
Appendix

A Some Definitions

In the proof of the main theorem below we use Max Coverage, a known NP-hard problem. We
recapitulate its definition as follows:

Definition A.1 (Max Coverage). Let b ∈ N denote an integer, U denote a set of elements, and let
S = {S1, . . . , Sm} denote a collection of subsets of U . In the problem of Max Coverage we wish to
find b subsets in S with union of maximum cardinality

argmax
S′⊆S;|S′|=b

∣∣∣∣∣ ⋃
Si∈S′

Si

∣∣∣∣∣
For convenience, we also repeat the definition of Max Probability Cover from Section 2.2:

Definition A.2 (Max Probability Cover). Let X denote the input probability space. Let X =
{xi}mi=1 , xi ∈ X denote a set of points. Let b ∈ N denote an integer, and fix δ > 0. In the problem
of Max Probability Cover we wish to find a subset L ⊂ X, |L| = b, that maximizes the following
probability

argmax
L⊆X;|L|=b

P (
⋃
x∈L

Bδ(x))

B Max Probability Cover is NP-Hard

We first describe a constructive procedure to generate a collection of balls in Rm with a property we
call exhaustive intersection (Def. B.2). We then use this collection in order to construct a reduction
from Max Coverage to Max Probability Cover.

B.1 Exhaustive Intersection: Constructive Procedure

Let {ei}mi=1 denote the natural basis of Rm. Let Br(p) denote the open ball of radius r around p, and
Let Br[p] similarly denote the closed ball.
Definition B.1 (Inversion mapping). We define the inversion mapping ι : Rm \ {0} → Rm \ {0} as

ι(p) =
p

∥p∥22

Lemma 2. Let Xi = {x ⊆ Rm | x · ei > 1} denote a halfspace. Then ι(Xi) ⊆ B 1
2
(12ei).

Proof. Let x ∈ Xi. Membership in the two sets is defined by satisfying the equations x · ei > 1 and
d(ι(x), 1

2ei) <
1
2 . We will show that they are equivalent (see visualization in Fig. 11a). We use the

polarization identity a · b = 1
2 (∥a∥

2 + ∥b∥2 − d(a, b)2)

1 < x · ei
1

2∥x∥2
<

(
x

∥x∥2

)
·
(
1

2
ei

)
1

2∥x∥2
<

1

2

(
1

∥x∥2
+

1

4
− d
(x

∥x∥2
,
1

2
ei

)2)
d

(
x

∥x∥2
,
1

2
ei

)2

<
1

4

d

(
ι(x),

1

2
ei

)
<

1

2

15

(a)

(b)

(c)

Figure 11: (a) Visualization of Lemma 2. The blue points above the plane y = 1 are mapped by ι(·) to the red
points inside B 1

2
(1
2
e2). Points below y = 1 are mapped outside the ball. (b) The exhaustive intersection in R2.

(c) Visualization of the induced distribution for m = 2. Points 1, 3 are mapped to disjoint parts of the two balls,
while point 2 is mapped to their intersection B 1

2
(1
2
e1)∩B 1

2
(1
2
e2). Each point is then assigned a Dirac measure

and the distribution is the normalized sum, as a result of which we get that P (B 1
2
(1
2
e1)) = P (B 1

2
(1
2
e2)) =

2
3

.

Corollary 2. x ̸= 0, x · ei < 1 ⇐⇒ ι(x) /∈ B 1
2
[12ei].

Definition B.2 (Exhaustive intersection). A collection of sets (A1, . . . , Am) is said to have the
exhaustive intersection property if for any subset of indices I ⊂ [m] there exists a point xI with

1. xI ∈
⋂

i∈I Ai

2. xI /∈
⋃

j∈[m]\I Aj

Put differently, xI ∈ Ai ⇐⇒ i ∈ I (see the Venn diagram example in Fig. 11b).
Lemma 3. The collection of balls {B 1

2
(12ei)}

m
i=1 in Rm satisfies the exhaustive intersection property.

Proof. Let I ⊆ [m] denote a subset of indices and define x̃I =
∑

j∈I 2ej , xI = ι(x̃I). From
Lemma 2, for any j ∈ I, x̃I · ej = 2 ⇒ xI ∈ B 1

2
(12ej), which proves the first part of Def. B.2.

