p in a

way which satisfies (12). We consider two cases, the high and low dimensional regimes.

Case 1: d ≥
(

B‖X‖nǫ
‖Y‖

)2/3
. Setting p = 1 gives a lower bound of

Ω
(
min

{
‖Y‖2, B4/3‖X‖4/3‖Y‖2/3

32(nǫ)2/3

})
, where the min with ‖Y‖2 from the upper bound on

B.

Case 2: d ≤
(

B‖X‖nǫ
‖Y‖

)2/3
. Setting p = d3/2‖Y‖

B‖X‖nǫ we obtain a bound of

Ω
(
min

{
‖Y‖2,

√
dB‖X‖‖Y‖

nǫ

})
which we note is no larger than the bound from Case 1 in

the low dimensional regime and no smaller than the bound from Case 1 in the high dimensional
regime. Thus we can write the total bound as the minimum of these two bounds. The ‖Y‖2 term
again comes from the restriction on B.

To obtain results for arbitrary H , we can set F (w;S) = H
2n

∑
(x,y)∈S(〈w, x〉− 2√

H
y)2. This satisfies

H-smoothness and loss bounded at zero by ‖Y‖2. Then substituting ‖Y‖ in the previous expressions

for 2‖Y‖/
√
H and multiplying through by H/2 one obtains the claimed bound.

B Missing Proofs from Section 4 (Lipschitz GLMs)

B.1 Proof of Theorem 5

Proof. Note that from a standard analysis [BE02], we get that ℓ2 sensitivity of the regularized

minimizer w̃ is
(

2G‖X‖
nλ

)
, hence σ2 = 4G2‖X‖2 log(1/δ)

λ2n2ǫ2 ensures (ǫ, δ)-DP.

For the utility analysis, the excess risk can be decomposed as follows,

E[L(ŵ;D)− L(w∗;D)] = E[L(w̃;D)− L̂(w̃;S)] + E[L̂(w̃;S)− L̂(w∗;S)] + E[L(w̃ + ξ;D)− L(w̃;D)]

The first term is bounded as O
(

BG‖X‖√
n

)
from Rademacher complexity results on bounded linear

predictors [SSBD14].

The second term is simply bounded by λ
2 ‖w̃‖2 ≤ λ

2B
2 since w̃ is the regularized ERM. The third

term is bounded via the following

E[L(w̃ + ξ;D)− L(w̃;D)] = E [φy (〈w̃ + ξ, x〉)− φy (〈w̃, x〉)]
≤ E [G| 〈ξ, x〉 |]

≤ Gσ ‖X‖ ≤ 4G2‖X‖2
√

log (1/δ)

λnǫ

where the last inequality follows since Eξ = 0 and 〈ξ, x〉 ∼ N (0, σ2 ‖x‖2). Now plugging in

λ = G‖X‖(log(1/δ))1/4
B
√
nǫ

obtains the following result

E[L(ŵ;D)− L(w∗;D)] = O

(
BG‖X‖√

n
+

BG‖X‖ log (1/δ)1/4√
nǫ

)
.

B.2 Upper Bound using JL Method

Theorem 10. Let k = O (log (2n/δ)nǫ) , σ2 = 8TG2‖X‖2 log(2/δ)
n2ǫ2 , η = B

G‖X‖
(
1+

√
k log(2/δ)

nǫ

)
T 3/4

and T = n2. Algorithm 2 satisfies (ǫ, δ)-differential privacy. Given a dataset S of n i.i.d samples,
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the excess risk of its output w̃ is bounded as

E[εrisk(ŵ)] = Õ

(
GB ‖X‖√

n
+

GB‖X‖√
nǫ

)
.

Proof. Let α ≤ 1 be a parameter to be set later. From the JL property, with k = O
(

log(2n/δ)
α2

)
,

with probability at least 1 − δ
2 , for feature vectors have ‖Φxi‖ ≤ (1 + α) ‖xi‖ ≤ 2 ‖X‖, and

‖Φw∗‖2 ≤ 2 ‖w∗‖2 ≤ 2B2. Thus, gradient of loss for data point (x, y) in S at any w is bounded
as ‖ℓ(w; (Φx, y)‖ = φ′

y(〈w,Φx〉) ‖Φx‖ ≤ 2G ‖X‖. The privacy guarantee thus follows from the
privacy of DP-SCO and post-processing.

For the utility guarantee, we decompose excess risk as:

E [L(ŵ;D)− L(w∗;D)] = E [L(w̃; ΦD)− L(Φw∗; ΦS)] + E [L(Φw∗; ΦS)− L(w∗;D)] . (13)

The first term in Eqn. (13) is bounded by the utility guarantee of the DP-SCO method. In particular,
from Lemma 8 (below), we have

E [L(w̃; ΦD)− L(Φw∗; ΦS)] ≤ GB ‖X‖√
n

+O

(
G ‖X‖B

√
k

nǫ

)
.

For the second term in Eqn (13), we use JL-property and Lipschitzness of GLM:

E [L(Φw∗; ΦS)− L(w∗;D)] ≤ GE [|〈Φx,Φw∗〉 − 〈x,w∗〉|]
≤ αG ‖X‖ ‖w∗‖

= O

(
G ‖X‖B

√
log (2n/δ)√
k

)
.

Combining, we get,

E [L(ŵ;D)− L(w∗;D)] ≤ Õ

(
G ‖X‖B√

n
+

G ‖X‖B
√
k

nǫ
+

G ‖X‖B√
k

)
.

Balancing parameters by setting k = Õ(nǫ) gives the claimed bound.

Lemma 8. Let Φ ∈ R
d×k be a data-oblivious JL matrix. Let S = {(xi, yi)}ni=1 of n i.i.d data points

and let ΦS := {(Φxi, yi)}ni=1. Let w̃ ∈ R
k be the average iterate returned noisy SGD procedure

with Gaussian noise variance σ2 = O
(

G2‖X‖2 log(1/δ)
n2ǫ2

)
on dataset ΦS. For k = Ω(log (n)), the

excess risk of w̃ on ΦD is bounded as,

EΦ,S [L(w̃; ΦD)− L(Φw∗; ΦD)] ≤ O

(
GB‖X‖√

n
+

GB‖X‖
√
k log (1/δ)

nǫ

)
. (14)

Proof. The proof uses the analysis for excess risk bound for Noisy SGD in [BFGT20] with the

JL transform. Let S(i) be the dataset where the i-th data point is replaced by an i.i.d. point

(x′, y′) and let w̃(i) be the corresponding output of Noisy-SGD on ΦS(i). Define S := {S, (x′, y′)}
and let G(Φ, S) denote an upper bound Lipschitzness parameter of the family of loss functions
{ℓ(w; (Φx; y))}(x,y)∈S .

