
TA-MoE: Topology-Aware Large Scale
Mixture-of-Expert Training

Chang Chen1∗†, Min Li2,3∗, Zhihua Wu4, Dianhai Yu4, Chao Yang2,3,5‡
1Center for Data Science, Peking University

2School of Mathematics Sciences, Peking University
3National Engineering Laboratory for Big Data Analysis and Applications, Peking University

4Baidu Inc.
5Institute for Computing and Digital Economy, Peking University

charlie_chen,chao_yang@pku.edu.cn
limin_cn@163.com

wuzhihua02,yudianhai@baidu.com

Abstract

Sparsely gated Mixture-of-Expert (MoE) has demonstrated its effectiveness in
scaling up deep neural networks to an extreme scale. Despite that numerous efforts
have been made to improve the performance of MoE from the model design or
system optimization perspective, existing MoE dispatch patterns are still not able to
fully exploit the underlying heterogeneous network environments. In this paper, we
propose TA-MoE, a topology-aware routing strategy for large-scale MoE trainging,
from a model-system co-design perspective, which can dynamically adjust the
MoE dispatch pattern according to the network topology. Based on communication
modeling, we abstract the dispatch problem into an optimization objective and
obtain the approximate dispatch pattern under different topologies. On top of
that, we design a topology-aware auxiliary loss, which can adaptively route the
data to fit in the underlying topology without sacrificing the model accuracy.
Experiments show that TA-MoE can substantially outperform its counterparts
on various hardware and model configurations, with roughly 1.01x-1.61x, 1.01x-
4.77x, 1.25x-1.54x improvements over the popular DeepSpeed-MoE, FastMoE and
FasterMoE systems.

1 Introduction

The scale of model parameters in neural networks has increased from millions to trillions in recent
years, which promotes model accuracy in many domain, such as language processing [3, 4, 5] and
computer vision [27, 23]. However, the limited hardware resources, e.g., memory capability and
communication bandwidth, have constrained the model size to further scale up. To relieve this tension
and improve the model performance, Mixture of Expert (MoE) with a sparsely gated structure was
recently reintroduced [16, 26, 25]. The core structure of MoE is a group of small "expert" networks
and a gate network. Guided by the gate result, input data is dynamically routed to only a sub-group
of experts for computation. Compared with dense training methods, the sparsely activated feature
of MoE can significantly reduce the computation burden, extend the model size, and achieve higher
accuracy [6, 7, 11, 13].

∗Equal Contribution.
†Work done during internship at Baidu Inc..
‡Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Since MoE plays a vital role in large-scale model training, efficient MoE parallel training has
recently received much attention. As one of the most popular MoE training approaches (Figure 1),
expert parallelism [11, 7] distributes experts to different devices, and each device is responsible for
a different batch of training samples. Correspondingly, extra global communication is necessary
for data exchanges among devices. Recent works aim to increase expert parallelism performance
from two aspects. On the one hand, the dynamic pattern of MoE results in severe computation
load-imbalance problems that a small number of experts may receive, process, and send the majority
of data. Several approaches were proposed to make full use of the available experts, such as adding
an auxiliary loss [26], controlling expert capacity [11, 7], and optimizing the assignment scheme for
a balanced load [12, 28, 22]. On the other hand, global communication is another main obstacle to
efficient MoE training. Most of the recent works reduced the communication cost from a system
perspective, such as computation and communication overlapping [9], customized communication
operation acceleration [21, 18], and adaptive routing [17].

In addition to the continuing efforts made to improve the performance of MoE, there are still two
major challenges. With the development of the complicated distributed network environments, the
existing even dispatch method may cause network contention in the slowest links, leading to poor
communication performance, especially on heterogeneous networks. Although a few early works [9]
have proposed methods to dispatch more data to slow links, these methods may make the expert load
imbalanced and could influence the model accuracy. Efficient communication demands more delicate
dispatch strategies. How to improve the training efficiency without sacrificing the model accuracy is
still worth studying. Besides, most of the existing communication optimizations for MoE [21, 17] are
studied with a specific hardware environment. How to develop methods that can adapt to a variety of
hardware environments is also of great practical value.

To tackle these challenges, we design TA-MoE, a topology-aware large scale MoE training method
that can adaptively adjust the communication volume to fit the underlying network topology. By
abstracting the dispatch problem into an optimization objective based on the communication mod-
eling, we obtain the approximate dispatch pattern under different topologies. On top of that, an
auxiliary topology loss with pattern-related coefficients is proposed, which can dynamically adjust
the communication volume without interfering with the model convergence. TA-MoE can also be
easily incorporated into the widely used MoE systems, such as DeepSpeed-MoE [21] and FastMoE
[8].

