
Appendix
A Derivation of the Volume Rendering Formula

This section provides the derivation of our 3D volume rendering formula Eq. 9 in the paper. Pre-
vious methods adopt a two-stage architecture to realize multi-view synthesis discretely, which is
very time-consuming with redundant information. Hence we propose an orthogonal adaptive ray-
sampling module to adaptively estimate the attributes required for image rendering of single-view
face animation.

A.1 Classical Discrete Volume Rendering Formula

Generally speaking, the volume rendering formula needs to be transformed from continuous inte-
gration to discrete summation, for which [14] designs a two-stage sampling method to realize the
multi-view synthesis of a single object. Specifically, the classical volume rendering [11] calculates
the pixel color along the camera ray as follows:

C =

∫ te

ts

τ(t)σ(t)c(t)dt,

τ(t) = exp(−
∫ t

ts

σ(s)ds),

(1)

where σ represents the volume density, c is the emitted color, [ts, te] is the integral interval, and τ is
the transmittance. To make it implementable, the continuous integration is transformed to discrete
summation with D intervals. With some manipulations, [13] shows:

C =

D∑
i=1

ciτi(1− exp (−σiδi)), (2)

where δi = ti+1 − ti is the i-th interval size, σi and ci are constants to approximate the volume
density and color values in [ti, ti+1], respectively, and τi = exp (−

∑i−1
j=1 σjδj).

A.2 Volume Rendering of FNeVR

We introduce an orthogonal ray adaptive sampling module for single-view face animation. Following
[14], we perform ray casting in the normalized device coordinate (NDC) space. For each image, we
define N = H ×W rays, where W and H are the width and height of the input image, respectively.
Each ray is orthogonal to the near clipping plane, and the ray path from the pixel centre is calculated.
According to Eq. 2 above, conventional neural rendering first uses a "coarse" network to roughly
estimate the computational contribution of each uniform sampling location, and then further performs
non-uniform discretization for a more informed sampling of points, which are inputted to another
"fine" network for accurate estimation. Instead, our FVR only introduces one MLP network to
directly estimate the voxel probability pσ of each voxel, which is the integral of the volume density
σ within a suitable interval size δ. Therefore, for our model, the selection of the interval size δ is
actually involved in the estimation of the voxel probability pσ and adaptively adjusted by the MLP.
Finally, we rewrite Eq. 2 as the weighted sum of all sampled colors pcolor for each ray as:

C =

D∑
i=1

τi(1− exp (−pσ,i))pcolor,i

τi = exp (−
i−1∑
j=1

pσ,j),

(3)

which is Eq. 9 in the main paper. It is worth noting that our FVR can be applied to more generation
tasks as long as appropriate 3D shape and color information is provided. For example, if we introduce
reliable 3D body information to FVR, FVR can be applied to generate photo-realistic images of the
body.

1



DownBlock2D-64

DownBlock2D-128

DownBlock2D-256

DownBlock2D-512

DownBlock2D-1024

UpBlock2D-1024

UpBlock2D-512

UpBlock2D-256

UpBlock2D-128

UpBlock2D-64

7×7-Conv-10 7×7-Conv-40

(a) Keypoint Detector

DownBlock2D-64

DownBlock2D-128

DownBlock2D-256

DownBlock2D-512

DownBlock2D-1024

UpBlock2D-1024

UpBlock2D-512

UpBlock2D-256

UpBlock2D-128

UpBlock2D-64

7×7-Conv-11
7×7-Conv-1

(b) Dense Motion Network

Softmax

Source/Driving Image Heatmap © Deformed Source Images

Keypoints Jacobians

Weight Mask

Occlusion Map

Figure 1: Architecture of the motion estimation in our framework. ©: channel-wise concatenation.
For the basic blocks UpBlock2D and DownBlock2D, please refer to Fig. 3(c) and Fig. 3(d),
respectively.
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Figure 2: Architecture of the rendering component in our framework. ©: channel-wise concatenation.
For the basic blocks ResBlock3D and SPADE, please refer to Fig. 3(e) and Fig. 3(b), respectively.

