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Abstract

We study the fundamental limits to the expressive power of neural networks. Given
two sets F , G of real-valued functions, we first prove a general lower bound on how
well functions in F can be approximated in Lp(µ) norm by functions in G, for any
p ≥ 1 and any probability measure µ. The lower bound depends on the packing
number of F , the range of F , and the fat-shattering dimension of G. We then
instantiate this bound to the case where G corresponds to a piecewise-polynomial
feed-forward neural network, and describe in details the application to two sets
F : Hölder balls and multivariate monotonic functions. Beside matching (known
or new) upper bounds up to log factors, our lower bounds shed some light on
the similarities or differences between approximation in Lp norm or in sup norm,
solving an open question by DeVore et al. [DHP21]. Our proof strategy differs
from the sup norm case and uses a key probability result of Mendelson [Men02].

1 Introduction

Neural networks are known for their great expressive power: in classification, they can interpolate
arbitrary labels [ZBH+21], while in regression they have universal approximation properties [Cyb89,
Hor91, LLPS93, KL20], with approximation rates that can outperform those of linear approximation
methods [Yar18, DHP21]. Though the approximation problem is often only one part of the underlying
learning problem (where generalization and optimization properties are also at stake), understanding
the fundamental limits to the approximation properties of neural networks is key, both conceptually
and for practical issues such as designing the right network architecture for the right problem.

Setting and related works. One way to quantify the expressive power of neural networks is
through the following problem (some informal statements will be made more precise in the next
sections). Let G be the set of all functions gw : X ⊂ Rd → R that can be represented by tuning the
weights w ∈ RW of a feed-forward neural network with a fixed architecture, and let F be any set of
real-valued functions on X . A natural question is: how well can functions f ∈ F be approximated by
functions gw ∈ G? More precisely, given a norm ∥ · ∥ on functions, what is the order of magnitude of
the (worst-case) approximation error of F by G defined by

sup
f∈F

inf
gw∈G

∥f − gw∥ , (1)

and how small can it be given the numbers W , L of weights and layers, and some properties of F ?
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Lower bounds on the approximation error (1) can be useful in several ways. They provide a limit to
the best approximation accuracy that one can hope to achieve if the number of weights or layers of
the network is constrained, and help design optimal architectures under these constraints. They also
imply a lower bound on the minimal number of weights or layers to include in a network in order to
approximate any function in F with a given accuracy ε.

The case when ∥ · ∥ is the sup norm (defined by ∥f∥∞ = supx∈X |f(x)|) is rather well understood at
least in some special cases. For example, when F is a Hölder ball of smoothness s > 0 (a.k.a. Hölder
exponent) and the network uses the ReLU activation function, Yarotsky [Yar17] derived a lower
bound on (1) of the order of W−2s/d, later refined to (LW )−s/d (up to log factors) by [Yar18, YZ20]
when the depth of the network varies from L = 1 to L ≈ W . Using the bit extraction technique, these
authors showed that these lower bounds are achievable (up to log factors) with a carefully designed
ReLU network architecture. Refined results in terms of width and depth were obtained by [SYZ22]
when s ≤ 1, while some other activation functions were also studied in [YZ20].

In this paper, we study (1) with the Lp(µ) norm, defined by ∥f∥Lp(µ) =
(∫

X
|f(x)|pdµ(x)

)1/p
, for

1 ≤ p < +∞ and some probability measure µ on X . There is a qualitative difference between
measuring the error in sup norm or in Lp(µ) norm, p < +∞. In the former case, the error is
small only if the approximation is good over the whole domain. In the latter case, the error can
be small even if the approximation is inaccurate over a small portion of the domain. Since the
Lp(µ) approximation problem corresponds to approximating functions in F in a more “average”
sense than in sup norm, a natural question is whether the same accuracy can be achieved with a
smaller network or not. Unfortunately, however, the proof strategies behind the lower bounds of
[Yar17, Yar18, YZ20, SYZ22] are specific to the sup norm (see Remark 1 in Section 3 for details).
DeVore et al. [DHP21] indeed commented: “When we move to the case p < ∞, the situation is
even less clear [...] we cannot use the VC dimension theory for Lp(Ω) approximation. [...] What
is missing vis-à-vis Problem 8.13 is what the best bounds are and how we prove lower bounds for
approximation rates in Lp(Ω), p ̸= ∞.”

Existing lower bounds in Lp(µ) norm. Several papers provided lower bounds in some special cases,
under some restrictions on the set to approximate F , the neural network, the approximation metric,
or the encoding map f ∈ F 7→ w(f) ∈ RW .

When F is a space of smoothness s, a first result which is based on [DHM89] states that when
imposing the weights to depend continuously on the function to be approximated, one can not achieve
a better approximation rate than W− s

d .