We decompose the excess risk as:

EΦ,S [L(w̃; ΦD)− L(Φw∗; ΦD)] = EΦ,S [L(Φ
⊤w̃;D)− L̂(Φ⊤w̃;S)] + EΦ,S [L̂(Φ

⊤w̃;S)]− L̂(Φw∗; ΦS)].
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A well-known fact (see [SSBD14]) is that generalization gap is equal to on-average-stability:

EΦ,S [L(Φ
⊤w̃;D)− L̂(Φ⊤w̃;S)] = ES,Φ[ℓ(Φ

⊤w̃(i); (xi, yi))− ℓ(Φ⊤w̃; (xi, yi))]

= ES,Φ[ℓ(w̃
(i); (Φxi, yi))− ℓ(w̃; (Φxi, yi))].

From the analysis in Theorem 3.3 from [BFGT20], it follows that

ℓ(w̃(i); (Φxi, yi))− ℓ(w̃; (Φxi, yi)) ≤ G(Φ;S)
∥∥∥w̃(i) − w̃

∥∥∥ ≤ O

(
G(Φ;S)2

(
η
√
T +

ηT

n

))
.

(15)

where the last equality follows from the GLM structure of the loss function.

From analysis of Noisy-SGD [BST14], the other term (excess empirical risk) can be bounded as

L̂(w̃; ΦS)]− L̂(Φw∗; ΦS) ≤ O

(
η

(
G(Φ;S)2 +

kG(Φ;S)2 log (1/δ)

n2ǫ2

)
+

‖Φw∗‖2
Tη

)
(16)

We now take expectation with respect to Φ. Note that G(Φ, S) =
sup(x,y)∈S supw |gx(〈w,Φx〉)| ‖Φx‖, where gx is the an element of the sub-differential of

φx at 〈w, x〉. By the Lipschitzness assumption |gx(〈w,Φx〉)| ≤ G and from the JL prop-

erty, with probability at least 1 − δ, sup(x,y)∈S ‖Φx‖ ≤
(
1 +

√
log(n/δ)

k

)
‖X‖. Similarly,

∥∥Φ⊤w∗∥∥ ≤
(
1 +

√
log(n/δ)

k

)
B. Observe that the tail is that of a (non-centered) sub-Gaussian

random variable with variance parameter O
(
1
k

)
. Using the equivalence of tail and moment bounds

of sub-Gaussian random variables [BLM13] and the fact that
log(n)

k ≤ O(1), we get the following
bounds for Eqn. (15) and (16):

EΦ

[
ℓ(w̃(i); (Φxi, yi))− ℓ(w̃; (Φxi, yi)

]
≤ O

(
G2 ‖X‖2

(
η
√
T +

ηT

n

))

EΦ

[
L̂(w̃; ΦS)]− L̂(Φw∗; ΦS)

]
≤ Õ

(
η

(
G2 ‖X‖2 + kG2 ‖X‖2 log (1/δ)

n2ǫ2

)
+

B2

Tη

)
.

Finally, as in [BFGT20], taking expectation with respect S in the two inequalities above, setting
η = B

G‖X‖
(
1+

√
k log(1/δ)

nǫ

)
T 3/4

and T = n2 and combining gives the claimed bound.

B.3 Proof of Theorem 6

The proof follows from the more general Theorem 11 stated below. Instantiating Theorem 11 with
p = q = 2 satisfies all the requirements of our Theorem 6. Finally, let w∗ be the population risk
minimizer of the hard instance in Theorem 11. We then have,

E[L(A(S);D)−min
w

L(w;D)] = E[L(A(S);D)− L(w∗;D)]

≥ E[L(A(S);D)− min
w:‖w‖2≤B

L(w;D)]

≥ E[L(ŵ;D)− L(w̃;D)]

= Ω

(
GB‖X‖min

(
1,

1√
nǫ

,

√
rank

nǫ

))
.

This completes the proof.
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B.4 Lower bound for Non-Euclidean DP-GLM

Theorem 11. Let G, ‖Y‖ , ‖X‖ , B > 0, ǫ ≤ 1.2, δ ≤ ǫ and p, q ≥ 1. For any (ǫ, δ)-DP algorithm
A, there exists sets X and Y such that for any x ∈ X , ‖x‖q ≤ 1, a distribution D over X × Y , a

G-Lipschitz GLM loss bounded at zero by ‖Y‖ and a w̃ with ‖w̃‖p ≤ B such that the output of A on

S ∼ Dn satisfies

E[L(A(S);D)− L(w̃;D)] = Ω

(
GB‖X‖min

(
1,

1

(nǫ)
1/p

,
(rank)

(p−1)/p

nǫ

))
.

Proof. The construction below is from [SSTT20] with some changes. We provide the complete proof
below. Consider the following 1-Lipschitz loss function:

ℓ(w; (x, y)) = |y − 〈w, x〉| .

Firstly, we argue that we can assume ‖Y‖ = ∞. This is because for any arbitrarily large value of
y we can translate the above function below so that the the loss is bounded by ‖Y‖. However, this
translation doesn’t change the excess risk. Also, as in [BST14], it suffices to consider G = 1, since
we can simply scale the 1-Lipschitz loss function and get a factor of the G in the lower bound. Let
d′ ≤ min (rank, nǫ), 0 ≤ α ≤ 1 and β > 0 be parameters to be set later. Since d′ ≤ rank, without
loss of generality, we will represent the features x as d′ dimensional vectors.