B Implementation Details

B.1 Architecture Details

Keypoint Detector. We employ the keypoint detector proposed by [17], which takes one image
as input and adopts a UNet-based encoder-decoder architecture to extract the feature for keypoints
prediction. Since we adopt a 2D warping strategy, only 2D CNN is required. Its detailed structure is
shown in Fig. 1(a).

Dense Motion Network. We use the dense motion network proposed by [17] to predict an occlusion
map indicating the regions to be inpainted and a group of weight masks related to the K sparse
motion fields, which are calculated by each pair of keypoints {pS,k, pD,k} with their Jacobians. Then
we can aggregate the sparse motions by a weighted sum to obtain the final dense motion field. The
detailed structure of the dense motion network is shown in Fig. 1(b). In particular, the input to the
network is the concatenation of K heatmaps and K+1 deformed source images, where the heatmaps
are calculated by the keypoints, and the deformed images are transformed by K + 1 motion fields.
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3D Feature Extractor. Since we need to extract the 3D information of the warped feature for
subsequent image rendering, we design a color extractor and a shape extractor, both of which first
refine the 2D feature with the size of 256×64×64 into 3D features with the size of 16×8×64×64.
The detailed structure of the 3D feature extractors is shown in Fig. 2(a). Nσ and Ncolor are the final
dimensions of the outputs of the color extractor and the shape extractor, respectively, and they are
both set to 16.

Orthogonal Adaptive Ray-Sampler. Based on the extracted 3D features above, we can further
calculate the sampled color field and the voxel probability, which are required for volume rendering.
We adopt an MLP-based network to estimate the sampled color field with the size of 64×64×8×256
and the voxel probability with the size of 64× 64× 8× 1. The detailed structure of the orthogonal
adaptive ray-sampler is shown in Fig. 2(b).

Rendering Decoder. We design a rendering decoder based on the SPADE layer [16]. We adopt a
series of the SPADE layers and upsampling layers to transform the warped feature and the volume
rendering results into a photo-realistic image. The detailed structure of this decoder is shown in Fig.
2(c).

B.2 Details of the Loss Functions

Perceptual Loss. During the training process, we use the VGG perceptual loss [10] to align the
high-level semantic feature of the generated image with that of the ground truth. Specifically, we use
the pre-trained VGG-19 [18] model fV GG to extract L features of the generated image xgenerated

and the driving frame Di and use the L1 norm loss for similarity evaluation. Following [17], we first
adopt the multi-scale pyramid by downsampling the generated image and ground truth to obtain four
different resolution results, and then we aggregate the losses of the four resolutions to obtain the final
result:

LP =

4∑
j=1

L∑
l=1

L1(fV GG,l(Di,j), fV GG,l(xgenerated,j)). (4)

GAN Loss. We use a discriminator DGAN with N feature extractors to distinguish the generated
results from the ground truth in M scales. To be specific, we use the same generator-discriminator
GAN loss as [17], including the least square loss [12] and the feature matching loss [20] to train an
adversarial generative network:

LG,generator,square =

M∑
m=1

E[(1−DGAN,m(xgenerated,m))2], (5)
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LG,generator,matching = E

M∑
m=1

N∑
n=1

L1(D
(n)
GAN,m(Di,m), D

(n)
GAN,m(xgenerated,m)), (6)

LG,discriminator =

M∑
m=1

E[(1−DGAN,m(Di,m))2] +E[(DGAN,m(xgenerated,m))2], (7)

where we denote the m-th scale discriminator as DGAN,m and its n-th layer feature extractor as
D

(n)
GAN,m. With the GAN loss, we further improve the authenticity of the generated images.