For the same F , another result for p = 2 and for activation functions which are continuous ([Mai99,
MMR99]) proves a lower bound on the approximation of functions of smoothness s on a compact of
Rd, by one hidden-layer neural networks, of order W− s

d−1 . A matching upper bound is proven for a
particular activation function, which is sigmoidal but pathological ([MP99]). For this same activation
function, they prove that contrary to the one-hidden-layer case, there is no lower bound in the case of
two-hidden-layer networks. The result is based on the Kolmogorov-Arnold superposition theorem.

In [SX21], the authors study approximation by shallow neural networks with bounded weights and
activations of the form ReLUk for an integer k. They approximate the closure of the convex hull
of shallow ReLUk-neural networks with constrained weights. They obtain optimal lower bounds
of order W− 1

2−
2k+1
2d in any norm ∥ · ∥X , where X is a Banach space to which the approximation

functions belong and such that these functions are uniformly bounded w.r.t. ∥ · ∥X . Although we
only consider approximation in Lp(µ) norm, our results complement the latter by addressing neural
networks with unbounded weights and arbitrary depth, and general sets F .

Approximation lower bounds in Lp(µ) norm, p ≥ 1, have also been studied in the quantized neural
networks setting (networks with weights encoded with a fixed number of bits). In [PV18], under
weak assumptions on the activation function, the authors prove a lower bound on the minimal number
of nonzero weights W that are required for a network to approximate a class of binary classifiers
with Lp error at most ε. They show that W is at least of the order ε−

p(d−1)
β log−1

2 (1/ε), where β is a
smoothness parameter. Later works including [VP19, GR20] derive lower bounds for approximation
by quantized networks in various norms.
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Main contributions and outline of the paper. We prove lower bounds on the approximation error
(1) in any Lp(µ) norm, for non-quantized networks of arbitrary depth, and general sets F . Our main
contributions are the following.

In Section 2, we first prove a general lower bound for any two sets F , G of real-valued functions
on a set X (Theorem 1). The lower bound depends on the packing number of F , the range of F ,
and the fat-shattering dimension of G. We then derive a versatile corollary when G corresponds to a
piecewise-polynomial feed-forward neural network (Corollary 1), solving the question by DeVore et
al. [DHP21]. Importantly, our proof strategy still relies on VC dimension theory, but differs from the
sup norm case in using a key probability result of Mendelson [Men02], to relate approximation in
Lp(µ) norm with the fat-shattering dimension of G.

In Sections 3–4 we apply this corollary to the approximation of two sets: Hölder balls and multivariate
monotonic functions. Beside matching (known or new) upper bounds up to log factors, our lower
bounds shed some light on the similarities or differences between approximation in Lp norm or in
sup norm. In particular, with ReLU networks, Hölder balls are not easier to approximate in Lp norm
than in sup norm. On the contrary, the approximation rate for multivariate monotonic functions
depends on p. In Section 5, we outline several other examples of function sets F and G for which the
general lower bound (Theorem 1) can also be easily applied. Finally, some proofs are postponed to
the supplement, while some details on other existing lower bound proof strategies are provided in the
supplement, in Appendix C.

Additional bibliographical remarks There are many other related results that we did not mention
to keep the focus on our specific approximation problem. For instance, depth separation results
show that deep neural networks can approximate functions that cannot be as easily approximated
by shallower networks (e.g., [Tel16, VRPS21]). Let us also mention the general results of [YB99],
which characterize minimax rates of estimation based on metric entropy conditions. Understanding
the precise connections between these statistical results and our general approximation lower bound
is an interesting question for the future.

Definitions and notation. We provide below some definitions and notation that will be used
throughout the paper. We denote the set of positive integers {1, 2, . . .} by N∗ and let N := N∗ ∪ {0}.
All sets considered in this paper will be assumed to be nonempty. We will not explicitly mention
σ-algebras; for instance, by “Let X be a measurable space” we mean that X is a set implicitly
endowed with a σ-algebra.

Let p ∈ [1,+∞] and X be any measurable space endowed with a probability measure µ. For any mea-
surable function f : X → R, the Lp(µ) norm of f is defined by ∥f∥Lp(µ) =

(∫
X |f(x)|pdµ(x)

)1/p
(possibly infinite) if p < +∞, and ∥f∥L∞(µ) = ess supx∈X |f(x)|. We will write λ for the Lebesgue
measure on [0, 1]d.

For any ε > 0, two functions f1, f2 are said to be ε-distant in ∥ · ∥ if ∥f1 − f2∥ > ε. Let F be a set
of functions from X to R. A set {f1, . . . , fN} ⊂ F is said to be an ε-packing of F in ∥ · ∥ (or just an
ε-packing for short) if for any i ̸= j ∈ {1, . . . , N}, fi and fj are ε-distant in ∥ · ∥. The ε-packing
number M(ε, F, ∥ · ∥) is the largest cardinality of ε-packings (possibly infinite).