Consider a distribution D, where x = e0 := ~0 with probability 1 − α, and with probability α,

x ∼ Unif({‖X‖ ei}d
′

i=1). Note that ‖x‖q ≤ ‖X‖ and for any q ≥ 1 for x ∈ supp(Dx) where Dx

denotes the marginal of D w.r.t. the x variable. This implies the loss w 7→ ℓ(w; (x, y)) is ‖X‖-

Lipschitz in ℓq-norm, when x ∈ supp(Dx) and for all y. Let the fingerprinting code z ∈ {0, 1}d
′

be

drawn from a product distribution with mean µ ∈ [0, 1]d
′

where each co-ordinate µi ∼ Beta(β, β).
Finally we have y = B

(d′)1/p
〈x, z〉. Let S = {(xi, yi)}ni=1 be n i.i.d. samples drawn from D. Define

w̃ = B
(d′)1/p

µ; note that ‖w̃‖p ≤ B.

Let A be any (ǫ, δ)-DP algorithm, which given S outputs ŵ. Its excess risk with respect to w̃ can be
lower bounded as,

E[L(ŵ;D)− L(w̃;D)] = E[|y − 〈ŵ, x〉| − |y − 〈w̃, x〉|]
≥ E[|〈ŵ − w̃, x〉| − 2 |y − 〈w̃, x〉|]. (17)

The last term above is upper bounded as:

E[|y − 〈w̃, x〉|] = B

(d′)1/p
E[|〈z, x〉 − 〈µ, x〉|] = B ‖X‖

(d′)1/p
α

d′

d′∑

i=1

E |zi − µi| .

By direct computation,

E |zi − µi| = E [|1− µi|µi + |−µi| (1− µi)] = 2Eµi (1− µi) =
2β

1 + 2β
.

This gives us that

E[|y − 〈w̃, x〉|] ≤ 2αβB ‖X‖
(1 + 2β) (d′)(p+1)/p

. (18)

The first term in the right hand side Inequality (17) is,

E[|〈ŵ − µ̃, x〉| = B

(d′)1/p
E

∣∣∣∣∣

〈
(d′)1/p

B
ŵ − µ, x

〉∣∣∣∣∣ =
B ‖X‖α
(d′)(p+1)/p

E

d′∑

j=1

∣∣∣∣∣
(d′)1/p

B
ŵj − µj

∣∣∣∣∣ . (19)

Define v ∈ R
d′

with vi =
(d′)

1/p
ŵi

B . Note that,

d′∑

j=1

∣∣∣∣∣
(d′)1/p

B
ŵj − µj

∣∣∣∣∣ = ‖v − µ‖1 ≥ ‖v − µ‖2 ≥ ‖v̂ − µ‖2 ≥ ‖v̂ − µ‖22
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where the first inequality above follows from relationship between ℓ1 and ℓ2 norm, the second follows
from projection property and v̂ denotes the projection of v onto [0, 1]d, and the last inequality follows
from boundedness of coordinates of v̂ − µ.

The key step now is application of the fingerprinting lemma (simplified below, see Lemma B.1
in [SSTT20] for complete statement) from [SU17] which roughly speaking, “relates the error to

correlation”; for any v̂ ∈ [0, 1]d
′

, we have

E ‖v̂ − µ‖22 ≥ d′

4 (1 + 2β)
− 1

β

n∑

i=1

E 〈v̂, zi − µ〉 . (20)

As in [SSTT20], the correlation simplifies as

E 〈v̂, zi − µ〉 =
d′∑

j=0

E[〈v̂, zi − µ〉 |xi = ej ]P[xi = ‖X‖ej ] =
α

d′
E[v̂j (zi − µ)j |xi = ‖X‖ej ]

where the last equality follows since v̂ only depends on the coordinate of zi for which xi = 1.
Now, let v̂∼i denotes the solution obtained if zi were replaced by an independent sample. From

boundedness,

∥∥∥v̂j (zi − µ)j

∥∥∥
∞

≤ 1. Using differential privacy, we have,

E[v̂j (zi − µ)j |xi = ‖X‖ej ] ≤ (eǫ − 1)E
[∣∣∣v̂∼i

j (zi − µ)j

∣∣∣ |xi = ‖X‖ej
]
+ δ ≤ (eǫ − 1) + δ ≤ 3ǫ

where the last inequality uses the assumption that ǫ ≤ 1.2 and δ ≤ ǫ. Plugging this in Eqn. (20), we
get

E ‖v̂ − µ‖22 ≥ d′

4 (1 + 2β)
− 3αnǫ.

Plugging the above in Eqn. (19), we get

E[|〈ŵ − w̃, x〉| ≥ B ‖X‖α
d′(p+1)/p

(
d′

4 (1 + 2β)
− 3αnǫ

)
.

Using the above, and the bound in Eqn. (17), we get that,

E[L(ŵ;D)− L(w̃;D)] ≥ B ‖X‖α
d′(p+1)/p

(
d′

4 (1 + 2β)
− 3αnǫ

)
− 2αβB ‖X‖

(1 + 2β) (d′)1/p

=
B ‖X‖α

(1 + 2β) (d′)1/p

(
1

4
− 3α (1 + 2β)nǫ

d′
− 2β

)
.

Now, we set β = 1
16 . When rank ≤ 48nǫ we set d′ = rank and α = min

(
d′

48(1+2β)nǫ , 1
)

. The

minimum term becomes d′

48(1+2β)nǫ and obtain an excess risk lower bound of,

E[L(ŵ;D)− L(w̃;D)] ≥ B ‖X‖ (d′)(p−1)/p

1024nǫ
.

On the other hand, when rank > 48nǫ, set α = 1 and d′ = ⌊48nǫ⌋ (so that it is at least 1) to get an
excess risk lower bound of,

E[L(ŵ;D)− L(w̃;D)] ≥ min

(
B ‖X‖

16 (nǫ)
1/p

, B ‖X‖
)
.

Finally, note that we can arbitrarily increase the rank of the construction beyond 48nǫ by adding
datapoints with orthogonal feature vectors of small enough magnitude and arbitrary labels. Combining
the two lower bounds obtains the claimed bound.
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Corollary 4. Let G,B > 0, ǫ ≤ 1.2, δ ≤ ǫ and p, q ≥ 1. Let W ⊂ R
d such that for any w ∈ W ,

‖w‖p ≤ B. For any (ǫ, δ)-DP algorithm A, there exists a set Z , a distribution D over Z and a loss

function w 7→ ℓ(w; z), which is convex, G-Lipschitz w.r.t. ℓq norm for w ∈ W , for all z ∈ Z such
that the output of A on S ∼ Dn (which may not lie in W), satisfies

EA,S [Ez∼Dℓ(A(S); z)− min
w∈W

Ez∼Dℓ(w; z)] = Ω

(
GBmin

(
1,

1

(nǫ)
1/p

,
d(p−1)/p

nǫ

))
.