Equivariance Loss. To ensure the validity and consistency of the unsupervised keypoint detector,
we use a known geometric transformation T to provide the equivariance constraints as stated in [17].
Concretely, for the keypoints {pT (D),k}, which are extracted from the transformed image T (D), and
the keypoints {pD,k} of the original image D, we have:

LE,keypoints =

K∑
k=1

L1(pD,k − T −1(pT (D),k)), (8)

where T −1 is the inverse transformation of T . Furthermore, we optimize the Jacobians {JD,k} by:

LE,Jacobians =

K∑
k=1

L1(1− J−1
D,k · JT −1 · JT (D),k), (9)

where 1 denotes the 2 × 2 identity matrix, JT −1 is the Jacobian of the inverse geometric transformation
T −1, and {JT (D),k} are the Jacobians detected from the transformed image T (D).

C Experiment Details

C.1 Evaluation Metrics

We quantitatively compare our FNeRV with other state-of-the-art methods using the following
metrics:

L1 Distance. We compute the averaged L1 distance between the generated and ground-truth
images.

Learned Perceptual Image Patch Similarity (LPIPS). LPIPS [24] estimates the perceived dis-
tance of the generated image from the ground truth image by computing the cosine distances between
the VGG network [18] features of the two images layer by layer and averaging them.

Peak Signal-to-Noise Ratio (PSNR). Using the ratio of the maximum possible power of the ground
truth image to the mean square error between the reconstructed image and the ground truth to measure
the image reconstruction quality.

Structure Similarity Index Measure (SSIM). From the perspective of image distortion modelling
discussed in [22], the structural similarity of two images is measured by considering three different
factors, brightness, contrast, and structure, where the mean is used as an estimate of brightness, the
standard deviation as an estimate of contrast, and the covariance as a measure of structural similarity.

Average Keypoint Distance (AKD). We use a facial landmark detector [2] to detect facial land-
marks from the reconstructed image and the ground-truth image and calculate the average distance
between the two groups of landmarks. AKD can measure the accuracy of the facial posture of the
generated frame and driving frame.

Average Euclidean Distance (AED). We use the face recognition network [1] to calculate the
feature representations of the ground-truth image and the generated video frame and calculate their
averaged Euclidean distance.
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Figure 4: Illustration of same identity with different poses and expressions.

Table 1: Comparison of CSIM for the same identity with different poses and expressions.

Sample MoCo CSIM ↑ Arc CSIM ↑ Curricular CSIM ↑
Sample 1 0.9853 0.8327 0.9131
Sample 2 0.9962 0.9655 0.9663
Sample 3 0.9203 0.7725 0.6524
Sample 4 0.9034 0.6101 0.7626
Sample 5 0.9327 0.7307 0.7074

Frechet Inception Distance score (FID). FID [7] is a metric to evaluate the image quality created
by the generated model by imitating human perception of image similarity. It uses inception V3 [19]
to compare the distribution of the generated image with the distribution of the real image used to train
the generator.

Cosine Similarity (CSIM). The cosine similarity measures the difference between two individuals
by using the cosine value of the angle between two vectors in a vector space. We use the pre-trained
face recognition model [9] to generate embedded vectors to compute the cosine similarity to assess
the quality of identity preservation.

In the same-identity case, we perform an experiment on all test videos from the Voxceleb [15] dataset.
We treat the first frame as the source portrait and all the other frames as the driving video. Hence, we
can get the synthesized frames with corresponding ground truth frames. We can directly calculate
the evaluation metrics of L1, LPIPS, PSNR, SSIM, AKD, AED and FID between the real images
and the synthetic images. For the cross-identity case, we randomly select 10 source images and 14
driving videos from each testing set of the Voxceleb and Voxceleb2 [4]. In this case, we do not have
ground-truth images, so we can only calculate FID between the driving images and the synthetic
images, and CSIM between the source images and the synthetic images.

C.2 Reenactment Analysis

In the reenactment experiment, our FNeVR outperforms other SOTA methods on FID but has a
certain gap with Face vid2vid [21] on CSIM. CSIM verifies the identity preservation according to the
feature distance between the generated image and the source image, and is adopted in a number of
studies [6; 21; 8]. According to our analysis, there are two reasons accounting for why CSIM of Face
vid2vid is better than our FNeVR. On the one hand, 3D warping indeed provides a relatively stable
face pose transformation with a high computational cost. On the other hand, we argue that it is not
entirely reasonable to use CSIM to examine the preservation of face identity information, since 3D
warping often leads to poor facial expression transformation, whereas it still produces good CSIM.