For γ > 0, we say that a set S = {x1 . . . , xN} ⊂ X is γ-shattered by F if there exists r : S → R
such that for any E ⊂ S, there exists f ∈ F satisfying for all i = 1, . . . , N , f(xi) ≥ r(xi) + γ if
xi ∈ E, and f(xi) ≤ r(xi)− γ if xi /∈ E. The γ-fat-shattering dimension of F , denoted by fatγ(F ),
is the largest number N ≥ 1 for which there exists S ⊂ X of cardinality N that is γ-shattered by
F (by convention, fatγ(F ) = 0 if no such set S exists, while fatγ(F ) = +∞ if there exist sets
S of unbounded cardinality N ). Similarly, we say that S is pseudo-shattered by F if there exists
r : S → R such that for any E ⊂ S, there exists f ∈ F satisfying for all i = 1, . . . , N , f(xi) ≥ r(xi)
if xi ∈ E, and f(xi) < ri if xi /∈ E. The pseudo-dimension Pdim(F ) is the largest number N ≥ 1
for which there exists S ⊂ X of cardinality N that is pseudo-shattered by F (same conventions).1

A formal definition of feed-forward neural networks is recalled in Appendix A. In short, in this paper,
a feed-forward neural network architecture A of depth L ≥ 1 is a directed acyclic graph with d ≥ 1
input neurons, L − 1 hidden layers (if L ≥ 2), and an output layer with only one neuron. Skip
connections are allowed, i.e., there can be connections between non-consecutive layers. Given an

1By definition, note that γ 7→ fatγ(F ) is non-increasing and that fatγ(F ) ≤ Pdim(F ) for all γ > 0.
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activation function σ : R → R, a feed-forward neural network architecture A, and a vector w ∈ RW

of weights assigned to all edges and non-input neurons (linear coefficients and biases), the network
computes a function gw : Rd → R defined by recursively computing affine transformations for each
hidden or output neuron, and then applying the activation function σ for hidden neurons only (see
Appendix A for more details). Finally, we define HA := {gw : w ∈ RW } to be the set of all functions
that can be represented by tuning all the weights assigned to the network.

A function σ : R → R is piecewise-polynomial on K ≥ 2 pieces, with maximal degree ν ∈ N, if
there exists a partition I1, . . . , IK of R into K nonempty intervals, such that σ restricted on each Ij
is polynomial with degree at most ν (in particular, σ can be discontinuous).

2 A general approximation lower bound in Lp(µ) norm

In this section, we provide our two main results: a general lower bound on the Lp(µ) approximation
error of F by G, i.e., supf∈F infg∈G ∥f − g∥Lp(µ), and a corollary when G corresponds to a feed-
forward neural network with a piecewise-polynomial activation function. The weak assumptions on
F make the last result applicable to a wide range of cases of interest, as shown in Sections 3–5.

2.1 Main results

Our generic lower bound reads as follows, and is proved in Section 2.2. We follow the conventions
0× log2(0) = 0 and P− 1

α log−
2
α (P ) = +∞ when P = 1.

Theorem 1. Let 1 ≤ p < +∞ and X be a measurable space endowed with a probability measure µ.
Let F , G be two sets of measurable functions from X to R, such that all functions in F have the
same range [a, b] for some a < b, and such that fatγ(G) < +∞ for all γ > 0. Then, there exists a
constant c > 0 depending only on p such that

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) ≥ inf

{
ε > 0 : logM

(
3ε, F, ∥ · ∥Lp(µ)

)
≤ c fat ε

32
(G) log2

(
2 fat ε

32
(G)

ε/(b− a)

)}
.

(2)

In particular, if logM
(
ε, F, ∥ · ∥Lp(µ)

)
≥ c0ε

−α for some c0, ε0, α > 0 and all ε ≤ ε0, and if
Pdim(G) < +∞, then there exist constants c1, ε1 > 0 depending only on b− a, p, c0, ε0 and α such
that

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) ≥ min
{
ε1, c1 Pdim(G)−

1
α log−

2
α
(
Pdim(G)

)}
. (3)

The first lower bound (2) is generic but requires solving an inequation.2 In (3) we solve this inequation
when logM

(
ε, F, ∥ · ∥Lp(µ)

)
grows at least polynomially in 1/ε (which is typical of nonparametric

sets) and when G has finite pseudo-dimension Pdim(G). Though we will restrict our attention to such
cases in all subsequent sections, we stress that the first bound should have broader applications. A first
example is when Pdim(G) = +∞ but fatγ(G) < +∞ for all γ > 0 (e.g., for RKHS [Bel18]). The
first bound should also be useful to prove (slightly) tighter lower bounds when logM

(
ε, F, ∥·∥Lp(µ)

)
has a (slightly) different dependency on 1/ε (e.g., of the order of ε−α logβ (1/ε) as when F is the set
of all multivariate cumulative distribution functions [BGL07]).