Using generalization properties of differential privacy, we get the same bound as above for excess
empirical risk; see Corollary B.4 in [SSTT20] for details.

C Missing Details for Section 5 (Adapting to ‖w∗‖)

C.1 Generalized Exponential Mechanism

Theorem 12. [RS15] Let K > 0 and S ∈ Zn. Let q1, ..., qK be functions s.t. for any adja-
cent datasets S, S′ it holds that |qj(S) − qj(S

′)| ≤ γj : ∀j ∈ [K]. There exists an Algorithm,
GenExpMech, such that when given sensitivity-score pairs (γ1, q1(S)), ..., (γN , qN (S)), privacy
parameter ǫ > 0 and confidence parameter β > 0, outputs j ∈ [N ] such that with probability at

least 1− β satisfies qj(S) ≤ min
j∈[N ]

{
qj(S) +

4γj log(N/β)
ǫ

}
.

C.2 Proof of Theorem 7

Note that by assumptions on A, the process of generating w1, ..., wK is (ǫ/2, δ/2)−DP . Furthermore,
by Assumption 2 with probability at least δ/2 the sensitivity values passed to GenExpMech bound
sensitivity. Thus by the privacy guarantees of GenExpMech and composition we have that the entire
algorithm is (ǫ, δ)-DP.

We now prove accuracy. In order to do so, we first prove that with high probability every L̃j is an upper

bound on the true population loss of wj . Specifically, define τj =
∆(Bj) log(4K/β)

n +
√

4‖Y‖2 log(4K/β)
n

(i.e. the term added to each L(wj ;S2) in Algorithm 4). Note it suffices to prove

P [∃j ∈ [K] : |L(wj ;S2)− L(wj ;D)| ≥ τj ] ≤
β

2
. (21)

Fix some j ∈ [K]. Note that the non-negativity of the loss implies that ℓ(w∗
B ; (x, y)

2) ≥ 0.

The excess risk assumption then implies that E
(x,y)∼D

[
ℓ(wj ; (x, y))

2
]
≤ 4‖Y‖2, which in turn

bounds the variance. Further, with probability at least 1− β
4K it holds that for all (x, y) ∈ S2 that

ℓ(w, (x, y)) ≤ ∆0 +∆(B). Thus by Bernstein’s inequality we have

P [|L(w;S2)− L(w;D)| ≥ t] ≤ exp

(
− t2n2

∆(Bj)tn+ 4n‖Y‖2
)
+

β

4K

Thus it suffices to set t =
∆(Bj) log(4K/β)

n +
√

4‖Y‖2 log(4K/β)
n to ensure

P [|L(w;S2)− L(w;D)| ≥ t] ≤ β
2K . Taking a union bound over all j ∈ K establishes

(21). We now condition on this event for the rest of the proof.

Now consider the case where j∗ 6= 0 and ‖w∗‖ ≤ 2K . Note that the unconstrained minimizer
w∗ is the constrained minimizer with respect to any Br for r ≥ ‖w∗‖. With this in mind, let
j′ = min

j∈[K]
{j : w∗ ∈ B2j} (i.e. the index of the smallest ball containing w∗). In the following we

condition on the event that ∀j ∈ [K], j ≥ j′, the parameter vector wj satisfies excess population risk

at most ERR(2j). We note by Assumption 2 that this (in addition to the event given in (21)) happens

with probability at least 1− 3β
4 . By the guarantees of GenExpMech, with probability at least 1− β
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we (additionally) have

L(wj∗ ;D) ≤ L(wj∗ ;S2) + τj∗ ≤ min
j∈[K]

{
L(wj ;S2) + τj +

4∆(Bj) log (4K/β)

nǫ

}

≤ L(wj′ ;S2) + τj′ +
4∆(Bj′) log (4K/β)

nǫ

≤ L(wj′ ;D) + 2τj′ +
4∆(Bj′) log (4K/β)

nǫ
.

Since 2j
′ ≤ max {2 ‖w∗‖ , 1} we have

L(wj∗ ;D)− L(w∗;D) ≤ L(wj′ ;D)− L(w∗;D) + 2τj′ +
4∆(Bj′) log (4K/β)

nǫ

≤ ERR(2max {‖w∗‖ , 1}) + 2τj′ +
4∆(max {2 ‖w∗‖ , 1}) log (4K/β)

nǫ

≤ ERR(2max {‖w∗‖ , 1}) +
√

4‖Y‖2 log (4K/β)

n
+

5∆(max {2 ‖w∗‖ , 1}) log (4K/β)

nǫ

where the second inequality comes from the fact the assumption that ‖w∗‖ ≤ ‖Y‖2. Now note that
by the assumption that ERR(2K) ≥ ‖Y‖2, whenever ‖w∗‖ ≥ 2K it holds that ‖Y‖2 ≤ ERR(‖w∗‖).
However since the sensitivity-score pair (0, ‖Y‖2) is passed to GenExpMech, the excess risk of the
output is bounded by at most ‖Y‖2 by the guarantees of GenExpMech).

C.3 Proof of Theorem 8

Let ŵ denote the output of the regularized output perturbation method with boosting and noise and

privacy parameters ǫ′ = ǫ
K and δ′ = δ

K . We have by Theorem 15 that with probability at least

1− β
4K that

L(ŵ;D)− L(w∗;D) = Õ

(√
HB ‖X‖ ‖Y‖+ ‖Y‖2√

n
+

((√
HB ‖X‖

)4/3
‖Y‖2/3 +

(√
HB ‖X‖

)2)

(nǫ)2/3

+

(
‖Y‖2 +HB2‖X‖2

)

nǫ
+

(
‖Y‖+

√
HB‖X‖

)

√
n

)
.

Note that this is no smaller than ‖Y‖2 when B = Ω
(
max

{
‖Y‖√nǫ

‖X‖
√
H
, ‖Y‖2(nǫ)2/3√

H‖X‖2

})
, and thus it

suffices to set K = Θ
(
log
(
max

{
‖Y‖√n

‖X‖
√
H
, ‖Y‖2(nǫ)2/3√

H‖X‖2

}))
to satisfy the condition of the Theorem

statement.