We think that expression and pose variation have a significant impact on CSIM, which can be proved
by a simple experiment. Specially, we use three feature extraction networks (MoCo v2 [3], Arcface[5],
and Curricularface [9]) to calculate the CSIM values between one source image and five sample
images with the same person identity as the source image but different poses or expressions. As
shown in Fig. 4, compared with the source image, Sample 1 and Sample 2 are slightly different in
expressions, while Sample 3 has a great difference in pose. Meanwhile, Sample 4 and Sample 5 are
disparate from the source image in both poses and expressions. The comparison of CSIM is shown in
Table 1. Note that only Arc CSIM and Curricular CSIM focus on facial feature extraction. Obviously,
despite the same identity, the variations in both poses and expressions have a great impact on CSIM,
especially for detectors focusing on face features. Especially, there are pronounced decreases in
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Figure 6: Additional experimental results of reconstruction.

CSIM for Sample 3, Sample 4 and Sample 5, indicating the considerable influence of facial poses. In
other words, rich variations in facial poses and expressions make it difficult to maintain relatively
high CSIM. Consequently, it is understandable that our model obtains lower CSIM than Face vid2vid.
Finding more reasonable metrics to verify the preservation of identity information is part of our future
research.

D Additional Experimental Results

D.1 Pose Editing

We design an MLP-based lightweight pose editor (LPE), and its detailed structure is shown in Fig. 5.
In the training process, we input the deviations of the Euler angles yaw, pitch, and roll between the
source image and the driving frame provided by the 3D reconstruction network into LPE, together
with the keypoint information of the source image. In the inference process, we can directly control
the face pose with specific yaw, pitch, and roll angles.

D.2 Additional Comparisons with State-of-the-Art Methods

Reconstruction. In Fig. 6, we show three animation examples from the VoxCeleb [15] dataset, in
which there is significant expression variation between each pair of two faces. From the generated
results, we see that FOMM [17] can generate promising expression transformed images but with
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Figure 7: Additional experimental results of reenactment without the relative motion transfer.

Figure 8: Additional experimental results of reenactment with the relative motion transfer.

blurred head profiles, while Face vid2vid [21] and DaGAN [8] generate the images with clear head
profiles but poor expression transformation. For instance, Face vid2vid and DaGAN cannot transfer
the visual directions or the corners of the mouth very well. Our FNeVR can combine their merits and
generate promising expression transformed images with clear head profiles.

Reenactment. To enrich the reenactment experimental results shown in the main paper, we conduct
additional experiments and show more samples in Fig. 7. Notably, in the cross-identity reenactment
experiment of the main paper, all FOMM-based models [17; 21; 8] do not employ the relative motion
transfer approach [17], in which the frame Dbest in the driving video whose pose is most similar
to the source image S is selected as the basis, and the motion fields of other driving images Di

are calculated by the motion differences from Dbest. Utilizing the relative motion transfer, we can
maximize the preservation of identity information. Therefore, we conduct additional reenactment
experiments based on this approach on VoxCeleb [15], and the results are shown in Fig. 8. It can
be seen that Bilayer [23] has a greater advantage in maintaining identity information but cannot
handle the image background. FOMM [17] has a desirable performance in expression transfer, but the
generated results are distorted in some areas. Face vid2vid [21] works best on identity information
due to the use of 3D representation. However, the facial details are not well captured, such as the
inconsistency of the irises between the driving images and the source images. DaGAN [8] has
a significant deficiency in maintaining identity information, and the contours of the faces in the
generated images are completely deformed. Both Fig. 7 and Fig. 8 show that our FNeVR achieves
the best results by maximizing the transfer of facial expressions without losing the facial features.
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E Social Impact

This work does not have a direct negative social impact. However, we should be aware of the power
of realistic face animation and prevent it from being abused for malicious purposes.
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