In the rest of the paper, we focus on the important special case when the approximation set G is the
set HA of all real-valued functions that can be represented by tuning the weights of a feed-forward
neural network with fixed architecture A and a piecewise-polynomial activation function. By
combining Theorem 1 with known bounds on the pseudo-dimension [BHLM19], we obtain the
following corollary, which bounds the approximation error in terms of the number W of weights and
the depth L (i.e., the number of hidden and output layers). The proof is postponed to Appendix B.4.

2Note that any ε ≥ (b− a)/3 is a solution to this inequation, since logM
(
3ε, F, ∥ · ∥Lp(µ)

)
= log(1) = 0

(because all functions in F are [a, b]-valued) and c fat ε
32
(G) ≥ 0. Therefore, the right-hand side of (2) is at

most (b− a)/3.
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Corollary 1. Let 1 ≤ p < +∞, d ≥ 1 and X be a measurable subset of Rd endowed with a
probability measure µ. Let F be a set of measurable functions from X to [a, b] (for some real numbers
a < b), such that logM

(
ε, F, ∥ · ∥Lp(µ)

)
≥ c0ε

−α for some c0, ε0, α > 0 and all ε ≤ ε0.

Let σ : R → R be any piecewise-polynomial activation function of maximal degree ν ∈ N on K ≥ 2
pieces. Then, there exist Wmin ∈ N∗ and c1, c2, c3 > 0 such that, for any W ≥ Wmin, any L ≥ 1,
and any fixed feed-forward neural network architecture A of depth L with W weights, the set HA of
all real-valued functions on X that can be represented by the network (cf. Section 1) satisfies

sup
f∈F

inf
g∈HA

∥f − g∥Lp(µ) ≥


c1W

− 2
α log−

2
α (W ) if ν ≥ 2 ,

c2(LW )−
1
α log−

3
α (W ) if ν = 1 ,

c3W
− 1

α log−
3
α (W ) if ν = 0 .

(4)

There are equivalent ways to write the above corollary. For example, given a target accuracy ε > 0
and a depth L ≥ 1, (4) yields a lower bound on the minimum number W of weights that are needed
to get supf∈F infg∈HA ∥f − g∥Lp(µ) ≤ ε. Some earlier approximation results were written this way
(e.g., [Yar17, PV18]).

2.2 Proof of Theorem 1

In order to prove Theorem 1, we need two inequalities. The first one is straightforward (and appeared
within proofs, e.g., in [YZ20]), but formalizes the key idea that if G approximates F with error ε,
then G has to be at least as large as F . We use the conventions log(+∞) = +∞ and +∞ ≤ +∞.
Lemma 1. Let p ≥ 1 and X be a measurable space endowed with a probability measure µ. Let F ,
G be two sets of measurable functions from X to R. If supf∈F infg∈G ∥f − g∥Lp(µ) < ε, then

logM
(
3ε, F, ∥ · ∥Lp(µ)

)
≤ logM

(
ε,G, ∥ · ∥Lp(µ)

)
.

Proof. Let PF = {f1, . . . , fN} be a 3ε-packing of F , with N ≥ 1. Let PG = {g1, . . . , gN} be a
subset of G such that ∥fi − gi∥Lp(µ) ≤ ε for all i. Note that the existence of such a PG is guaranteed
by the assumption supf∈F infg∈G ∥f − g∥Lp(µ) < ε. Since the fi’s are pairwise 3ε-distant in Lp(µ),
the triangle inequality entails that the gi’s are also at least pairwise ε-distant in Lp(µ). Therefore, PG

is an ε-packing of G, and the result follows.

The next inequality is a fundamental probability result due to Mendelson [Men02]. It bounds from
above the ε-packing number in Lp(µ) norm of any uniformly bounded function set in terms of its
fat-shattering dimension. Crucially, the inequality holds for finite p ≥ 1, as opposed to the lower
bound strategy of Yarotsky [Yar17, Yar18] (see also [DHP21]), that relates the VC-dimension with
the approximation error in sup norm. The next statement is a slight generalization of a result of
[Men02] initially stated for [a, b] = [0, 1] and for Glivenko-Cantelli classes G (see Appendix B.1 for
details).
Proposition 1 ([Men02], Corollary 3.12). Let G be a set of measurable functions from a measurable
space X to [a, b] (for some real numbers a < b), and such that fatγ(G) < +∞ for all γ > 0. Then
for any 1 ≤ p < +∞, there exists c > 0 depending only on p such that for every probability measure
µ on X and every ε > 0,

logM
(
ε,G, ∥ · ∥Lp(µ)

)
≤ c fat ε

32
(G) log2

(
2(b− a) fat ε

32
(G)

ε

)
. (5)

Refinements of this inequality were proved in specific cases such as the L2(µ) norm [MV03] (see
also [Gue17] for empirical Lp(µn) norms). However, using the result of [MV03] when p = 2 would
only yield a minor logarithmic improvement in the lower bound of Theorem 1.