Let σj denote the level noise used for when the guess for ‖w∗‖ is Bj . To establish As-

sumption 2, by Lemma 10 we have that this assumption is satisfies with ∆(B) = ‖Y‖2 +
H‖X‖2σ2

j log (K/min {β, δ})) +HB2‖X‖2. In particular, we note for the setting of σj implied

by Theorem 15 and the setting of K we have for all j ∈ [K] that H‖X‖2σ2
j = Õ(‖Y‖2). Thus

∆(B) = Õ
(
‖Y‖2 +HB2‖X‖2

)
. The result then follows from Theorem 7.

C.4 Stability Results for Assumption 2

Lemma 9. Algorithm 1 run with constraint set BB satisfies Assumption 2 with ∆(B) = ‖Y‖2 +
HB2‖X‖2.

The proof is straightforward using Lemma 3 (provided in the Appendix). For the output perturbation
method, we can obtain similar guarantees. Here however, we must account for the fact that the output
may not lie in the constraint set. We also remark that the JL-based method (Algorithm 2) can also
enjoy this same bound. However, in this case one must apply the norm adaptation method to the
intermediate vector w̃, as Φ⊤w̃ may have large norm.

29



Lemma 10. Algorithm 3 run with parameter B and σ satisfies Assumption 2 with ∆(B) = ‖Y‖2 +
H‖X‖2σ2 log (K/δ)) +HB2‖X‖2

Proof. Note that since S and S′ differ in only one point, it suffices to show that for any (x, y), (x′, y′)
that ℓ(ŵ; (x, y)) ≤ ‖Y‖2 +HB2‖X‖2 +H‖X‖2σ2 log (K/δ) and similarly for ℓ(ŵ, (x′, y′)). Let
w ∈ BB and let ŵ = w + b where b ∼ N (0, Idσ

2). We have by previous analysis ℓ(ŵ; (x, y)) ≤
‖Y‖2 +HB2‖X‖2 +H 〈b, x〉2. Since 〈b, x〉 is distributed as a zero mean Gaussian with variance at

most ‖X‖2σ2, we have P[| 〈b, x〉 | ≥ t] ≤ exp
(

−t2

‖X‖2σ2

)
. Setting t = ‖X‖σ log (K/δ) we obtain

P[| 〈b, x〉 |2 ≥ ‖X‖2σ2 log (K/δ)] ≤ δ/K. Thus with probability at least 1 − δ/K it holds that
ℓ(ŵ; (x, y)) ≤ ‖Y‖2 +HB2‖X‖2 +H‖X‖2σ2 log (K/δ).

D Missing Details for Boosting

Algorithm 5 Boosting

Input: Dataset S, loss function ℓ, Algorithm A, σ̃ privacy parameters ǫ, δ

1: Split the dataset S into equally sized chunks {Si}m+1
i=1

2: For each i ∈ [m+ 1], ŵi = A
(
Si,

ǫ
2 , δ
)

3: i∗ = argmaxi∈[m]

(
−L̂(ŵi;Sm+1) + Lap(0, σ̃)

)

Output: ŵi∗

We state the result of the boosting procedure in a general enough setup so as apply to our proposed
algorithms. This leads to additional conditions on the base algorithm since our proposed methods
may not produce the output in the constrained set.

Theorem 13. Let ℓ be a non-negative, H̃ smooth, convex loss function. Let ǫ, δ > 0. Let A :
(S, ǫ, δ) 7→ A(S, ǫ, δ) be an algorithm such that

1. A satisfies (ǫ, δ)-DP

2. For any fixed S, A(S) is γ2 sub-Gaussian [Ver18]:

sup
‖u‖=1

E

[
exp

(
〈A(S), u〉2 /γ2

)]
≤ 2

3. For any fixed S, P(x,y)[ℓ(A(S); (x, y)) > ∆(γ, β)] < β

4. Given a dataset S of n i.i.d. points, E[L(A(S);D)−minw∈BB
L(w;D)] ≤ ERR (n, ǫ, γ)

Let σ̃2 = 4(‖Y‖2+H̃γ̃2‖X‖2)
nǫ and n0 = 16γ2 log8(4/β)H̃

‖Y‖2 . Algorithm 5 with Algorithm A as input

satisfies (ǫ, δ)-DP. Given a dataset S of n ≥ n0 samples, with probability at least 1− β, the excess
risk of its output ŵi∗ is bounded as,

L(ŵ;D)− L(w∗;D) ≤ Õ

(
ERR

(
n

4 log (4/β)
,
ǫ

2
, γ

)
+

2∆(γ, β/2)

nǫ
+

2∆
(
γ, β

2n

)

n

+
32γ
√

H̃‖Y‖√
n

+
16‖Y‖√

n
+

128H̃γ2

n

)
.

We first establish the following concentration bound for convex H̃ smooth non-negative functions.

Lemma 11. Let ℓ be a convex H̃ smooth non-negative function. Let S be a dataset of n i.i.d. samples.
Let w be a random variable which is γ2 sub-Gaussian and independent of S and let ∆(γ, β) be such
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that P(x,y)[ℓ(w; (x, y)) > ∆(γ, β)] ≤ β. Then, with probability at least 1− β,

L̂(w;S) ≤ (1 + T (n, β))L(w;D) + U(n, β)

L(w;D) ≤ (1 + T (n, β)) L̂(w;S) + V (n, β)

where T (n, β) := 4γ log(4/β)
√

H̃
‖Y‖√n

, U(n, β) := 4γ log(4/β)‖Y‖
√

H̃√
n

+
‖Y‖

√
log(2/β)√
n

and

V (n, β) := 4γ log(4/β)
√

H̃‖Y‖√
n

+
2∆(γ, β

4n ) log(2/β)
n +

‖Y‖
√

log(2/β)√
n

+ 48H̃γ2 log2(4/β)
n .

Proof. With probability at least 1− β
4 , for each (x, y) ∈ S, ℓ(w; (x, y)) ≤ ∆

(
γ, β

4n

)
. We condition

on this event and apply Bernstein inequality to the random variable L(w;D)− L̂(w;S):

P

[∣∣∣L(w;D)− L̂(w;S)
∣∣∣ > t

]
≤ exp


− 3nt2

6nE[
(
L(w;D)− L̂(w;S)

)2
] + 2∆

(
γ, β

4n

)
t




This gives us that

∣∣∣L(w;D)− L̂(w;S)
∣∣∣ ≤

∆
(
γ, β

4n

)
log (2/β)

n
+

√
E

(
L(w;D)− L̂(w;S)

)2
log (2/β) (22)

The term E[
(
L(w;D)− L̂(w;S)

)2
= 1

nE[(ℓ(w; (x, y))− E[ℓ(w; (x, y)])
2
] ≤ 1

nE[(ℓ(w; (x, y)))
2].

