
A Extended Dataset Description and Results

A.1 Optional variants of PascalVOC-SP and COCO-SP datasets

For PascalVOC-SP and COCO-SP datasets, the graphs that we keep by default are the rag-boundary
graphs which are based on SLIC superpixels extraction with compactness value of 30. Additionally,
we provide optional variants of both these datasets which are based on SLIC superpixels extraction
with compactness value of 10, and two other graph construction formats, coo and coo-feat. In this
section, we include the description and results of baseline experiments of these optional datasets as
well. Note that any of these version of the SP dataset can be used as independent LRGB dataset.

Construction of coo and coo-feat graphs: Under these two construction methods, the resultant
graphs are 8 nearest neighbor graphs where the pairwise adjacency weights for two nodes are first
constructed based on coordinates (for coo) or based on coordinates and feature intensities (for
coo-feat) of the superpixels nodes, and then each node is directly connected to 8 other nodes with
the highest weight scores. The weights computation is based on the Eqn. 1 for coo and Eqn. 2 for
coo-feat:
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where, xi, xj are the 2 dimensional coordinates, and fi, fj are the 12 dimensional (3 dimensions each
of mean, std, max, min) RGB feature values of superpixels i, j respectively, σ2

x is a scaling parameter
defined as the average distance xk of the k = 8 nearest neighbors for each node. The initial feature
of each superpixel node is 12 dimensional RGB feature value (mean, std, max, min) and that of an
edge between two nodes is a 1 dimensional edge weight that is given by Eqn. 1 or 2 for the respective
graph format.

Statistics and Baseline Results. The complete statistics of the aforementioned optional versions
of the PascalVOC-SP and COCO-SP datasets are included in Table A.1. Note that that versions with
the options SLIC: 30 and Graph: rag-boundary is the default dataset for both PascalVOC-SP and
COCO-SP that we present in the main Section 3. The results of the baseline experiments on all the
dataset versions are reported in Table A.2.

Table A.1: Statistics of 6 tried versions of PascalVOC-SP and COCO-SP datasets, each derived with
a different combination of Options in terms of: (i) SLIC, which denotes the value of compactness
parameter used during the extraction of superpixels by SLIC algorithm [1] and (ii) Graph, which
denotes the graph format that was used to construct the adjacency matrix. The Graph options ‘coo’
refers to a 8-nn graph where the edge weight is based on superpixel coordinates (Eqn. 1), ‘coo-feat’
refers to a 8-nn graph where the edge weight is based on superpixel coordinates as well as feature
intensities (Eqn. 2), ‘rag-boundary’ refers to a region boundary graph.

Dataset Options Total
Graphs

Total
Nodes

Avg
Nodes

Mean
Deg.

Total
Edges

Avg
Edges

Avg
Short.Path.

Avg
DiameterSLIC Graph

PascalVOC-SP

10
coo

11,355 4,747,374 418.09
8.00 37,978,992 3,344.69 7.50±0.76 17.89±2.10

coo-feat 8.00 37,978,992 3,344.69 7.50±0.76 17.89±2.10
reg-bound 5.62 26,659,158 2,347.79 9.08±1.23 22.99±3.70

30
coo

11,355 5,443,545 479.40
8.00 43,548,360 3,835.17 8.05±0.18 19.40±0.65

coo-feat 8.00 43,548,360 3,835.17 8.05±0.18 19.40±0.65
reg-bound 5.65 30,777,444 2,710.48 10.74±0.51 27.62±2.13

COCO-SP

10
coo

123,286 49,732,322 403.39
8.00 397,858,524 3,227.12 7.39±0.77 17.61±2.12

coo-feat 8.00 397,858,524 3,227.12 7.39±0.77 17.61±2.12
reg-bound 5.61 278,816,918 2,261.55 8.85±1.23 22.40±3.70

30
coo

123,286 58,793,216 476.88
8.00 470,345,728 3,815.08 8.06±0.18 19.42±0.70

coo-feat 8.00 470,345,728 3,815.08 8.06±0.18 19.42±0.70
reg-bound 5.65 332,091,902 2,693.67 10.66±0.55 27.39±2.14
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Table A.2: Baseline experiments for PascalVOC-SP and COCO-SP for node classification task.
Performance metric is macro F1 on the respective splits (Higher is better). All experiments are run
4 times with 4 different seeds. All models have approximately 500k learnable parameters for fair
comparison. The MP-GNN models are 8 layers deep, while the transformer-based models have 4
layers in order to maintain comparable hidden representation size at the fixed parameter budget.