Proof (of Theorem 1). Part 1. We start by proving (2), using Proposition 1 as a key argument. Since
functions in G are not necessarily uniformly bounded, we will apply Proposition 1 to the “clipped
version of G”. More precisely, for any function g ∈ G, we define its clipping (truncature) to [a, b]
as the function g̃ : X → R given by g̃(x) = min(max(a, g(x)), b) for all x ∈ X . We then set
G[a,b] = {g̃ : g ∈ G}, which by construction consists of functions that are all [a, b]-valued.
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Noting that clipping can only help since elements of F are [a, b]-valued (see Lemma 4 in the
supplement, Appendix B.2), we have

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) ≥ sup
f∈F

inf
g̃∈G[a,b]

∥f − g̃∥Lp(µ) . (6)

Setting ∆ := supf∈F inf g̃∈G[a,b]
∥f − g̃∥Lp(µ), we now show that ∆ is bounded from below by the

right-hand side of (2). To that end, it suffices to show that every ε > ∆ is a solution to the inequation

logM
(
3ε, F, ∥ · ∥Lp(µ)

)
≤ c fat ε

32
(G) log2

(
2(b− a) fat ε

32
(G)

ε

)
. (7)

The last inequality is true whenever ε ≥ (b− a)/3 (see Footnote 2). We only need to prove (7) when
∆ < ε < (b− a)/3. In this case, by definition of ∆ and by Lemma 1 applied to G[a,b], we have

logM
(
3ε, F, ∥ · ∥Lp(µ)

)
≤ logM

(
ε,G[a,b], ∥ · ∥Lp(µ)

)
≤ c fat ε

32
(G[a,b]) log

2

(
2(b− a) fat ε

32
(G[a,b])

ε

)
≤ c fat ε

32
(G) log2

(
2(b− a) fat ε

32
(G)

ε

)
, (8)

where the second inequality follows from Proposition 1 (note from Lemma 3 in the supplement,
Appendix B.2 that fatγ(G[a,b]) ≤ fatγ(G) for all γ > 0, which is finite by assumption), and where
(8) follows from the next remark. Either fat ε

32
(G[a,b]) = 0, and (8) is true by the convention

0 × log2(0) = 0 and c fat ε
32
(G) ≥ 0. Either fat ε

32
(G[a,b]) ≥ 1, and (8) follows from t 7→

ct log2
( 2(b−a)t

ε

)
being non-decreasing on [ε/(2(b − a)),+∞) and ε/(2(b − a)) ≤ 1/6 ≤ 1 ≤

fat ε
32
(G[a,b]) ≤ fat ε

32
(G). To conclude, every ε > ∆ satisfies (7), which implies that ∆ is bounded

from below by the right-hand side of (2). Combining with (6) concludes the proof of (2).

Part 2. Set ε′1 = min
{

ε0
3 , 2(b−a)

}
. We now derive (3) from (2). To that end, setting P = Pdim(G),

we show that every ε > 0 satisfying (7) is such that ε ≥ min
{
ε1, c1P

− 1
α log−

2
α (P )

}
, where

ε1 ∈ (0, ε′1] and c1 > 0 will be defined later. Since the claimed lower bound on ε is true when ε ≥ ε′1,
in the sequel we consider any solution ε to (7) such that 0 < ε < ε′1 (if such a solution exists).

By the assumption on logM
(
u, F, ∥ · ∥Lp(µ)

)
for u = 3ε ≤ ε0, and then using (7), we have, setting

r = 2(b− a),

c0(3ε)
−α ≤ logM

(
3ε, F, ∥ · ∥Lp(µ)

)
≤ c fat ε

32
(G) log2

(
r fat ε

32
(G)

ε

)
≤ cP log2

(
rP

ε

)
,

where the last inequality is because t 7→ ct log2
(
rt
ε

)
is non-decreasing on [ε/r,+∞), with ε/r ≤ 1,

and 1 ≤ fat ε
32
(G) ≤ Pdim(G) = P (the lower bound of 1 follows from c0(3ε)

−α > 0).