From Cor. 2, any j /∈ I, x̃I · ej = 0⇒ xI /∈ B 1
2
(12ej), which proves the second part.

B.2 Reduction from Max Coverage to Max Probability Cover

To improve readability, we restate in App. A the precise definitions of Max Probability Cover
(Def. A.2) and Max Coverage (Def. A.1). Before we start, we note that in order for Max Probability
Cover to be computable and not be trivially polynomial, we must assume that the encoding of the
input distribution to Max Probability Cover is of polynomial size in the number of points.

Theorem 2. Max Probability Cover is NP-hard.

Proof. We construct a polynomial-time reduction from any Max Coverage problem P to another
problem P̃, which is an instance of Max Probability Cover. Let In = (S1, . . . , Sm, b) be the input to
P, and let U =

⋃m
i=1 Si.

We define a mapping from the input of P to the input of P̃: First, we fix the input space of P̃ to Rm,
where m is the number of sets in P, and fix the set of m points X in P̃ to { 12ei}

m
i=1 ⊆ Rm. We let b

remain the same, and fix the radius δ = 1
2 . We abbreviate Bi = B 1

2
(12ei). Next, we define a mapping

T : U → Rm as T (u) = ι(
∑m

i=1 2 · 1u∈Si
ei). From the proof of Lemma 3 we conclude that

T (u) ∈ Bi ⇐⇒ u ∈ Si

Finally, we define the probability distribution P as P (A) = 1
|U |
∑

u∈U 1T (u)∈A (see visualization in
Fig. 11c).

16

Lemma 4. P is a valid probability distribution.

Proof. P is a finite sum of Dirac measures 1T (u)∈A, and as such it is a measure itself. Hence we
only need to show that it is normalized, ie P (Rm) = 1:

P (Rm) =
1

|U |
∑
u∈U

1T (u)∈Rm =
1

|U |
∑
u∈U

1 = 1

In summary, the input of P̃ is the following:

• Dataset: X(In) = { 12ei}
m
i=1 ⊆ Rm.

• Budget: b(In) = b.
• Ball radius: δ(In) = 1

2 .
• Distribution: (P (In))(A) = 1

|U |
∑

u∈U 1T (u)∈A

Before we continue, we require another short lemma:

Lemma 5. For all u ∈ U , I ⊆ [m], 1T (u)∈
⋃

i∈I Bi
= 1u∈

⋃
i∈I Si

Proof. We prove the conditions are equivalent:

T (u) ∈
⋃
i∈I

Bi ⇐⇒ ∃i ∈ I T (u) ∈ Bi ⇐⇒ ∃i ∈ I u ∈ Si ⇐⇒ u ∈
⋃
i∈I

Si

To show that a reduction is valid for an optimization problem, we need to show that the objectives
are equivalent. The objective in Max Coverage is the size of the union, whereas in Max Probability
Cover it is the probability of the δ-ball union.

P (
⋃
i∈I

Bi) =
1

|U |
∑
u∈U

1T (u)∈
⋃

i∈I Bi

=
1

|U |
∑
u∈U

1u∈
⋃

i∈I Si

=
1

|U |

∣∣∣∣∣⋃
i∈I

Si

∣∣∣∣∣
Since |U | is constant the optimization is equivalent.

Finally, we show that the induced probability can be specified in polynomial space: as |U | is
polynomial in the size of the input, it follows that the distribution as a normalized sum of indicator
functions can be specified as a table of the embedding of size |U | ·m, which is polynomial.

C Implementation Details

Source code used in this work is available at the following url:

https://github.com/avihu111/TypiClust

C.1 Selection Method

Representation Learning: CIFAR10, CIFAR100, TinyImageNet. To extract semantically meaning-
ful features, we trained SimCLR using the code provided by Van Gansbeke et al. [41] for CIFAR-10,
CIFAR-100 and TinyImageNet. Specifically, we used ResNet-18 [20] with an MLP projection layer
to a 128-dim vector, trained for 500 epochs. All the training hyper-parameters were identical to those

17

https://github.com/avihu111/TypiClust

used by SCAN (all details can be found in Van Gansbeke et al. [41]). After training, we used the 512
dimensional penultimate layer as the representation space.