We conduct experiments on various typical network topologies and model configurations. Results
show that TA-MoE can substantially outperform DeepSpeed-MoE and FastMoE with roughly 1.01x-
1.61x speedup and 1.01x-4.77x speedup on different configurations without sacrificing the model
accuracy. Compared with the recently proposed Hir gate of FasterMoE, our method can achieve
1.25x-1.54x speedup on time to convergence. Besides, a more detailed analysis of communication
and data dispatch pattern further demonstrates the effectiveness of the proposed data dispatch strategy.
The code of TA-MoE is available at: https://github.com/Chen-Chang/TA-MoE

2 Related Work

Several frameworks have featured sophisticated designs to support efficient MoE training. GShard
[11] and DeepSpeed-MoE [21] subtly composed several einsum operators into the computation of
MoE but introduced redundant zero computation and extra memory consumption. FastMoE [8]
customized the essential computation kernels to improve resource utilization effectively. To further
enhance the performance, most of the systems adopted an auxiliary loss [26] to achieve an even
dispatch pattern and enforced the number of data processed by each expert below some uniform
capacity. Based on these popular implementations, recent works aim to improve the MoE training
performance from mainly two aspects: model structure design and communication optimization.

From the perspective of model design, BASE Layer [12] and the work of expert choice routing [28]
assigned an equal number of tokens to each expert by delicate designs of the gate. Instead of learning
the weight of the gate, Hash Layers [22] adopted an efficient hash function to guide the dispatch.
The hybrid structure of PR-MoE [21] improved the parameter efficiency by fixing one shared expert.
BaGuaLu [15] re-distributed the data chunks evenly, damaging the model accuracy. However, almost
all of these high-level algorithms are agnostic of the complicated underlying hardware effect on
training performance.

2

https://github.com/Chen-Chang/TA-MoE


As for communication optimization, DeepSpeed-MoE [21] and HetuMoe [18] implemented a hierar-
chical all-to-all communication kernel to improve network utilization. Tutle [17] designed adaptive
routing techniques coupled with a specific network architecture. Despite of these delicate designs, the
improvement space of system-level optimization is significantly constrained by the dispatch patterns
of MoE. Recently, FasterMoE [9] made an initial try to take the dispatch pattern into consideration
by setting a compulsory ratio of intra-node to inter-node dispatch chunk sizes but sacrificed some
model accuracy. In this paper, we propose a topology-aware routing strategy that enables an effi-
cient communication pattern to fit into the underlying topology without sacrificing the convergence
performance.

3 Background
3.1 MoE Model Structure

Gate Network Expert Network 0

Global Exchange

Aggregate
 Token 0

 Token 0

Global Exchange

Token 1

Token 2
 Token 0

Token 3

Token 1Gate Network Expert Network 1 Aggregate Token 1

Gate Network Expert Network 2 Aggregate
 Token 2

 Token 2

Token 3
Gate Network Expert Network 3 Aggregate Token 3

Device 0

Device 1

Device 2

Device 3

Figure 1: The popular expert parallelism method of MoE.

A MoE layer consists of a gate network G and a set of N expert networks E0, . . . , EN−1. For the gate
module, the softmax activation function is widely used, reflecting each expert’s normalized fitness for
dealing with an incoming sample. Usually, only the experts with the top k fit scores are selected to
process the sample. The final output y of the MoE layer is the aggregation of computed results.

Expert parallelism has been one of the most popular methods in existing MoE training systems [21, 8].
As shown in figure 1, the N experts are evenly assigned to P devices, with each device i holding
E = N/P experts Ei∗E , . . . , E(i+1)∗E−1. Besides, the input tokens are also evenly partitioned over
multiple devices with different small batches of the same size S in a traditional data-parallel way. For
each process, the shape of the dispatched data is [k ∗ S, d], where d represents the hidden size. Each
expert receives a combined batch of tokens (Global Exchange) and then carries out the computation.
During the global communication, the number of samples sent to Ee from process i is cie, and the
shape of the transferred samples is [cie, d]. Afterward, the expert sends the calculated result back
with a similar global exchange pattern.

However, the number of the tokens processed by different experts may be highly imbalanced that
a small group of experts may receive the majority of data, like Expert 2 in Figure 1. Therefore, a
load-balance auxiliary loss term laux [26] is added to the train loss as an overall loss function:

mi =
∑
x

G(x)/S, laux =

N−1∑
e=0

(mie ∗ (cie/S)) (1)

The auxiliary loss can dynamically adjust the value of cie into target k ∗ S/N . To further ensure
load balance, a uniform data process capacity C is set for each expert in many MoE training
systems. DeepSpeed-MoE [21] decomposes the expert capacity C evenly into the local capacity
for each process and prunes the exchange size by the local capacity directly: cie ≤ Cie = C/P .
FastMoE [8] efficiently uses the capacity with two extra all-to-all communication for exchange sizes:∑P−1

i=0 cie ≤ C.