Solving the inequation c0(3ε)
−α ≤ cP log2(rP/ε) for ε (see Appendix B.3 for details), we get

ε ≥ min
{
ε′′1 , c1P

− 1
α log−

2
α P
}
, (9)

for some constants ε′′1 , c1 > 0 depending only on p, c0, b− a and α. Setting ε1 = min{ε′′1 , ε′1} and
noting that ε′1 only depends on ε0 and b− a, we conclude the proof.

3 Approximation of Hölder balls by feed-forward neural networks

In this section, we apply Corollary 1 to establish nearly-tight lower bounds for the approximation of
unit Hölder balls by feed-forward neural networks. Our main result is Proposition 3, which solves an
open question by [DHP21].

Throughout the section, for any s > 0, we denote by n and α the unique members of the decomposi-
tion s = n+ α such that n ∈ N and 0 < α ≤ 1.
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For a set X ⊂ Rd, we follow [YZ20] and define the Hölder space Cn,α(X ) as the space of n times
continuously differentiable functions with finite norm

∥f∥Cn,α = max

{
max

n:|n|≤n
∥Dnf∥∞, max

n:|n|=n
sup
x ̸=y

|Dnf(x)−Dnf(y)|
∥x− y∥α2

}
,

where, for n = (n1, · · · , nd) ∈ Nd, Dnf =
(

∂
∂x1

)n1

· · ·
(

∂
∂xd

)nd

f denotes the |n|-order partial
derivative of f . We denote

Fs,d = {f ∈ Cn,α([0, 1]d) : ∥f∥Cn,α ≤ 1}.

Let λ denote the Lebesgue measure over [0, 1]d. In this section, we provide nearly matching upper
and lower bounds for the Lp(λ) approximation error of elements of Fs,d by feed-forward ReLU
neural networks. The bounds are expressed in terms of the number of weights of the network.

3.1 Known bounds on the sup norm approximation error

[YZ20] gives matching (up to a certain constant) lower and upper bounds of the sup norm approxima-
tion error of the elements of Fs,d by feed-forward ReLU neural networks.
Proposition 2 ([YZ20]). Let d ∈ N∗, s > 0, γ ∈

(
s
d ,

2s
d

]
. Consider n ∈ N and α ∈ (0, 1] such that

s = n+ α.

There exist positive constants Wmin and c1, depending only on d and n, such that for any integer
W ≥ Wmin, there exists a feed-forward ReLU neural network architecture A with L = O(W γ d

s−1)
layers and W weights such that

sup
f∈Fs,d

inf
g∈HA

∥f − g∥∞ ≤ c1W
−γ . (10)

In the meantime, there exists a constant c2 > 0 depending only on d and n such that, for any
feed-forward neural network architecture A with W weights and L = o(W γ d

s−1/ logW ) layers and
for the ReLU activation function,

sup
f∈Fs,d

inf
g∈HA

∥f − g∥∞ ≥ c2W
−γ . (11)

It is worth stressing that, for any probability measure µ on [0, 1]d, the upper bound (10) is automati-
cally generalized to any smaller Lp(µ) norm, when 1 ≤ p < +∞. However, the lower bound (11)
does not immediately apply when ∥ · ∥∞ is replaced with ∥ · ∥Lp(µ), 1 ≤ p < +∞. The lower bound
of the next subsection shows that, in this setting, approximation in Lp(λ) norm is not easier than in
sup norm, solving an open question of DeVore et al. [DHP21].

3.2 Nearly-matching lower bounds of the Lp(λ) approximation error

We first state a lower bound on the packing number of Fs,d, which is rather classical though hard
to find in this specific form (see [BS67] for the L∞ norm, or [ET96] for other Sobolev-type norms).
For the sake of completeness, we give a proof of Lemma 2 in the supplement, Appendix D.1.
Lemma 2. Let s > 0, d ∈ N∗ and 1 ≤ p < +∞. There exist constants ε0, c0 > 0 such that for any
0 < ε ≤ ε0,

logM
(
ε, Fs,d, ∥ · ∥Lp(λ)

)
≥ c0ε

− d
s . (12)

Given Lemma 2, we can use Corollary 1 to establish the next proposition and obtain the lower bound
on the Lp(λ) approximation error.
Proposition 3. Let d ∈ N∗, s > 0, γ ∈

(
s
d ,

2s
d

]
and 1 ≤ p < +∞. Consider n ∈ N and α ∈ (0, 1]

such that s = n+ α.