Dataset
(SLIC)

Model # Params coo coo-feat reg-bound

Train F1 Test F1 ↑ Train F1 Test F1 ↑ Train F1 Test F1 ↑

Pa
sc

al
VO

C-
SP

10

GCN 496k 0.1559±0.0079 0.1281±0.0025 0.1956±0.0202 0.1321±0.0043 0.1530±0.0048 0.1306±0.0025
GINE 505k 0.2178±0.0382 0.1127±0.0039 0.3007±0.0461 0.1078±0.0035 0.2278±0.0224 0.1231±0.0052
GatedGCN 502k 0.4319±0.0187 0.2788±0.0032 0.3560±0.0567 0.2289±0.0137 0.3574±0.0573 0.2705±0.0251
GatedGCN+LapPE 502k 0.4390±0.0144 0.2803±0.0031 0.3535±0.0376 0.2241±0.0035 0.3553±0.0396 0.2722±0.0149
Transformer+LapPE 501k 0.6140±0.0635 0.2661±0.0129 0.5594±0.0445 0.2667±0.0060 0.5925±0.0447 0.2627±0.0086
SAN+LapPE 531k 0.6691±0.0339 0.2904±0.0031 0.5555±0.0650 0.2808±0.0047 0.5636±0.0506 0.3031±0.0046
SAN+RWSE 468k 0.6200±0.0502 0.2841±0.0090 0.5726±0.0615 0.2764±0.0184 0.5968±0.0487 0.3113±0.0072

30

GCN 496k 0.1469±0.0068 0.1262±0.0031 0.1742±0.0042 0.1326±0.0015 0.1450±0.0125 0.1268±0.0060
GINE 505k 0.2575±0.0283 0.1203±0.0045 0.2479±0.0318 0.1035±0.0015 0.2088±0.0268 0.1265±0.0076
GatedGCN 502k 0.4311±0.0325 0.2916±0.0058 0.3379±0.0107 0.2410±0.0015 0.3552±0.0451 0.2873±0.0219
GatedGCN+LapPE 502k 0.4223±0.0356 0.2890±0.0057 0.3110±0.0706 0.2317±0.0217 0.3512±0.0167 0.2860±0.0085
Transformer+LapPE 501k 0.6213±0.0393 0.2633±0.0056 0.6607±0.0684 0.2697±0.0081 0.7170±0.0048 0.2694±0.0098
SAN+LapPE 531k 0.6485±0.0711 0.3218±0.0160 0.5242±0.0480 0.3003±0.0046 0.5723±0.0427 0.3230±0.0039
SAN+RWSE 468k 0.6240±0.0866 0.3227±0.0084 0.5869±0.0349 0.3124±0.0091 0.5819±0.0331 0.3216±0.0027

CO
CO

-S
P

10

GCN 509k 0.0852±0.0030 0.0770±0.0017 0.0919±0.0058 0.0780±0.0026 0.0885±0.0078 0.0809±0.0043
GINE 515k 0.1874±0.0071 0.1109±0.0048 0.1605±0.0090 0.0846±0.0045 0.1812±0.0155 0.1196±0.0053
GatedGCN 508k 0.3009±0.0078 0.2280±0.0032 0.2842±0.0077 0.2130±0.0036 0.3149±0.0099 0.2542±0.0044
GatedGCN+LapPE 509k 0.3018±0.0057 0.2307±0.0014 0.2789±0.0080 0.2110±0.0036 0.3184±0.0144 0.2529±0.0063
Transformer+LapPE 508k 0.3700±0.0141 0.2455±0.0036 0.3775±0.0082 0.2492±0.0036 0.3758±0.0205 0.2478±0.0068
SAN+LapPE 536k 0.3437±0.0096 0.2605±0.0062 0.3278±0.0041 0.2596±0.0015 0.2541±0.0394 0.2325±0.0191
SAN+RWSE 474k 0.3557±0.0264 0.2675±0.0126 0.3270±0.0145 0.2585±0.0046 0.2815±0.0371 0.2442±0.0231