3.2 Network Topology
The network environments are very complicated for distributed training on modern GPU clusters. As
shown in Figure 2, there are four kinds of typical network topologies: homogeneous, ring, symmetric
tree and asymmetrical tree. Homogeneous and ring structures are frequently used topologies for the
intra-node environment. For a homogeneous structure, devices are always connected by the network

3



NVSwitch

GPU GPU GPU

GPU GPU GPU

(a) Homogeneous

GPU GPU

GPUGPU

GPU GPU

GPUGPU

(b) Ring

GPU GPU GPU GPU

CPU CPU Layer 0

Layer1

(c) Symmetric Tree

GPU GPU GPU GPU GPU GPU

CPU CPU CPU Layer 0

Layer 1

Layer 2

(d) Asymmetrical Tree

Figure 2: Typical network topologies on modern GPU clusters. (a) A homogeneous node connected
with NVSwitch. (b) A typical ring topology connected with NVLinks [19]. (c) A 2-layer symmetric
tree topology of [2,2]. (d) A 3-layer asymmetrical tree topology of [[2,2],[2]].

with the same bandwidth, e.g., NVSwitch [20]. As for the ring topology, it is usually symmetrical.
The bandwidths between adjacent devices may differ due to different numbers of connected links.
The communication of nonadjacent devices has to hop through intermediate devices and the slowest
link may become the bottleneck. Hierarchical tree is a common topology abstraction for multi-node
distributed environments. Compared with the intra-node environment, inter-node links suffer from
limited and volatile bandwidth (4∼25GB/s) and potentially degrade the communication performance.
For convenience, we denote a tree topology as a nested list where the elements within the same
sub-list are connected by the same switch. For a symmetric tree structure, we use Li to represent the
number of the child nodes of each node in layer i. As for an asymmetrical tree structure, it is the
most common topology for distributed training, which can be very irregular.

3.3 Motivation
The existing load-balanced data distribution of Equation 1 is unable fully exploit the complicated
distributed environments. To demonstrate it, we set up an experiment on a [2, 2] symmetric tree
topology cluster, where the devices are named 0, 1 (same node) and 0̂, 1̂ (same node), respectively.
We dispatch 128MB 4 data with two dispatch patterns: (1) even dispatch and (2) uneven dispatch
that a greater proportion of data is exchanged with a neighbor device. Table 1 shows the detailed
dispatch proportions and the corresponding performance. Compared with even dispatch, uneven
dispatch improves the overall communication performance by roughly 30%. This is mainly because
the communication stress on inter-node links is relieved by transferring a smaller proportion of data.
With the variety of distributed network topologies and their continuous development, the existing
static even dispatch pattern is not effective enough. There is an urgent need for a routing strategy that
can dynamically adapt to the underlying network environments.

Table 1: The communication performance of [[0,1],[0̂, 1̂]] network topology.
Dispatch Pattern 0 ↔ 0 0 ↔ 1 0 ↔ 0̂ 0 ↔ 1̂ All

Ratio of data Even 1/4 1/4 1/4 1/4 1
Uneven 1/4 1/2 1/8 1/8 1

Time (µs) Even 144 758 5609 5618 14019
Uneven 144 1492 2835 2861 10765

4 Topology Aware Routing Strategy

In this section, we first abstract the data dispatch problem into an optimization objective based on the
communication model. Through some analysis, we obtain the target dispatch pattern under different
topologies, which can eliminate the communication bottleneck during MoE training. Guided by the
target pattern, we design a topology-aware routing loss to adaptively adjust the dispatch volume.

4.1 Communication Model
We characterize the communication cost using the well-known α-β cost model, where α and β
represent the fixed communication latency and the inverse bandwidth (i.e., transferring costs of
each word), respectively. For convenience, αij and βij are used to denote the latency and inverse
bandwidth between the i-th and j-th GPU. During the training of MoE, the amount of data transferred

4Here, 128MB is used as a demonstration, which is the upper-bound transfer size of most of the typical MoE
training tasks.

4



from GPU i to Ee in GPU j is cie ∗ d ∗ b, where d ∗ b is the transferred element size. To reduce the
overheads of multiple send-receives between two GPUs, we merge the multiple small data chunks
into a larger data chunk for delivery. The total amount of data delivered from GPU i to GPU j

is
∑E∗(j+1)−1

e=E∗j cie ∗ d ∗ b. A global data exchange consists of P ∗ P peer-to-peer data deliveries,
among which the slowest delivery, as a lower-bound, constrains the final communication performance.
Most of the global exchange implementations [21, 18, 24] are designed to approach the lower-bound.
Therefore, our ultimate objective function is to minimize the slowest send-receive communication
cost:

min
c

max
i,j

(αij + βij ∗
E∗(j+1)−1∑

e=E∗j
cie ∗ d ∗ b) (2)

For efficient MoE training, two constraint conditions should be satisfied. First, for any process i, the
sent data size, i.e., k ∗ S, should be equal to the sum of received data size of all experts:

k ∗ S =
∑

e∈{0,...,N−1}

cie,∀i ∈ {0, ..., P − 1}. (3)

Second, to make full use of all the experts and pursue a better model accuracy, the data chunks
dispatched to each expert should be balanced:

k ∗ S
E

=
∑

i∈{0,...,P−1}

cie,∀e ∈ {0, ..., N − 1}. (4)

4.2 Model Optimization
To get the target dispatch pattern, we need to solve the optimization problem in Equation 2. Nev-
ertheless, Equation 2 contains plentiful parameters of a specific network, which complicates the
solving process. Meanwhile, in some irregular topologies, some devices may suffer from quite limited
bandwidth when communicating with other devices. According to Equation 2, the experts assigned
to these devices may receive a quite small dispatch chunk size from the other processes, which may
make the experts lack of sufficient data exchanges and lead to expert isolation phenomenon. To tackle
these problems, we simplify the optimization problem to accelerate the solving process and smooth
the values of αij , βij for an approximate result to prevent expert isolation. Since each send-receive
communication shares the same α, β in homogeneous network, the target dispatch chunk size ĉie
is equal to the load-balanced chunk size k∗S

N . In the following part, we focus on the analysis of the
optimization problem under heterogeneous topologies.