Let σ : R → R be a piecewise-affine function, and c > 0. Then, there exist c1 > 0 and Wmin ∈ N∗

(depending only on s, d, p, σ and c) such that for any architecture A of depth 1 ≤ L ≤ cW γ d
s−1

with W ≥ Wmin weights, and for the activation σ, the set HA (cf. Section 1) satisfies

sup
f∈Fs,d

inf
g∈HA

∥f − g∥Lp(λ) ≥ c1W
−γ log−

3s
d (W ) . (13)
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Note that the rate of the lower bound does not depend on p. Note also that, when the activation
function is ReLU (which is piecewise-affine), we obtain a lower bound which matches the upper
bound of the previous subsection up to logarithmic factors.

Proof. From Lemma 2, there exist ε0, c0 > 0 such that logM
(
ε, Fs,d, ∥ · ∥Lp(λ)

)
≥ c0ε

− d
s for all

0 < ε ≤ ε0. Combining with Corollary 1 and using L ≤ cW γ d
s−1 concludes the proof.

Remark 1 (Comparison with existing proof strategies in sup norm.). We would like to highlight a key
difference between the proof of Proposition 3 and the lower bound proof strategies of [Yar17, Yar18,
YZ20, SYZ22] that are specific to the sup norm. Their overall argument is roughly the following: if
G can approximate any f ∈ F in sup norm at accuracy ε > 0, since F contains many “oscillating”
functions with oscillation amplitude roughly ε, then so must be the case for G (the sup norm is key
here: all oscillations of any f ∈ F are well approximated). Therefore, a small ε implies a large
VCdim(G), which by contrapositive enables to lower bound the approximation error (1) with a
decreasing function of VCdim(G), and therefore as a function of L and W . In contrast, in the proof
of Theorem 1, the key probability result of Mendelson (Proposition 1) enables us to show that, even if
the oscillations of any f ∈ F are only well approximated on average (in Lp(µ) norm) by G, then
Pdim(G) must be large when ε is small. The conclusion is then the same: the approximation error in
Lp(µ) norm can be lower bounded as a function of Pdim(G), and therefore in terms of L, W . This
solves the question of DeVore et al. [DHP21] mentioned in the introduction, showing in particular
that VC dimension theory can (surprisingly) be useful to prove Lp approximation lower bounds.

4 Approximation of monotonic functions by feed-forward neural networks

In this section, we consider the problem of approximating the set Md of all non-decreasing functions
from [0, 1]d to [0, 1]. These are functions f : [0, 1]d → [0, 1] that are non-decreasing along any line
parallel to an axis, i.e., such that, for all x, y ∈ [0, 1]d,

xi ≤ yi, ∀i = 1, . . . , d =⇒ f(x) ≤ f(y) .

Monotonic functions are an interesting case study for at least two reasons. First, they naturally appear
in physics or engineering applications (consider for instance the braking distance of a vehicle as a
function of variables such as the speed, the total load or the drag coefficient). Second, as will be
shown in this section, because their sets of discontinuities can have “complex” shapes in dimension
d ≥ 2, monotonic functions provide a good example for which the approximation by feed-forward
neural networks is hopeless in sup norm, but can be achieved in Lp(λ) norm.

Next we focus on the approximation of Md with Heaviside feed-forward neural networks. After
proving an impossibility result for the sup norm, we show that the weaker goal of approximating Md

in Lp(λ) norm is feasible, and derive nearly matching lower and upper bounds. Interestingly, the
approximation rates depend on p ≥ 1, which is in sharp contrast with the case of Hölder balls, that
are not easier to approximate in Lp(λ) norm than in sup norm (see Section 3).

4.1 Warmup: an impossibility result in sup norm

We start this section by showing that approximating monotonic functions of d ≥ 2 variables in sup
norm is impossible with Heaviside neural networks.

Proposition 4. For any neural network architecture A with the Heaviside activation, the set HA (cf.
Section 1) satisfies

sup
f∈Md

inf
g∈HA

∥f − g∥∞ ≥ 1

2
.

The proof of Proposition 4 is postponed to the supplement, Appendix E.2. We show a slightly stronger
result, by exhibiting a single function f ∈ Md such that the lower bound of 1

2 holds simultaneously
for all network architectures.

Next we study the approximation of Md in Lp(λ) norm.
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4.2 Lower bound in Lp(λ) norm

We start by proving a lower bound, as a direct consequence of Corollary 1 and a lower bound on the
packing number due to [GW07].

Proposition 5. Let 1 ≤ p < +∞, d ≥ 1, and let α = max{d, (d − 1)p}. Let σ : R → R be a
piecewise-polynomial function having maximal degree ν ∈ N. Then, there exist positive constants
c1, c2, c3,Wmin (depending only on d, p, and σ) such that for any architecture A of depth L ≥ 1 with
W ≥ Wmin weights, and for the activation σ, the set HA (cf. Section 1) satisfies

sup
f∈Md

inf
g∈HA

∥f − g∥Lp(λ) ≥


c1W

− 2
α log−

2
α (W ) if ν ≥ 2 ,

c2(LW )−
1
α log−

3
α (W ) if ν = 1 ,

c3W
− 1

α log−
3
α (W ) if ν = 0 .