Now,

E[(ℓ(w; (x, y)))2] ≤ 2E[(ℓ(w; (x, y))− ℓ(0; (x, y))2] + 2E[(ℓ(0; (x, y)))2]

≤ 2E[(〈∇ℓ(w; (x, y)), w〉)2] + 2‖Y‖2

where the last step follows from convexity. We now use the fact that w is γ2-sub-Gaussian, therefore

〈∇ℓ(w; (x, y)), w〉 ≤ γ
√
log (4/β) ‖∇ℓ(w; (x, y))‖ with probability at least 1− β/4. We now use

self-bounding property of non-negative smooth functions to get,

E[(ℓ(w; (x, y)))2] ≤ 2E[‖∇ℓ(w; (x, y))‖2 γ2 log (4/β) + 2‖Y‖2

≤ 8H̃E[ℓ(w; (x, y))]γ2 log (4/β) + 2‖Y‖2

= 8H̃L(w;D)γ2 log (4/β) + 2‖Y‖2

Plugging the above in Eqn (22) gives us,

∣∣∣L(w;D)− L̂(w;S)
∣∣∣ ≤

∆
(
γ, β

4n

)
log (2/β)

n
+ 4

√√√√
(
H̃L(w;D)γ2 log (4/β) + ‖Y‖2

)
log (1/β)

n

≤
∆
(
γ, β

4n

)
log (2/β)

n
+ 4

√
H̃L(w;D)

n
γ log (4/β) +

‖Y‖
√
log (2/β)√
n

.

(23)

A simple application of AM-GM inequality gives,

L̂(w;S) ≤
(
1 +

4γ log (4/β)
√

H̃

‖Y‖√n

)
L(w;D) +

4γ log (4/β) ‖Y‖
√
H̃√

n
+

‖Y‖
√
log (2/β)√
n
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This proves the first part of the lemma. For the second part, we use the following fact about
non-negative numbers A,B,C [BBL03] (see after proof of Theorem 7)

A ≤ B + C
√
A =⇒ A ≤ B + C2 +

√
BC

Thus, from Eqn. (23),

L(w;D) ≤ L̂(w;S) +
∆
(
γ, β

4n

)
log (2/β)

n
+

‖Y‖
√
log (2/β)√
n

+
16H̃γ2 log2(4/β)

n

+
4γ log (4/β)

√
H̃√

n



√

L̂(w;S) +

√√√√∆
(
γ, β

4n

)
log (2/β)

n
+

√
‖Y‖

√
log (2/β)√
n




≤ L̂(w;S) +
4γ log (4/β)

√
H̃L̂(w;S)

√
n

+
∆
(
γ, β

4n

)
log (2/β)

n
+

‖Y‖
√
log (2/β)√
n

+
16H̃γ2 log2(4/β)

n
+

4γ

√
H̃∆

(
γ, β

4n

)
log3/2(4/β)

n
+

4γ

√
H̃‖Y‖ log5/4(2/β)

n3/4

≤
(
1 +

4γ log (4/β)
√

H̃

‖Y‖√n

)
L̂(w;S) +

4γ log (4/β) ‖Y‖
√
H̃√

n
+

∆
(
γ, β

4n

)
log (2/β)

n

+
‖Y‖

√
log (2/β)√
n

+
16H̃γ2 log2(4/β)

n
+

4γ

√
H̃∆

(
γ, β

4n

)
log3/2(4/β)

n

+
4γ

√
H̃‖Y‖ log5/4(2/β)

n3/4

where the last inequality follows from AM-GM inequality. Simplifying the expressions yields the
claimed bound.

Proof of Theorem 13. Since the models {ŵi}mi=1 are trained on disjoint datasets, by parallel compo-

sition {ŵi}mi=1 satisfies
(
ǫ
2 ,

δ
2

)
-DP. We know that probability at least 1− δ

2 , ℓ(w; (x, y)) ≤ ∆
(
γ, δ

2

)
.

Thus conditioning on this event, from the guarantee of the report noisy max procedure, we have that
it satisfies

(
ǫ
2

)
-DP. The privacy proof thus follows from absorbing the failure probability into δ part

and adaptive composition.

We proceed to the utility part. Let w̃ be the model among {ŵi}mi=1 with minimum empirical error on
the set Sm+1. The excess risk of each ŵi is bounded as,

E[L(ŵi;D)]− L(w∗;D) ≤ ERR

(
n

m+ 1
,
ǫ

2
, γ

)

From Markov’s inequality, with probability at least 3/4, L(ŵi;D) ≤ L(w∗;D) + 4ERR
(

n
m+1 ,

ǫ
2

)
.

From independence of {wi}mi=1, with probability at least 1− 1/4m = 1− β
4 , there exists one model,

say ŵi∗ , such L(ŵi∗ ;D) ≤ L(w∗;D) + 4ERR
(

n
m+1 ,

ǫ
2

)
.

Also, from the guarantee of Report-Noisy-Max, we have that with probability at least 1− β/4

L(ŵ;Sm+1) ≤ L(w̃;Sm+1) +
∆(γ, β/4)(m+ 1) log2 (4m/δ)

nǫ

Now, we apply Lemma 11. From a union bound, with probability at least 1− β
2 , all {wi}mi=1 satisfy

the inequalities in Lemma 11 with β substituted as β
2m .
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Thus, for the output ŵ, probability at least 1− β
2 ,

L(ŵ;D)

≤
(
1 + T

(
n

m+ 1
,
β

2m

))
L(ŵ;Sm+1) + V

(
n

(m+ 1)
,
β

2m

)

≤
(
1 + T

(
n

m+ 1
,
β

2m

))
L(w̃;Sm+1) +

(
1 + T

(
n

m+ 1
,
β

2m

))
∆(γ, β/4)(m+ 1) log2 (4m/δ)

nǫ

+ V

(
n

(m+ 1)
,
β

2m

)