On a n-layer symmetric tree topology, for any device i, all the devices can be split into n sub-groups
of Gi = {Gi

t|t < n}. Gi
t is the group of devices whose shortest path from device i are across t

switches. Multiple hops in cross-switch communication will suffer from extra overheads and the
most limited bandwidth in the hops dominates the final bandwidth. Therefore, we can simplify

the original αij , βij into n value: αl =
∑

i<j I(j∈Gi
l)∗αij

(
∏l

k=0 Lk)∗(Ll−1)/2
, βl =

∑
i<j I(j∈Gi

l)∗βij

(
∏l

k=0 Lk)∗(Ll−1)/2
, which can

precisely characterize the underlying topology and eliminate the noise of profiling. Then we get a
hierarchical matrix α̂, β̂:

α̂ij =
∑
l

I(j ∈ Gi
l) ∗ αl, β̂ij =

∑
l

I(j ∈ Gi
l) ∗ βl (5)

Take equation 3 and 4 as optimization constraint conditions, we simplify the optimization problem as
follows:

min
c

T lower
comm = min

c
max
i,j

(α̂ij + β̂ij ∗
E∗(j+1)∑
e=E∗j

cie ∗ d ∗ b)

s.t.
k ∗ S
E

=
∑

i∈{0,...,P−1}

cie ∗ d ∗ b,∀e ∈ {0, ..., N − 1},

k ∗ S =
∑

e∈{0,...,N−1}

cie ∗ d ∗ b,∀i ∈ {0, ..., P − 1},

c ≥ 0

(6)

5



Then, we can get the near optimal solution after omitting the small latency term:

ĉie =
k ∗ S

E ∗
∑

j
1
β̂ij

∗ β̂i⌊ e
E ⌋

(7)

The optimal data distribution of the above min-max problem is only related to the bandwidth: the
volume of ĉie is linear to the bandwidth. The rationale behind the optimal result is that higher
bandwidth links should bear more loads for an overall communication balanced workflow. The ring
topology also shows a hierarchical characteristic and the solution for ring topology has the same
pattern as symmetric trees.

Under some irregular asymmetric topology, the optimal result of Equation 2 may result in some
experts assigned to the devices of most limited bandwidth in lack of data exchanges with the rest
of the devices. Compared to the data distribution of other experts, data chunks from local devices
occupy a larger proportion of received data chunks in those isolated experts. For the fairness among
the experts, we transform the asymmetric topology into a symmetric one by merging the separate
nodes into the close symmetric sub-trees. For example, [[2,2][2]] in figure 2(d) can be merged as
symmetric structure [[2,2,2]]. After that, we can optimize the lower bound of communication as the
symmetric structure.

4.3 Routing Strategy

Once getting the target data dispatch volumes among processes, we can use it to guide the MoE
training. To not sacrifice the model accuracy, instead of setting a compulsory dispatch ratio directly,
we design a topology-aware adaptive routing loss.

pi = Norm(1/ĉi), litopo = N ∗ P ∗
N−1∑
e=0

(pie ∗mie ∗ (cie)/S) ∀i ∈ {0, ..., P − 1} (8)

As shown in Equation 8, we set a penalty weight pi as the adjustment coefficients for the topology loss
litopo of each process i. We set the normalized 1/ĉi as pi to make sure cie approximates the value of
ĉie. Normalization functions that enlarge the penalty of the low-bandwidth transfer, e.g., softmax, are
also preferable. As shown in the calculation of litopo, the data dispatched to Ee with limited bandwidth
will suffer from a larger penalty weight pie. Despite of these penalty modifications, auxiliary loss
occupies a small proportion of the final loss, and the value of the auxiliary loss decreases when
experts’ number scales up. Therefore, our final topology loss is expanded N ∗ P times to keep the
magnitude of loss value.

There are a number of advantages of the proposed topology-aware strategy. On the one hand,
compared to setting a compulsory dispatch ratio, the proposed loss can adjust the communication
volume to fit in the underlying topologies in a mild way without damaging the convergence. A
compulsory dispatch ratio has a high potential to overwhelm the influence of the train loss and
sacrifice the model accuracy. With the topology loss, the train loss can still dominate in the final
loss value. As a result, the dispatch results are mainly influenced by the train loss for a better model
accuracy. Besides, the topology-aware strategy has more potential to utilize the token information for
efficient sparse training. Guided by the topology-aware loss, the tokens nearby are more likely to be
processed by the same expert. Since the correlation of adjacent tokens contains the vital information
in sparse attention [10], the experts in sparsely gated routing structure may also be more likely to
extract important information from adjacent tokens.