30

GCN 509k 0.0914±0.0056 0.0797±0.0026 0.1003±0.0043 0.0843±0.0019 0.0948±0.0014 0.0841±0.0010
GINE 515k 0.1742±0.0186 0.1168±0.0053 0.1646±0.0081 0.1003±0.0022 0.2100±0.0041 0.1339±0.0044
GatedGCN 508k 0.3024±0.0043 0.2441±0.0035 0.2926±0.0154 0.2285±0.0069 0.3167±0.0059 0.2641±0.0045
GatedGCN+LapPE 509k 0.3101±0.0062 0.2454±0.0015 0.2894±0.0060 0.2283±0.0036 0.3102±0.0112 0.2574±0.0034
Transformer+LapPE 508k 0.3855±0.0185 0.2579±0.0057 0.3750±0.0224 0.2589±0.0069 0.3912±0.0098 0.2618±0.0031
SAN+LapPE 536k 0.3376±0.0455 0.2781±0.0143 0.2941±0.0810 0.2498±0.0513 0.2830±0.0246 0.2592±0.0158
SAN+RWSE 474k 0.3652±0.0104 0.2817±0.0047 0.3754±0.0074 0.2869±0.0067 0.2657±0.0224 0.2434±0.0156

A.2 Extended description of Peptides-struct

Below, we describe the 11 tasks from the Peptides-struct dataset, which represented properties
computed from the 3D structure, then normalized to zero mean and unit standard deviation.

• Inertia_mass The inertia of the molecules according to its 3 principal components, using the
mass of the atoms and their distances to the centroid.

• Inertia_valence The inertia of the molecules according to its 3 principal components, using the
valence of the atoms and their distances to the centroid.

• Length The maximum distance between each atom-pairs in each of its 3 main axes.
• Sphericity A measure of how much the molecule looks like a sphere: the ratio of the molecule’s

surface area to the surface area of a sphere with similar volume.
• Plane_best_fit The average distance of all heavy atoms from the plane of best fit.

A.3 Extended Results for Peptides-struct

Table A.3: Extended evaluation metrics for Peptides-struct. The training and testing performance
is quantified in terms of the Coefficient of Determination R2, in addition to MAE reported in Table 4.

Model # Params. Train MAE Test MAE ↓ Train R2 Test R2 ↑
GCN 508k 0.2939±0.0055 0.3496±0.0013 0.6513±0.0078 0.6019±0.0027
GCNII 505k 0.2957±0.0025 0.3471±0.0010 0.6913±0.0242 0.6148±0.0054
GINE 476k 0.3116±0.0047 0.3547±0.0045 0.6494±0.0108 0.5943±0.0067
GatedGCN 509k 0.2761±0.0032 0.3420±0.0013 0.6907±0.0058 0.6254±0.0013
GatedGCN+RWSE 506k 0.2578±0.0116 0.3357±0.0006 0.7204±0.0149 0.6329±0.0034

Transformer+LapPE 488k 0.2403±0.0066 0.2529±0.0016 0.8027±0.0108 0.7743±0.0053
SAN+LapPE 493k 0.2822±0.0108 0.2683±0.0043 0.6887±0.0153 0.7581±0.0057
SAN+RWSE 500k 0.2680±0.0038 0.2545±0.0012 0.7112±0.0049 0.7716±0.0034
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A.4 Correlation of labels in Peptides-func and Peptides-struct

The Peptides-func is a multi-label classification and Peptides-struct is a multi-label regression.
Evaluating the correlation between the labels will ensure that labels are not redundant and provide a
variety of information, Figure A.1. We observe that there is very little correlation between classes of
peptides. For the structural dataset, there are some correlations, which are expected since intertia
is related to length and spherocity, but in general, the correlation remains limited, which motivates
using a multi-label regression.

Figure A.1: Left: Visualization of pearson correlation between classes in peptides-func dataset.
Right: Visualization of correlation between geometric properties in peptides-struct dataset.

A.5 Dataset Licenses.

The information on the dataset sources that we used for the proposed LRGB datasets’ preparation,
the original licenses of use and the release licenses are in Table A.4.

Table A.4: Original resources that our 5 datasets are derived from and their licensing information.
*Custom License for Pascal VOC 2011 (respecting Flickr terms of use).