≤
(
1 + T

(
n

m+ 1
,
β

2m

))
L(wi∗ ;Sm+1) +

2∆(γ, β/4)(m+ 1) log2 (4m/δ)

nǫ
+ V

(
n

(m+ 1)
,
β

2m

)

where in the above we use that T
(

n
m+1

)
≤ 1 given the lower bound on n and the setting of

m. Furthermore, the last inequality follows because w̃ has lowest empirical risk on Sm+1. Let

W (n,m, β) = 2∆(γ,β/4)(m+1) log2 (4m/δ)
nǫ + V

(
n

(m+1) ,
β
2m

)
. We now apply the other guarantee in

Lemma 11 and the fact that wi∗ has small excess risk. With probability at least 1− δ/2,

L(ŵ;D)

≤
(
1 + T

(
n

m+ 1
,
β

2m

))2

L(wi∗ ;D) +

(
1 + T

(
n

m+ 1
,
β

2m

))
U

(
n

m+ 1
,
β

2m

)
+W (n,m, β)

≤ L(w∗;D) + 2T

(
n

m+ 1
,
β

2m

)
L(w∗;D) + 4ERR

(
n

m+ 1
,
ǫ

2

)

+ 8T

(
n

m+ 1
,
β

2m

)
4ERR

(
n

m+ 1
,
ǫ

2

)
+ 2U

(
n

m+ 1
,
β

2m

)
+W (n,m, β)

Let X(n,m, β) = 4ERR
(

n
m+1 ,

ǫ
2

)
+ 8T

(
n

m+1 ,
β
2m

)
4ERR

(
n

m+1 ,
ǫ
2

)
+ 2U

(
n

m+1 ,
β
2m

)
+

W (n,m, β). Note that m = 4 log (4/β) and T
(

n
m+1 ,

β
2m

)
≤ 16γ log4(2/β)

√
H

‖Y‖√n
. Substituting this

and using the fact that, L(w∗;D) ≤ L(0;D) ≤ ‖Y‖2, we get that with probability at least 1− δ,

L(ŵ;D) ≤ L(w∗;D) +
16γ log4 (2/β)

√
H‖Y‖√

n
+X(n, 4 log (2/β) , β)

Substituting and simplifying the X(n, 4 log (4/β) , β) we have that

X(n, 4 log (2/β) , β)

≤ 12ERR

(
n

4 log (4/β)
,
ǫ

2
, γ

)
+

2∆(γ, β/4) log3 (4/β) log (2/δ)

nǫ
+

2∆
(
γ, β

2n

)
log4 (8/β)

n

+
16γ log4 (8/β)

√
H̃‖Y‖√

n
+

16‖Y‖ log4(8/β)√
n

+
128H̃γ2 log4(8/β)

n

Hence, with probability at least 1− β,

L(ŵ;D)

≤ L(w∗;D) + 12ERR

(
n

4 log (4/β)
,
ǫ

2
, γ

)
+

2∆(γ, β/4) log3 (4/β) log (2/δ)

nǫ
+

2∆
(
γ, β

2n

)
log4 (8/β)

n

+
32γ log4 (8/β)

√
H̃‖Y‖√

n
+

16‖Y‖ log4(8/β)√
n

+
128H̃γ2 log4(8/β)

n
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D.1 Boosting the JL Method

Theorem 14. The boosting procedure (Algorithm 5) using the JL method (Algorithm 2) as Algorithm
A satisfies (ǫ, δ)-DP, and with probability at least 1− β, its output ŵi∗ has excess risk,

L(ŵi∗ ;D)− L(w∗;D) ≤ Õ

(√
HB ‖X‖ ‖Y‖√

n
+

((√
HB ‖X‖

)4/3
‖Y‖2/3 +

(√
HB ‖X‖

)2)

(nǫ)2/3

+

(
‖Y‖2 +HB2‖X‖2

)

nǫ
+

(
‖Y‖+

√
HB‖X‖

)

√
n

)

Proof. For the JL method, we consider the boosting procedure in the k dimension space – this is only
for the sake of analysis and the algorithm remains the same. In particular, consider the distribution to
ΦD which, when sampled from, gives the data point (Φx, y) where (x, y) ∼ D.

Suppose the boosting procedure gives the following k dimensional models: w̃1, · · · w̃m; note that
the norm of all these are bounded by 2B. Let w̃∗ ∈ argmin‖w‖≤2B L(w; ΦD). Since the outputs

satisfy ‖w̃i‖ ≤ 2B, the sub-Gaussian parameter γ = O(B). We now compute the other parameter
∆(γ, β), which is the high probability bound on loss. Note that for a fixed data point (Φx, y), an
H smooth, non-negative, bounded at zero loss, at any point w s.t. ‖w‖ ≤ 2B is upper bounded by

2
(
‖Y‖2 + 4B2H ‖Φx‖2

)
. From the JL guarantee, with the given k, the term ‖Φx‖2 ≤ 2 ‖X‖ with

probability at least 1− β/4. This gives us ∆(2B, β) = 2
(
‖Y‖2 + 16 ‖X‖2 B2

)
.

We now invoke 13 substituting ∆, γ and H̃ = H‖X‖2 to get that with probability at least 1 − β
2

output satisfies,

L(w̃i∗ ; ΦD) ≤ L(w̃∗; ΦD) +
128B

√
H‖X‖‖Y‖ log4 (8/β)√

n
+ α

(
n

4 log ((8/β))
,
ǫ

2
, 2B

)

+
128

(
‖Y‖2 +HB2‖X‖2

)
log4 (8/β)

nǫ
+

128
(
‖Y‖+

√
HB‖X‖

)
log4 (8/β)

√
n

Define W := 128B
√
H‖X‖‖Y‖ log4 (8/β)√

n
+

128(‖Y‖2+HB2‖X‖2) log4 (8/β)

nǫ +

128(‖Y‖+
√
HB‖X‖) log4 (8/β)√

n
. The excess risk of the final output ŵi∗ = Φ⊤w̃i∗ is bounded

as,

L(ŵi∗ ;D)− L(w∗;D) = L(w̃i∗ ; ΦD)− L(w∗;D)

≤ L(w̃∗; ΦD) + α

(
n

4 log (8/β)
,
ǫ

2
, 2B

)
+W − L(w∗;D)

≤ L(Φw∗; ΦD) + α

(
n

4 log (8/β)
,
ǫ

2
, 2B

)
+W − L(w∗;D)

≤ α

(
n

4 log (8/β)
,
ǫ

2
, 2B

)
+W +

H

2
|〈Φx,Φw∗〉 − 〈x,w∗〉|2

where the last inequality follows from smoothness and that ∇L(w∗;D) = 0. Finally, from the JL

property, with probability at least 1 − β
2 , |〈Φx,Φw∗〉 − 〈x,w∗〉|2 ≤ α2 ‖w∗‖2 ‖X‖2. Combining

and substituting the values of α and α
(

n
4 log(8/β) ,

ǫ
2

)
from Theorem 2 gives the claimed result.