In addition, the topology-aware loss can be easily incorporated to existing MoE systems, such as
DeepSpeed-MoE and FastMoE. Taking FastMoE as an example, one just needs to directly replace
the popular load-balanced loss laux with the proposed topology-aware loss ltopo. Since local capacity
threshold Cie is adopted in DeepSpeed-MoE for load balance, one can modify the local capacity
sizes to be consistent with the proposed dispatch pattern by setting Cie to be proportional to the
target data chunk sizes ĉie. Instead of padding the data chunks with extra zeros to be the same size as
DeepSpeed-MoE, one all-to-all communication is added to get the information of send-receive data
chunk sizes and dispatch data chunks according to the sizes.

6



5 Evaluation

Experiment setup To demonstrate the effectiveness of TA-MoE, we carry out a series of experi-
ments on three typical NVIDIA GPU clusters with different network topology, and some represen-
tative model configurations. Table 2 lists the cluster settings. The testbed is three typical clusters
from the PaddleCloud5 platform. For cluster A, each node consists of 8 NVIDIA Tesla 40GB A100
GPUs connected with NVSwitch, which shows high performance for both computation and network
communication. Clusters B and C are equipped with 8 NVIDIA Tesla 32GB V100 GPUs in each
node. The nodes in cluster B are connected by the same switch, while cluster C is composed of a large
number of servers and switches that are interconnected through an internal network infrastructure.
Besides, the software configurations are set as CUDA 11.0, NCCL 2.8.4 and CUDA 11.1, NCCL
2.8.3, for cluster A and cluster B, C, respectively.

Table 2: Cluster Setting.
Clusters GPU Intra-Node Inter-Node Symmetric Same switch

A 40G-A100 NVSwitch 100GB/s RoCE/4 x x
B 32G-V100 NVlink 100GB/s RoCE/8 ✓ ✓
C 32G-V100 NVlink 100GB/s RoCE/8 x x

Since the transformer architecture is the most common base structure of MoE, we focus the experi-
ments on problems related to transformer-based model, with GPT-3 Medium [3] as the base model
and multi-layer perception as the expert. In our experiments, the number of the experts are chosen
among {8, 16, 32, 48, 64} with each device deployed with one expert. Both the Switch top-1 [7] and
the GShard top-2 gates [11] are tested with the weight of auxiliary loss set as 1.0. For the consistency
of the experiment, we implement the models by a single framework Paddle [2] and train on the
open-source openwebtext2 dataset [1]. More detailed specifications of model settings can be found in
Table 3. To be more general, we also add the tests of MoE on Swin Transformer based MoE tasks in
Section A.3 of the Appendix. These results further demonstrate the effectiveness of the proposed
topology-aware routing algorithm on different model architectures.

Table 3: Detailed specifications of the GPT models.
Gate Layers Hidden size Intermediate size Batch size Data type Capacity factor Clusters

Switch 12 1024 4096 6 FP16 1.0 A
GShard 12 1024 2048 6 FP16 2.0 A

Switch & GShard 12 1024 2048 4 FP32 1.2 B
Switch & GShard 12 1024 2048 4 FP32 1.2 C

Methodology We incorporate TA-MoE into widely used DeepSpeed-MoE [21] and FastMoE [8]
implementations. Because TA-MoE modifies the gate structure, we first compare the validation loss
w.r.t. steps to ensure that TA-MoE will not interfere with the convergence on various model scales.
On top of that, we test the overall throughput and the speedup of TA-MoE over these two classical
baselines. To be more comprehensive, we also compare with the recently proposed FasterMoE
Hir gate [9] on the metric of time to convergence performance. Besides, a detailed analysis of
communication costs, as well as the distribution of the dispatch are also given.

0 20000 40000 60000 80000 100000
steps

2.5

3.0

4

6

Va
lid

at
io

n 
Lo

ss

Baseline_E8
TA-MoE_E8
Baseline_E16
TA-MoE_E16

Baseline_E32
TA-MoE_E32
Baseline_E48
TA-MoE_E48

Figure 3: Validation loss w.r.t. steps.

Accuracy and Performance Like some well-
recognized related works, e.g., BASE layer and
DeepSpeed-MoE, we have depicted the validation
performance of every fixed interval step in Figure
3 as the comparison metric. We first compare the
validation loss w.r.t steps of TA-MoE and the repre-
sentative FastMoE on cluster C. As shown in Figure
3, the loss curves of TA-MoE and FastMoE are con-
sistent to converge under different training scales of 8
experts to 48 experts. These results demonstrate that

5A Cloud Platform of Baidu Inc.

7



the TA-MoE can adaptively adjust the data dispatch volume without sacrificing the model accuracy.
To be more comprehensive, we also add the perplexity (PPL) metric in Table 4 of the Appendix,
which gives similar effective results.