Derived from Original License Release License

PascalVOC-SP Pascal VOC [18] Custom* Custom*
COCO-SP MS COCO [38] CC BY 4.0 CC BY 4.0
PCQM-Contact PCQM4Mv2 [26] CC BY 4.0 CC BY 4.0
Peptides-func SATPdb [54] CC BY-NC 4.0 CC BY-NC 4.0
Peptides-struct SATPdb [54] CC BY-NC 4.0 CC BY-NC 4.0
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B Visualizations

B.1 PascalVOC-SP

 Original Image SLIC SP (compactness=30)

 `coo` graph overlay on SLIC SP final `coo` graph

 `coo-feat` graph overlay on SLIC SP final `coo-feat` graph

 `rag-boundary` graph overlay on SLIC SP final `rag-boundary` graph

Figure B.1: Visualizations of a sample image and its SP graphs from PascalVOC-SP dataset with
465 nodes and 3,720 edges each for coo, coo-feat graph and 2,628 edges for reg-bound graph.
Unique colors on the nodes denote the corresponding node labels.
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B.2 COCO-SP

 Original Image SLIC SP (compactness=30)

 `coo` graph overlay on SLIC SP final `coo` graph

 `coo-feat` graph overlay on SLIC SP final `coo-feat` graph

 `rag-boundary` graph overlay on SLIC SP final `rag-boundary` graph

Figure B.2: Visualizations of a sample image and its SP graphs from COCO-SP dataset with 470 nodes
and 3,760 edges each for coo, coo-feat graph and 2,662 edges for reg-bound graph. Unique
colors on the nodes denote the corresponding node labels.
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B.3 Peptides-func and Peptides-struct

peptide sequence:“GLLGPLLKIAAKVGKNLL”
Length_a: -0.39817
Length_b: 0.15459
Length_c: -0.27048

peptide sequence:“GLLGPLLKIAAKVGKNLL”
Length_a: -0.39817
Length_b: 0.15459
Length_c: -0.27048

Figure B.3: Large size visualization of Figure 3. Top: 3D Visualization of "GLLGPLLKI-
AAKVGKNLL" peptide. Bottom: The molecular graph for the same peptide.
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C Experimental Details

Table C.1: Baseline hyperparameters of 7 evaluated models on the 5 new LRGB benchmarks. Shown
is the size of the hidden node representation d and the number of layers L. Where applicable, the
type of positional/structural embedding is shown: LapPE-k denotes Laplacian positional encoding
[34] with first k non-trivial eigenvectors (with original Transformer-based encoder for SAN [34]
and more parameter-efficient DeepSet encoder for GatedGCN); RWSE-m denotes random-walk
structural encoding [15] with 1..m steps and a linear encoder.

PascalVOC-SP COCO-SP PCQM-Contact Peptides-func Peptides-struct

GCN d=220, L=8 d=220, L=8 d=275, L=5 d=300, L=5 d=300, L=5
GCNII d=220, L=8 d=220, L=8 d=275, L=5 d=300, L=5 d=300, L=5
GINE d=166, L=8 d=166, L=8 d=208, L=5 d=208, L=5 d=208, L=5
GatedGCN(+PE/SE) d=108, L=8 d=108, L=8 d=138, L=5 d=138, L=5 d=138, L=5

used PE/SE LapPE-10 LapPE-10 RWSE-16 RWSE-16 RWSE-16
Transformer+LapPE d=120, L=4 d=120, L=4 d=120, L=4 d=120, L=4 d=120, L=4

LapPE-10 LapPE-10 LapPE-10 LapPE-10 LapPE-10
SAN+LapPE d=88, L=4 d=88, L=4 d=84, L=4 d=84, L=4 d=84, L=4

LapPE-10 LapPE-10 LapPE-10 LapPE-10 LapPE-10
SAN+RWSE d=96, L=4 d=96, L=4 d=100, L=4 d=100, L=4 d=100, L=4