Representation Learning: ImageNet. We extracted features from the official (ViT-S/16) DINO
weights pre-trained on ImageNet. We used the L2 normalized penultimate layer for the embedding.
All the exact hyper-parameters can be found at Caron et al. [5].

Randomness in ProbCover Selections. In order to reduce the correlation between different repetitions
using ProbCover, we added the following modification to the selection algorithm: instead of taking
the node with the highest degree at each iteration, we selected randomly one of the 5 nodes with
the highest degree. We verified that both algorithms achieved similar performance, where the
deterministic version has slightly better results.

C.2 Fully Supervised Evaluation

We trained a ResNet18 on the labeled set, using the AL comparison framework created by Munjal
et al. [33], and following the protocol described in [19] (see details in [19] and the shared code).

C.3 1-NN Classification with Self-Supervised Embeddings

In these experiments, we also used the framework by Munjal et al. [33]. We extracted an embedding
similar to § C.1, with which we trained a 1-NN classifier using the default parameters of scikit-learn.

C.4 Semi-Supervised Classification

When training FlexMatch [52], we used the AL framework by Zhang et al. [51]. All experiments
involved 3 repetitions.

CIFAR-10. We used the standard hyper-parameters used by FlexMatch [52]. Specifically, we trained
WideResNet-28 for 400k iterations using the SGD optimizer, with 0.03 learning rate, 64 batch size,
0.9 momentum, 0.0005 weight decay, 2 widen factor, and 0.1 leaky slope. The weak augmentations
used are identical to those used in FlexMatch and include random crops and horizontal flips, while
the strong augmentations were generated by RandAugment [11].

CIFAR-100. Similar to CIFAR-10, but increasing the widen factor to 8.

TinyImageNet. We trained ResNet-50, for 1.1m iterations. We used an SGD optimizer, with a
0.03 learning rate, 32 batch size, 0.9 momentum, 0.0003 weight decay, and 0.1 leaky slope. The
augmentations were similar to those used in FlexMatch.

D Additional Empirical Results

D.1 Improving the greedy approximation

The greedy approximation used in ProbCover guarantees 1− 1
e approximation to the maximum cover

problem. Hunt et al. [24] showed that a polynomial time approximation scheme (PTAS) exists for this
problem, suggesting the possibility of better polynomial approximations. However, Marx [31] proved
that there is no efficient PTAS to this problem, implying that such polynomial approximations may
not be practical. For example, to achieve a 1− 1

e approximation using the PTAS suggested in Marx
[31] would require O(n100) time. Thus, a significantly better approximation than the greedy solution
is left for future work. Instead, we improved the greedy algorithm by choosing at each iteration the
optimal 2 balls in a greedy way. While this greedy solution achieves a better approximation in theory,
in practice we did not see any improvement over the single-ball greedy solution.

D.2 ImageNet subsets

When evaluating ProbCover on ImageNet-50 and ImageNet-100, we report a similar qualitative
behavior as seen in other datasets: ProbCover performs better than all baselines in the very low-budget
regime, using 5 AL rounds with a budget equal to b = 50 examples. More concretely, in Fig. 12 we
show results corresponding to Figs. 3-5 when using ImageNet-50.

18

(a)
(b) (c)

Figure 12: A Comparative evaluation of ProbCover on ImageNet-50 (top row) and ImageNet-100 (bottom row).
(a) Similar to Fig 3, in which we estimate δ. (b) Similar to Fig. 4, trained in the fully supervised framework. (c)
Similar to Fig. 5, trained in the semi-supervised by transfer learning framework.

D.3 TypiClust vs ProbCover on SCAN feature space

Both ProbCover and TypiClust use an unsupervised self-representation embedding as part of an active
learning query selection algorithm. In Section 4.2, when comparing ProbCover to TypiClust, we
used the same embedding in both of them, to avoid possible confounds relating to the choice of the
specific representation algorithm.