Switch Gate GShard Gate
C

lu
st

er
A

E8 E16 E32 E48 E640

2

4

6

8

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1e5

1.54x
1.47x

1.18x
1.15x

1.61x

1.13x

1.11x

1.05x

OOM

FastMoE Baseline
FastMoE+TA-MoE
DeepSpeed Baseline
DeepSpeed+TA-MoE

E8 E16 E32 E48 E640

1

2

3

4

5

6

1e5

2.40x
1.30x

1.26x
1.18x

1.35x

1.25x

1.13x

1.15x

OOM

C
lu

st
er

B

E8 E16 E32 E48 E640.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1e5

1.01x
1.17x

1.23x

1.32x

1.23x

1.02x

1.21x
1.16x

1.23x
1.13x

E8 E16 E32 E48 E640.0

0.2

0.4

0.6

0.8

1.0

1.2
1e5

1.02x 1.28x
1.58x

1.60x

1.49x

1.01x

1.30x
1.27x

1.25x
1.19x

C
lu

st
er

C

E8 E16 E32 E48 E640.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1e5

1.01x
1.16x

1.36x

1.29x
1.22x

1.02x

1.24x
1.31x

1.22x
1.13x

E8 E16 E32 E48 E640.0

0.2

0.4

0.6

0.8

1.0

1.2
1e5

1.02x 1.28x
4.77x

2.57x
1.71x

1.01x

1.38x
1.39x

1.25x
1.18x

Figure 4: Performance of TA-MoE over DeepSpeed-MoE and FastMoE under different hardware and
model settings.

0 500 1000 1500 2000 2500 3000
time(min)

2.7
2.8
2.9

3.1

3.5

4

6

Va
lid

at
io

n 
Lo

ss

1.54x
1.47x

1.25x

FasterMoE_E32
TA-MoE_E32

Figure 5: Comparison with FasterMoE.

To demonstrate the advantages of TA-MoE in terms
of training performance, we compare it with both
DeepSpeed-MoE and FastMoE on various hardware
and model configurations. The performance indica-
tors including throughout (tokens/s) and the speedups
are depicted in Figure 4. It is clear that TA-MoE
can bring significant performance improvements
over its counterparts under almost all the configu-
rations. When compared with the DeepSpee-MoE,
the achieved speedup is about 1.05x-1.61x. As for
FastMoE, the performance improvement is around
1.01x-4.77x. More speedups are achieved on Fast-
MoE than DeepSpeed-MoE. This is because TA-MoE
has a more dynamic dispatch pattern and larger ad-
justable space based on FastMoE.

8



It is also observed that more improvements are obtained on Cluster C, which can reach 4.77x for
some cases, due to the relief of its serious network contention of cross-switch communication. In
addition, the comparison of the results of Switch and GShard gate reveals that TA-MoE can behave
better in adjusting larger volume of data.

To be more comprehensive, we make further comparisons with the recently proposed FasterMoE
[9]. Because the compulsory dispatch strategy of FasterMoE affects the convergence, we take the
validation loss w.r.t time as the comparison metric. Clusters C are selected as the representative
testing clusters. As shown in Figure 5, TA-MoE can converge faster than FasterMoE. We evaluate
the time to reach the validation loss values of 3.1, 2.9, and 2.8, and TA-MoE can converge faster by
about 1.25x, 1.47x and 1.54x. The results further verify that the proposed adaptive routing loss is
more effective than the compulsive dispatch method, which sacrifices model accuracy for training
performance.

Communication Analysis To better show the effects of the dynamical dispatch strategy, we further
analyze communication and computation cost, and the distribution of data dispatch on cluster C. As
shown in Figure 6(a), thanks to the proposed TA-MoE strategy, the communication cost is reduced
rapidly, with roughly 1.16x to 6.4x speedups. It is also observed that the maximum speedup is
achieved for 32 experts on four cross-switch nodes. This is because the four nodes are deployed
under four different switches, and cross-switch links severely bottleneck the data exchange. Once
the tension is relieved, the obtained benefits can be dramatic. In addition, we visualize the dispatch
pattern of an example with 64 expert by depicting the number of the tokens of Rank 0-7 sending to
other ranks. More details of the dispatch distributions for other expert scales are attached to Section
A.2 of the Appendix. In Figure 6(b), as expected, most of the data of Rank 0-7 are dispatched to
low-overheads nearby ranks, which further verifies the effectiveness of adaptive topology-aware loss.

E8 E16 E32 E48 E64
0

1

2

3

4

5

6

7

Co
m

pu
ta

tio
n 

an
d 

Co
m

m
un

ica
tio

n 
Co

st
 (m

s)

1e3

1.16x
1.92x

6.40x

2.42x 1.51x

FastMoE-Comm
FastMoE-Comp
TA-MoE-Comm
TA-MoE-Comp

(a) Breakdown of communication and computation.

0 10 20 30 40 50 60
Rank id of 64 Experts

0.0

0.2

0.4

0.6

0.8

1.0

Di
sp

at
ch

ed
 To

ke
n 

Nu
m

be
r

1e3
Baseline
Rank-0
Rank-1
Rank-2
Rank-3
Rank-4
Rank-5
Rank-6
Rank-7

(b) Distribution of data dispatch of Rank 0-7.