RWSE-16 RWSE-16 RWSE-16 RWSE-16 RWSE-16

C.1 Details on Baseline Experiments Setup

Models. We use GCN [33], GCNII [11], GINE [62, 28] and GatedGCN [8] models from the local
MP-GNNs class, and fully connected Transformer [58] with Laplacian PE (LapPE) [14, 13] and SAN
[34] models among the Transformer class. The GCN (Graph Convolutional Network) is the most
popularly used local MP-GNN baseline, GCNII [11] is an extension of the vanilla GCN, GINE (Graph
Isomorphism Network) is a 1-WL expressive MP-GNN with ability to incorporate edge features into
its update equation [28], and GatedGCN (Gated Graph Convolutional Network) is a soft-attention
based GCN which uses learned edge gates to improve the aggregation procedure. Transformer with
LapPE is a generalization of the vanilla Transformer network [58] from Natural Language Processing
(NLP) domain to graphs and SAN (Spectral Attention Network) is a powerful fully-connected Graph
Transformer which includes a learned PE module based on Laplacian eigenvectors and eigenvalues,
alongside separate treatment of real and non-real graph edges [34]. We use SAN with LapPE as well
RWSE (Random Walk Structural Encoding) [15]. The collection of above baseline models allows
us to show performance trends using simple, straightforward models such as GCN and Transformer
to advanced ones such as GatedGCN and SAN. We believe this baseline collection, albeit small,
represents a diverse representation of the course of action graph deep learning has evolved to, reaching
at a stage where we can embark conveniently towards the development of GNNs that learn efficiently
to propagate long-range dependencies.

Experimental Setup. In order to facilitate fair comparison and reliable discussion of the observed
trends, we select the hyperparameters of the aforementioned baselines such that they yield models
within a budget of approx. 500k learnable parameters. To this end, we configure 4-8 layers deep
models and adjust their hidden dimension size accordingly to the 500k parameter budget. For a list of
hyperparameters used in each baseline see Table C.1. We run each experiment 4 times with different
random seeds and report the mean and standard deviation of the respective performance metrics.

For optimization, we use Adam [32] with default settings. We set the starting learning rate between
0.0003 and 0.001 depending on the model and dataset, and decay it by 0.5 factor upon reaching a
validation loss plateau. We limit the training time up to 60h, which is adequate for the models to
converge, except SAN on COCO-SP. SAN is particularly computationally intensive and may require a
week of single NVidia A100 computation time to converge on COCO-SP. Individual configuration
files with exact hyperparameters for all 7 models and 5 datasets are provided with the source code.
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C.2 Computing environment and used resources

Our implementation uses GraphGPS [51] built on PyG and its GraphGym module [19, 67] that are all
released under MIT License. All presented experiments were executed in a shared computing cluster
environment (Digital Research Alliance of Canada and Mila Quebec AI Institute) with multiple CPU
and GPU architectures: NVidia V100 (32GB), NVidia RTX8000 (48GB), and NVidia A100 (40GB).
The resource budget for each experiment was 1 GPU, 4 CPUs, and up to 32GB system RAM. Except
COCO-SP, which required up to 72GB RAM. Average run times are shown in Table C.2.

Table C.2: Wall-clock run times. Average epoch time (average of 5 epochs, including validation
performance evaluation) is shown for each model and dataset combination. Additionally, the precom-
putation time needed for LapPE and RWSE statistics is listed in the bottom of the table. The times
were measured on a single NVidia A100 GPU system with 4 CPU cores of AMD Milan 7413.

avg. time / epoch PascalVOC-SP COCO-SP PCQM-Contact Peptides-func Peptides-struct

GCN 8.8s 111s 138s 3.0s 2.6s
GCNII 8.2s 106s 137s 2.7s 2.4s
GINE 7.2s 91s 138s 2.5s 2.6s
GatedGCN 12s 151s 138s 3.3s 3.3s

Transformer+LapPE 13s 154s 145s 5.8s 5.9s
SAN+LapPE 179s 2190s 793s 54.7s 53.6s
SAN+RWSE 165s 2014s 740s 49.1s 49.7s

LapPE precomp. 8min 40s 1h 34min 5min 18s 1min 13s 1min 14s
RWSE precomp. 7min 51s 1h 24min 6min 29s 53s 53s

D Additional Experiments with L = 2 MP-GNNs

Here we investigate a shallow but wider variation of the baseline MP-GNN models. Instead of
5 or 8 layers (Table C.1) we consider 2-layer MP-GNN architectures that allow for larger hidden
node representations within the 500k parameter budget, Table D.1. These provide additional set
of baselines, that investigate whether this limited receptive field of MP-GNNs is to a detriment in
the proposed LRGB datasets, and also, whether the deeper architectures, evaluated in the main text,
are not suffering from catastrophic over-smoothing and/or over-squashing. Note, that we do use
residual connections in all our baseline models, this has been shown to significantly help to prevent
deterioration of the models’ performance with increasing depth.