D.2 Boosting Output Perturbation Method

Theorem 15. The boosting procedure (Algorithm 5) using the output perturbation method (Algorithm
3) as input Algorithm A satisfies (ǫ, δ)-DP, and with probability at least 1 − β, its output ŵi∗ has
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excess risk,

L(ŵi∗ ;D)− L(w∗;D) ≤ Õ

(√
HB ‖X‖ ‖Y‖+ ‖Y‖2√

n
+

((√
HB ‖X‖

)4/3
‖Y‖2/3 +

(√
HB ‖X‖

)2)

(nǫ)2/3

+

(
‖Y‖2 +HB2‖X‖2

)

nǫ
+

(
‖Y‖+

√
HB‖X‖

)

√
n

)

Proof. Firstly, note that H̃ = H‖X‖2. We now compute γ and ∆ to invoke Theorem 13. Since
the algorithm simply adds Gaussian noise of variance σ2

Id to a vector w̃ where ‖w̃‖ ≤ B, we
have that γ2 ≤ B2 + σ2. For the bound on loss parameter ∆, by direct computation, ∆(γ, β) ≤
2
(
‖Y‖2 +H 〈w̃ + ξ, x〉2

)
≤ 2 ‖Y‖2 + 2HB2 ‖X‖2 + 2H 〈ξ, x〉2 ≤ 2 ‖Y‖2 + 2HB2 ‖X‖2 +

2Hσ2 log (1/β) where the last inequality follows since 〈ξ, x〉 ∼ N (0, ‖x‖2). Plugging these and the
value of σ2 from Theorem 3 into Theorem 13 gives the claimed bound.

E Non-private Lower Bounds

We first note a simple one-dimensional lower bound.

Theorem 16. (Implicit in [SST10]) Let ‖X‖ ≥ 1 and H ≥ 2. For any Algorithm A, there exists
a 1-dimensional H-smooth non-negative GLM, ℓ : R× (X × Y) 7→ R, and a distribution D over
(X ×Y) with ‖w∗‖ = Θ(min {‖Y‖, B} such that the excess population risk of the output of A when

run on S ∼ Dn is lower bounded as Ω
(

min{‖Y‖,B‖X‖}√
n

)
.

We remark that this requires a slight modification of the example used in [SST10]. Specifically,
therein the loss function is defined as

ℓ(w, (x, y)) =

{
(w − y)2 |w − y| ≤ 1

2

|w − y| − 1/4 |w − y| ≥ 1
2

with y ∈ {±1} and x = 1. Our statement is obtained by setting the domain of labels as
{±min {B, ‖Y‖}}. A reduction in [Sha15] enables lower bounds from problem instances with
general ‖X‖ and ‖w∗‖ = R to instances with ‖X‖ = 1 to ‖w∗‖ = R‖X‖.

We now show that the lower bounds presented in [Sha15] to the unconstrained setting. We start by
stating the original bound from [Sha15] which holds for squared loss.

Theorem 17. Let ℓ(w, (x, y)) = 1
2 (〈w, x〉 − y)2 be the squared loss function and B > 0. Then

for any algorithm, A, there exists a distribution D over (X × Y) and a constant C such that for

S ∼ Dn it holds that E [L(A(S);D)− L(w∗
B ;D)] ≥ Cmin

{
‖Y‖2, B2‖X‖2+d‖Y‖2

n , B‖Y‖‖X‖√
n

}
,

where w∗
B = argmin

w∈BB

{L(w;D)}.

We now make three observations. First we note that this Theorem holds even for A(S) /∈ BB . Second
we note that the construction of the distribution in the above Theorem is such that min

w∗∈BB

{L(w;D)} =

min
w∗∈Rd

{L(w;D)}. Finally, note that H
2 (〈w, x〉 −

y√
H
)2 = 1

2 (
√
H 〈w, x〉 − y)2. This gives the

following corollary.

Corollary 5. Let B > 0. Then for any algorithm, A, there exists a distribution D over (X × Y) and

an H-smooth non-negative GLM, ℓ : Rd × (X ×Y) 7→ R, with minimizer w∗ = argmin
w∈Rd

{L(w;D)}
such that ‖w∗‖ = B and for S ∼ Dn it holds that

E [L(A(S);D)− L(w∗;D)] = Ω

{
min

{
‖Y‖2, HB2‖X‖2 + d‖Y‖2

n
,

√
HB‖Y‖‖X‖√

n

}}
.
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F Additional Results

Lemma 12. Let Φ ∈ R
d×k be a random matrix such that for any u ∈ R

d, with probability at least

1− β, (1− α) ‖u‖2 ≤ ‖Φu‖2 ≤ (1 + α) ‖u‖2. Then for any u, v, with probability at least 1− 2β,
|〈Φu,Φv〉 − 〈u, v〉| ≤ α ‖u‖ ‖v‖.

Proof. Firstly, note that it suffices to prove the result for unit vectors u and v. From the norm
preservation result, with probability at least 1− 2β, we have that,

(1− α) ‖u+ v‖2 ≤ ‖Φ(u+ v)‖ ≤ (1 + α) ‖u+ v‖2

(1− α) ‖u− v‖2 ≤ ‖Φ(u− v)‖ ≤ (1 + α) ‖u− v‖2

Therefore, we have

〈Φu,Φv〉 = 1

4

(
‖Φ (u+ v)‖2 − ‖Φ (u− v)‖2

)

≤ 1

4

(
(1 + α) ‖u+ v‖2 − (1− α) ‖u− v‖2

)

≤ 〈u, v〉+ α

This gives us that 〈Φu,Φv〉 ≤ 〈u, v〉+ α. The other inequality follows in the same way.
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