Figure 6: Analysis of communication and computation cost and the distribution of data dispatch.

6 Conclusion

In this paper, a topology-aware routing strategy, TA-MoE, was proposed to stress the mismatch
between the data dispatch pattern and the network topology. Based on communication modeling, we
abstract the dispatch problem into an optimization objective and obtain the approximate dispatch
pattern under different topologies. On top of that, a topology-aware auxiliary loss was designed,
which can adaptively route the data to fit in the underlying topology without sacrificing the model
accuracy. Experiments show that the proposed method can substantially outperform its counterparts
on a variety of the hardware and model configurations, with roughly 1.01x-1.61x, 1.01x-4.77x,
1.25x-1.54x improvements over the popular DeepSpeed-MoE, FastMoE and FasterMoE systems. In
the future, we plan to take more delicate communication operators into consideration of dynamic
dispatch pattern and extend our work to more hardware environments.

7 Acknowledgement

This work was supported in part by National Key R&D Program of China (2021ZD0110501).

9



References
[1] Openwebtext2. https://openwebtext2.readthedocs.io/en/latest/, 2022.

[2] Baidu. PaddlePaddle. https://github.com/paddlepaddle/paddle, 2022.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[4] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguistics, 2019.

[6] Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten
Bosma, Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin
Robinson, Kathleen S. Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V. Le,
Yonghui Wu, Z. Chen, and Claire Cui. GLaM: Efficient scaling of language models with
mixture-of-experts. ArXiv, abs/2112.06905, 2021.

[7] William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to trillion
parameter models with simple and efficient sparsity. CoRR, abs/2101.03961, 2021.

[8] Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and Jie Tang. FastMoE: A fast
mixture-of-expert training system. CoRR, abs/2103.13262, 2021.

[9] Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi, and Qin Li.
FasterMoE: modeling and optimizing training of large-scale dynamic pre-trained models. In
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 120–134, 2022.

[10] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124, 2021.

[11] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard: Scaling giant models with condi-
tional computation and automatic sharding. In International Conference on Learning Represen-
tations, 2021.

[12] Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. BASE layers:
Simplifying training of large, sparse models. CoRR, abs/2103.16716, 2021.

[13] Junyang Lin, An Yang, Jinze Bai, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang,
Yong Li, Wei Lin, Jingren Zhou, and Hongxia Yang. M6-10T: A sharing-delinking paradigm
for efficient multi-trillion parameter pretraining. CoRR, abs/2110.03888, 2021.

[14] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. CoRR,
abs/2103.14030, 2021.

10

https://openwebtext2.readthedocs.io/en/latest/
https://github.com/paddlepaddle/paddle


[15] Zixuan Ma, Jiaao He, Jiezhong Qiu, Huanqi Cao, Yuanwei Wang, Zhenbo Sun, Liyan Zheng,
Haojie Wang, Shizhi Tang, Tianyu Zheng, et al. BaGuaLu: targeting brain scale pretrained
models with over 37 million cores. In Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 192–204, 2022.

[16] Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial
Intelligence Review, 42:275–293, 2012.

[17] Microsoft. Tutel: An efficient mixture-of-experts implementation for large dnn model training.
https://github.com/microsoft/tutel, 2021.

[18] Xiaonan Nie, Pinxue Zhao, Xupeng Miao, and Bin Cui. HetuMoE: An efficient trillion-scale
mixture-of-expert distributed training system. arXiv preprint arXiv:2203.14685, 2022.

[19] NVIDIA. NVLINK. https://www.nvidia.com/en-us/data-center/nvlink/, 2022.

[20] NVIDIA. NVSWITCH: The world’s highest-bandwidth on-node switch. https://images.
nvidia.com/content/pdf/nvswitch-technical-overview.pdf, 2022.

[21] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE: Advancing mixture-
of-experts inference and training to power next-generation AI scale. CoRR, abs/2201.05596,
2022.

[22] Stephen Roller, Sainbayar Sukhbaatar, arthur szlam, and Jason Weston. Hash layers for large
sparse models. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
17555–17566. Curran Associates, Inc., 2021.

[23] Carlos Riquelme Ruiz, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton,
André Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of
experts. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, 2021.

[24] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan Musuvathi, Todd
Mytkowicz, Jacob Nelson, Olli Saarikivi, and Rachee Singh. Synthesizing collective com-
munication algorithms for heterogeneous networks with TACCL. CoRR, abs/2111.04867,
2021.

[25] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanan-
takool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and
Blake Hechtman. Mesh-TensorFlow: Deep learning for supercomputers. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems, NIPS’18, page
10435–10444. Curran Associates Inc., 2018.

[26] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. CoRR, abs/1701.06538, 2017.

[27] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Masayoshi Tomizuka,
Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation and
processing for computer vision. CoRR, abs/2006.03677, 2020.

[28] Yan-Quan Zhou, Tao Lei, Han-Chu Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M.
Dai, Zhifeng Chen, Quoc V. Le, and James Laudon. Mixture-of-experts with expert choice
routing. ArXiv, abs/2202.09368, 2022.