Generally, we observe majorily decreased performance of 2-layer MP-GNNs as compared to their
deeper versions, while their relative ordering by their performance remains largely the same. This
finding confirms that the access to only a narrow receptive field is severely limiting. Additionally,
we observe much increased positive impact of augmenting 2-layer GatedGCN with positional or
structural encodings. GatedGCN with LapPE or RWSE outperforms standard GatedGCN (and any
other tested MP-GNN) by a large margin particularly in PCQM-Contact, Peptides-func, and
Peptides-struct. In the case of the deeper MP-GNN configurations (Table C.1) this effect is
not observed, suggesting that the positional or structural encodings provide additional information
beyond the 2-hop neighborhood that a deeper GatedGCN appears to be able to substitute.

Table D.1: Hyperparameters of evaluated shallow MP-GNN baseline models. The number of layers
is set to L=2 and the size of the hidden node representation d is set to fill 500k parameter budget.
Where applicable, the type of positional/structural embedding is shown.

PascalVOC-SP COCO-SP PCQM-Contact Peptides-func Peptides-struct

GCN d=350, L=2 d=345, L=2 d=380, L=2 d=460, L=2 d=460, L=2
GCNII d=350, L=2 d=345, L=2 d=380, L=2 d=460, L=2 d=460, L=2
GINE d=285, L=2 d=285, L=2 d=300, L=2 d=330, L=2 d=330, L=2
GatedGCN(+PE/SE) d=200, L=2 d=200, L=2 d=210, L=2 d=215, L=2 d=215, L=2

used PE/SE LapPE-10 LapPE-10 RWSE-16 RWSE-16 RWSE-16
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Table D.2: Baseline experiments for PascalVOC-SP and COCO-SP with rag-boundary graph on
SLIC compactness 30 for node classification task for MP-GNNs with 2 layers and 500k parameters.
Performance metric is macro F1 on the respective splits (Higher is better). All experiments are run 4
times with 4 different seeds.

Model (L = 2) # Params. PascalVOC-SP # Params COCO-SP

Train F1 Test F1 ↑ Train F1 Test F1 ↑
GCN 504k 0.1014±0.0031 0.1011±0.0024 511k 0.0589±0.0019 0.0562±0.0015
GCNII 503k 0.1137±0.0055 0.1067±0.0028 509k 0.0705±0.0017 0.0656±0.0018
GINE 500k 0.1467±0.0116 0.1238±0.0046 517k 0.1110±0.0043 0.0929±0.0027
GatedGCN 491k 0.2382±0.0313 0.2114±0.0157 503k 0.1581±0.0033 0.1476±0.0027
GatedGCN+LapPE 492k 0.2583±0.0458 0.2232±0.0255 504k 0.1668±0.0037 0.1553±0.0026

Table D.3: Baselines for Peptides-func (graph classification) and Peptides-struct (graph
regression) for MP-GNNs with 2 layers and 500k parameters. Performance metric is Average
Precision (AP) for classification and MAE for regression. Each experiment was run with 4 different
seeds.

Model (L = 2) # Params. Peptides-func Peptides-struct

Train AP Test AP ↑ Train MAE Test MAE ↓
GCN 509k 0.4956±0.0079 0.4566±0.0059 0.3836±0.0019 0.3950±0.0017
GCNII 507k 0.5543±0.0077 0.4894±0.0039 0.3809±0.0020 0.3929±0.0020
GINE 501k 0.5916±0.0189 0.5003±0.0042 0.3730±0.0029 0.3879±0.0011
GatedGCN 508k 0.6085±0.0071 0.5073±0.0036 0.3757±0.0015 0.3905±0.0006
GatedGCN+RWSE 505k 0.7946±0.0148 0.5812±0.0053 0.3173±0.0084 0.3599±0.0007

Table D.4: Baseline performance on PCQM-Contact (link prediction) for MP-GNNs with 2 layers
and 500k parameters. Each experiment was repeated with 4 different random seeds.