As TypiClust reached the best performance using SimCLR representation in most budgets and
frameworks on CIFAR-10 and CIFAR-100, we chose that embedding space to compare to ProbCover.
However, in the fully-supervised framework, with a budget of 10 examples, TypiClust yields better
results using the embedding space of SCAN.

In Fig. 13, we plot a comparison between ProbCover and TypiClust in this budget, when both are
using the embedding space of SCAN. We find a similar trend to the results reported in Section 4.2:
ProbCover achieves higher accuracy than TypiClust, and both surpass random sampling in this budget.

Figure 13: Comparison of ProbCover and TypiClust using the SCAN feature space. (δ = 0.8)

19

D.4 Comparison with W-Dist

In Section 4, we compare ProbCover to several other active learning baselines, including W-Dist [30].
As this method is computationally demanding, we are only able to evaluate its performance on the
CIFAR-10 and CIFAR-100 datasets, which are the smallest datasets we consider.

We note that the results differ from the results reported in the original paper. This stems from
several things: firstly, we use 1-NN classification instead of linear classification in the self-supervised
scenario. Secondly, the implementation of the Wasserstein method is ours, based on the pseudo-code
published in the original work, as no official implementation is available, though we did our best to
follow the instructions of the original paper. Thirdly, the method is unique in that it requires a long
time to select samples (the original version set a 3 hours timeout for the selection of every 10-20
samples). Instead of the long timeouts suggested in the original work, we used 20 minutes timeouts
per round, which reached similar results.

E Time and Space complexity of ProbCover

During the training of a neural network, ProbCover is executed a single time in order to select the
best subset to query for human annotation for subsequent network training.

For the complexity calculation below, let n denote the number of examples in the unlabeled and
labeled pool |U∪L|, d the dimension of the data embedding space, and b the query budget. ProbCover
can be split into two steps:

E.1 Adjacency graph

Constructing the adjacency graph requires computing pairwise distances in the embedding space.

Time Complexity: O(n2d) time. In practice, it takes roughly 10 minutes on a single NVIDIA
A4000 GPU even on the largest dataset we consider – ImageNet with DINO embedding, where
n = 1281167, d = 384.

Space Complexity: naively we have O(n2), which is impractical for large datasets like ImageNet.
However, we only need to save edges whose distance is smaller than δ. We store the edges using a
sparse matrix in coordinate list (COO) format, so the space complexity is O(|E|), where E is the set
of edges in the graph.

Although O(|E|) is still O(n2) in the worst case, in practice, the average degree of each vertex in
the graph using radius δ is a few orders of magnitude smaller than n, resulting in manageable space
complexity. For example, When selecting samples from ImageNet with δ = 0.55, the average degree
was 24 and the algorithm total memory consumption was 12GB.

E.2 Sample selection

We iteratively select samples from the current sparse graph, removing incoming edges to newly
covered samples. We note that unlike the adjacency graph creation, the sample selection cannot be
parallelized, as each selection step depends on the previous step.

Time Complexity

Breaking down the steps in the selection of a single sample:

• Calculating node degrees – O(|E|) time.
• Finding node with a maximal degree – O(n) time.
• Removing covered points’ incoming edges from the graph – O(|E|) time.

All in all, the complexity is O(|E|+ n) for selecting a sample, and O(n2k) overall in the worst case.
As we select more and more points, more edges are removed, making the selection of later samples
faster. In practice, thanks to the vectorization of these steps it takes roughly 15 minutes to select
k = 1000 samples from ImageNet on a single CPU, and a couple of seconds in CIFAR-10/100.

20

	Some Definitions
	Max Probability Cover is NP-Hard
	Exhaustive Intersection: Constructive Procedure
	Reduction from Max Coverage to Max Probability Cover

	Implementation Details
	Selection Method
	Fully Supervised Evaluation
	1-NN Classification with Self-Supervised Embeddings
	Semi-Supervised Classification

	Additional Empirical Results
	Improving the greedy approximation
	ImageNet subsets
	TypiClust vs ProbCover on SCAN feature space
	Comparison with W-Dist

	Time and Space complexity of ProbCover
	Adjacency graph
	Sample selection