11

https://github.com/microsoft/tutel
https://www.nvidia.com/en-us/data-center/nvlink/
https://images.nvidia.com/content/pdf/nvswitch- technical-overview.pdf
https://images.nvidia.com/content/pdf/nvswitch- technical-overview.pdf


Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Please see the conclusion
section

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms

to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see the experiment setup part in section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Please see the experiment
setup part of section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL?

[No]
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identi-

fiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots,
if applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12



A Appendix

A.1 Perplexity Evaluation Results

Table 4: Perplexity Evaluation Result. To further validate the model convergence performance,
we list the perplexity (PPL) at 10w step (near 7 days) of GPT-Medium (12 layers, hidden size
1024, intermediate size 2048, GShard, Capacity factor 1.2) with different expert numbers on the
openwebtext2 dataset. Combined with the information in Figure 3 of the paper, we can find that
TA-MoE does not influence the convergence of the model when compared with the well-known
FastMoE baseline.

Expert Scale TA-MoE Valid PPL Baseline Valid PPL
8 17.97 18.12

16 15.18 15.39
32 13.37 13.53
48 12.55 12.49

A.2 Data Dispatch Distribution

Figure 7 further elaborates the data dispatch patterns of GPU rank 0-7 (within a node) on 8, 16,
32, 48 experts. We also list the Rank-0 dispatch information of FastMoE with even distribution
method as the baseline. On a single node topology, each rank prefers to dispatch data to the expert
within a node. The topology influence on the data dispatch preference is relatively small, because
the bandwidth variance within a node is small. Multi-node topology results show a consistent
“ladder-like” distribution trend that the ranks within a node has a high preference to dispatch the data
to intra-node rank group, instead of transferring data to inter-node ranks. These results verify the
effectiveness of the proposed adaptive topology-aware method.

0 1 2 3 4 5 6 7
Rank id of 8 Experts

0.0

0.5

1.0

1.5

2.0

Di
sp

at
ch

ed
 To

ke
n 

Nu
m

be
r

1e3
Baseline
Rank-0
Rank-1
Rank-2
Rank-3
Rank-4
Rank-5
Rank-6
Rank-7

0 2 4 6 8 10 12 14
Rank id of 16 Experts

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
sp

at
ch

ed
 To

ke
n 

Nu
m

be
r

1e3
Baseline
Rank-0
Rank-1
Rank-2
Rank-3
Rank-4
Rank-5
Rank-6
Rank-7

0 5 10 15 20 25 30
Rank id of 32 Experts

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
sp

at
ch

ed
 To

ke
n 

Nu
m

be
r

1e3
Baseline
Rank-0
Rank-1
Rank-2
Rank-3
Rank-4
Rank-5
Rank-6
Rank-7

0 10 20 30 40
Rank id of 48 Experts

0.0

0.2

0.4

0.6

0.8

1.0

Di
sp

at
ch

ed
 To

ke
n 

Nu
m

be
r

1e3
Baseline
Rank-0
Rank-1
Rank-2
Rank-3
Rank-4
Rank-5
Rank-6
Rank-7

Figure 7: The data dispatch distribution of rank 0 to 7 on 16, 32, 48 GPUs and experts.

13



E16 E320.0

0.5

1.0

1.5

2.0

Ti
m

e 
co

st
/it

er
 (s

) 1.18x

1.20xFastMoE
TA-MoE

Figure 8: Speedup of TA-MoE over FastMoE on Swin Transformer Based Model.

A.3 Tests on Swin Tranformer Based MoE Tasks

To further validate the generality of TA-MoE, we also carry out an experiment of Vision Tasks on
ImageNet-1k dataset. The well-known vision transformer architecture Swin Transformer [14] is
picked as the base model. The detailed model configurations are listed in Table 5. We evaluate
the speedup on Cluster A with 16 and 32 GPUs as an illustration, where 16 GPUs configurations
represents symmetric tree topology and 32 GPUs configurations represents asymmetric tree topology.
As shown in Figure 8, we can achieve 1.18x and 1.20x speedup when compared with FastMoE on 16,
and 32 GPUs, respectively.

Table 5: Detailed specifications of the Swin-Transformer model.

Name Layers Gate Stage 1 Stage 2 Stage 3 Stage 4 Capacity
factor

Swin
Transformer

v1
12 GShard

concat 4x4,
96-d, LN

{win.sz. 7x7,
dim 96,

head3} x2

concat 2x2,
192-d, LN

{win.sz. 7x7,
dim 192,

head6} x2

concat 2x2,
384-d, LN

{win.sz. 7x7,
dim 384,

head12} x6

concat 2x2,
768-d, LN

{win.sz. 7x7,
dim 768,

head324} x2

1.2

14


	Introduction
	Related Work
	Background
	MoE Model Structure
	Network Topology
	Motivation

	Topology Aware Routing Strategy
	Communication Model
	Model Optimization
	Routing Strategy

	Evaluation
	Conclusion
	Acknowledgement
	Appendix
	Perplexity Evaluation Results
	Data Dispatch Distribution
	Tests on Swin Tranformer Based MoE Tasks