Model (L = 2) # Params. Test Hits@1 ↑ Test Hits@3 ↑ Test Hits@10 ↑ Test MRR ↑
GCN 500k 0.0588±0.0007 0.1717±0.0011 0.5664±0.0008 0.1939±0.0003
GCNII 499k 0.0651±0.0035 0.1714±0.0026 0.5399±0.0124 0.1944±0.0020
GINE 507k 0.0596±0.0005 0.1718±0.0009 0.5685±0.0006 0.1949±0.0006
GatedGCN 528k 0.0556±0.0008 0.1707±0.0014 0.5734±0.0027 0.1927±0.0010
GatedGCN+RWSE 525k 0.1068±0.0010 0.3383±0.0012 0.8036±0.0008 0.2937±0.0007

E Inspection of Transformer attention

In this section we investigate how a Transformer with LapPE [13] processes the 5 proposed LRGB
datasets and an existing MNIST dataset [14]. In particular, we investigate how strongly a Transformer
attends to nodes that are at various k distances away from a node v during updating of its representation
hℓ
v at layer ℓ ∈ {0, . . . , L − 1}. The goal is to probe whether a model capable of global attention,

such as the Transformer with LapPE, in fact attends to nodes farther than the local neighborhood of v,
while performing better or comparable to local MP-GNN models.

For each dataset, we used a fully trained graph Transformer model with LapPE (using the same
hyperparameters and training pipeline as described in Appendix C) and inspected its attention
weights on 128 randomly selected test graphs. For each layer ℓ, we plot the average attention weight
aggregated by how far in the graph the node is from the perspective of a “focal” node v that is being
processed. That is, we show what attention weight on average a node u that is k-hops away from v
(shortest-path distance k) gets. Note, that attention to a node at distance k = 0 denotes the attention
of v to self. The resulting bar plots of attention weights in each of the 5 LRGB datasets are shown in
Figures E.1-E.5.

Overall the attention distributions vary across datasets and layers, but generally confirm that Trans-
former exhibits attention patterns beyond local neighborhoods. In PascalVOC-SP and COCO-SP the
first layer (ℓ = 0) shows higher attention to mid- and long-distance nodes over the close-by nodes;
this changes in the second and third layers, where attention to close-by nodes is dominant; and finally
the last layer exhibits the most even attention distribution with some bias towards close-by nodes.
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In PCQM-Contact dataset, the attention distributions are similar, except the first layer (ℓ = 0) that
is much more uniform yet lightly favoring nodes in the first half of the distance range. Finally, in
Peptides-func and Peptides-struct the attention distributions are considerably more consistent
across the layers and exhibit mostly linear attention weight decay with the growing shortest-path
distance between the nodes.

In addition to the above LRGB datasets, we conducted the same inspection of a Transformer model
with LapPE on an existing dataset MNIST [14], that we argue is insufficient for benchmarking a
model’s ability to capture LRIs. We stick to 100k parameter budget, as per standard for this dataset,
using 4 layers with hidden node representation size of 52. A Transformer+LapPE model scores
97.89% test accuracy on a random split, and its attention distribution is shown in Figure E.6. Graphs
in MNIST dataset have much smaller graph diameter and except for the first layer (ℓ = 0), the
attention is majorly focused on close neighbors that are up to 4-hops away. While on its own a not
sufficient proof, the difference in attention distributions between LRGB datasets and MNIST support
the viability of proposed LRGB datasets for testing a model’s capability to capture interactions
beyond limited local neighborhoods.
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Figure E.1: Average attention weight distribution of Transformer+LapPE on PascalVOC-SP dataset.
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Figure E.2: Average attention weight distribution of Transformer+LapPE on COCO-SP dataset.
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Figure E.3: Average attention weight distribution of Transformer+LapPE on PCQM-Contact dataset.
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Figure E.4: Average attention weight distribution of Transformer+LapPE on Peptides-func.
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Figure E.5: Average attention weight distribution of Transformer+LapPE on Peptides-struct.
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Figure E.6: Average attention weight distribution of Transformer+LapPE on MNIST dataset [14].
Compared to the proposed 5 LRGB datasets, graphs in MNIST dataset have much smaller graph
diameter and except the first layer (layer = 0), the attention is majorly focused on close neighbors
that are up to 4-hops away.
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