(14)

Note that, contrary to the case of Hölder balls (Section 3), the rate of the lower bound depends on p
through α = max{d, (d− 1)p}.

Proof. From [GW07], there exist constants ε0, c0 > 0 such that for ε ≤ ε0,
logM

(
ε,Md, ∥ · ∥Lp(λ)

)
≥ c0ε

−α. Using Corollary 1, we obtain the result.

4.3 Nearly-matching upper bound in Lp(λ) norm

To the best of our knowledge, there does not exist any upper-bound of the Lp(λ) approximation error
of Md with feed-forward neural networks. Checking that all the lower-bounds of Proposition 5 are
tight is out of the scope of this paper and we leave it for future research3. However, we establish in
the next proposition upper-bounds of the Lp(λ) approximation error of Md with feed-forward neural
networks with the Heaviside activation function. This shows that, for the Lp(λ) approximation error,
the lower-bound obtained in (14), for ν = 0, is tight up to logarithmic factors. The next proposition
follows by reinterpreting a metric entropy upper bound of [GW07] in terms of Heaviside neural
networks. The proof is postponed to Appendix E.1 in the supplement.

Proposition 6. Let 1 ≤ p < +∞, d ∈ N\{0, 1} and let α = max{d, (d−1)p}. There exist positive
constants Wmin and c, depending only on d and p, such that for any integer W ≥ Wmin, there exists a
feed-forward architecture A with two hidden layers, W weights and the Heaviside activation function
such that the set HA satisfies

sup
f∈Md

inf
g∈HA

∥f − g∥Lp(λ) ≤
{

cW− 1
α if p(d− 1) ̸= d ,

cW− 1
d log(W ) if p(d− 1) = d .

(15)

5 Conclusion and other possible applications

We proved a general lower bound on the approximation error of F by G in Lp(µ) norm (Theorem 1),
in terms of generic properties of F and G (packing number of F , range of F , fat-shattering dimension
of G). The proof relies on VC dimension theory as in the sup norm case, but uses an additional key
probabilistic argument due to Mendelson ([Men02], see Proposition 1), solving a question raised by
DeVore et al. [DHP21].

In Sections 3 and 4 we detailed two applications, where Corollary 1 yields nearly optimal approxima-
tion lower bounds in Lp norm, and which correspond to two examples where the approximation rate
may depend or not depend on p.

Theorem 1 and Corollary 1 can be used to derive approximation lower bounds for many other cases.
Corollary 1 only requires a (tight) lower bound on the packing number of F , for which approximation
theory provides several examples. For instance, for the Barron space introduced in [Bar93], Petersen
and Voigtlaender [PV21] showed a tight lower bound on the log packing number in Lp(λ, [0, 1]d)
norm, of order ε−2d/(d+2). Applying Corollary 1, this yields an approximation lower bound of

3Obtaining an upper-bound for ReLU networks seems challenging. For example, the bit extraction technique
used in [Yar18] to find a sharp upper bound heavily relies on the local smoothness assumption of the function to
approximate, which is not satisfied in general for monotonic functions.
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(LW )−(
1
2+

1
d ) log−3( 1

2+
1
d )(W ) for ReLU networks (see Appendix F in the supplement for details).

Other examples of sets F for which tight lower bounds on the packing number (or metric entropy)
are available include: multivariate cumulative distribution functions [BGL07], multivariate convex
functions [GS13], and functions with other shape constraints [GJ14].

Piecewise-polynomial activation functions are not essential for the current derivation. Indeed,
Theorem 1 can also be applied to the case where G corresponds to a neural network with other
activation functions such as the sigmoid. In the sigmoid case, the pseudo-dimension is known to be
at most of the order of W 4 (see [KM97, AB99]), which we can use to derive an approximation lower
bound similar to that of Corollary 1, with a smaller right-hand side for large W . However, to the best
of our knowledge, it is not known whether the O(W 4) VC bound is tight (only a lower bound of the
order of W 2 is known), so the resulting approximation lower bound could be loose. We leave this
interesting question for future work.

Theorem 1 can also be applied to other approximating sets G, beyond classical feed-forward neural
networks, as soon as a (tight) upper bound on the fat-shattering dimension of G is available. For
example, upper bounds were derived by [WS22] on the VC dimension of partially quantized networks,
while [Bel18] derived bounds on the fat-shattering dimension of some RKHS. Investigating such
applications and whether the obtained approximation lower bounds are rate-optimal is a natural
research direction for the future.
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