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Abstract

We study an algorithmic equivalence technique between non-convex gradient
descent and convex mirror descent. We start by looking at a harder problem of
regret minimization in online non-convex optimization. We show that under certain
geometric and smoothness conditions, online gradient descent applied to non-
convex functions is an approximation of online mirror descent applied to convex
functions under reparameterization. In continuous time, the gradient flow with
this reparameterization was shown to be exactly equivalent to continuous-time
mirror descent by Amid and Warmuth [4], but theory for the analogous discrete
time algorithms is left as an open problem. We prove an O(T

2
3 ) regret bound for

non-convex online gradient descent in this setting, answering this open problem.
Our analysis is based on a new and simple algorithmic equivalence method.

1 Introduction

Gradient descent is probably the simplest and most popular algorithm in convex optimization, with
numerous and extensive studies on its convergence properties. For non-convex objectives, it is known
that gradient descent does not necessarily converge to the global optimum, which is in general NP
hard. Thus recent research focuses on alternate objectives, such as finding first-order stationary points
efficiently, or the importance of higher order stationary points, e.g. [19, 22, 1].

However, the study of global convergence of gradient descent for non-convex objectives is increasingly
important due to the fact that in practice, gradient descent and its variants can achieve zero error on a
highly non-convex loss function of a deep neural network.

To explain the success of modern deep learning it is thus important to understand why gradient
descent can converge to a global minimum for some highly non-convex functions. Several important
research directions have stemmed from this motivation, including the study of optimization for deep
linear networks [20, 21, 6], non-convex matrix factorization [7], provable convergence for neural
networks in the linearization regime of the neural tangent kernel [26, 12, 13, 2, 32, 18, 9], and more.

A recent promising approach, proposed in [4, 3], is to consider reparameterizing mirror descent as
gradient descent. In particular, [4] shows that a continuous-time online mirror descent with a convex
loss can be written in an equivalent form of a continuous-time online gradient descent whose loss
isn’t necessarily convex after reparameterization, but has significant structure. [3] further explores
this idea, showing that after reparameterization, online gradient descent has the same worst-case
regret bound as the exponentiated gradient algorithm. Both [4] and [3] provide a new prospect on
understanding the convergence of non-convex gradient descent. More recently, [23] provides a more
general result, tightly characterizing when gradient flow can be written as mirror flow by introducing
the notion of a commuting parameterization.
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1.1 The Amid-Warmuth question

The works of [4, 3] are limited in two respects: either they are restricted to the continuous-time
gradient-flow setting, which is impractical, or they address specific algorithms (Winnow, Hedge,
EG for linear regression) with a relative entropy divergence. Amid and Warmuth pose the question
of extending the reparameterization idea to the general online convex optimization as well as the
conditions where this can be obtained. Solving the question from [4] would give an answer to realistic
scenarios and algorithms, with precise regret and running time bounds, for certain non-convex
optimization problems that can be solved to global optimality using gradient descent.

1.2 Statement of results

Our study starts from the more general problem of regret minimization in online convex optimization.
Specifically, we study the reparameterization of online mirror descent (OMD) as online gradient
descent (OGD) [30] for general online convex optimization. We show that under certain geometric
and smoothness conditions, a non-convex reparameterized OGD algorithm closely match the original
convex OMD algorithm. Quantitative bounds on this matching allow us to prove that the OGD
algorithm after reparameterization achieves an O(T

2
3 ) regret bound. This bound is discrete-time and

fairly general, applying broadly to smooth, bounded mirror descent regularizers rather than anything
more specific. We also provide sufficient conditions for non-convex losses such that OGD implicitly
has an equivalent mirror descent regularizer and hence will have O(T

2
3 ) regret.

Our analysis relies on a simple and new algorithmic equivalence technique, which may be of
independent interest. The key step is to show that the outputs of OMD and reparameterized OGD
are very close to each other when initialized from the same point. Considering the OGD update
as a perturbed version of OMD along with the fact that OMD can tolerate bounded (adversarial)
perturbation per trial allows us to prove an O(T

2
3 ) regret bound for the OGD update.

This answers the open question raised in [4], generalizing from continuous-time gradient flow and
specialized algorithms, to general online convex optimization. The regularization term of MD is
also generalized from relative entropy to any strongly convex function. Further, for discrete-time
reparameterization, our results extend to arbitrary Lipschitz convex loss functions, as opposed to
custom analysis for specific settings of expert prediction, linear prediction, and linear regression [3].

1.3 Paper structure

Section 2 introduces the setting and sketches out background work in the continuous setting. Section 3
provides our main result, which is subsequently proven in Section 4. Section 5 provides analysis in
the opposite direction, showing the existence of an equivalent mirror descent regularizer for some
non-convex gradient descent problems. Some analysis is deferred to the Appendix.

1.4 Related works

Gradient descent is the simplest and one of the most popular algorithms in convex optimization.
Extensive studies have been conducted to show the convergence of GD to the global minimizer in
both the stochastic optimization setting [24], and the online convex optimization setting [31]. For the
non-convex setting, however, finding the global minimum is NP-hard and most work focuses on the
convergence to first-order stationary points instead. The well-known descent lemma guarantees the
convergence of non-convex GD when the objective is smooth, and dropping smoothness is possible if
other conditions are introduced [10]. Many works consider avoiding saddle points; [22] shows that
GD converges to local minimizers a.s. if all saddle points are strict while [19] proposes perturbed
gradient descent to escape saddle points. It’s also shown that even in the online setting, chasing
first-order stationary points is possible [17].

Mirror descent, first introduced by [25], generalizes the gradient descent method in the sense that it
can adapt to the ‘geometry’ of the optimization problem [11]. Its analogue in the online setting, online
mirror descent also achieves tight regret bounds [27] and without projection is shown to be equivalent
to the classical regularized follow-the-leader (RFTL) method with constant step-size. Though it’s
natural to think of mirror descent as changing the geometry of the optimization objective in gradient
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descent [15], the idea to explain non-convex GD by a corresponding convex MD is explored only
recently.

The most relevant works to ours are [4] and [3], which prove the equivalence between continuous time
OMD and OGD after reparameterization, and special discrete-time algorithms when the regularization
is the relative entropy, respectively. Our results extend [4] and [3] to general discrete-time OCO with
general regularization.

2 Preliminaries

2.1 Notation

For a function f : Rd → Rd, we use the notation Jf (x) : Rd → Rd to denote the Jacobian of f at
x. We use the notaion ⊙ to represents an element-wise product of vectors. Given a strictly convex
function R : Rd → Rd, we denote the Bregman divergence as

DR(x∥y) := R(x)−R(y)−∇R(y)⊤(x− y) .

For a convex set K and strictly convex regularizer R, we use ΠR
K(x) := argminy∈K DR(y∥x)

to denote Bregman projection, with shorthand ΠK := Π
∥·∥2

K for Euclidean projection. Given a
positive-definite matrix M ∈ Rd×d, we define the norm ∥x∥M :=

√
x⊤Mx. We use the notation,

Bp := {x ∈ Rd : ∥x∥p ≤ 1} for an ℓp ball and B+
p to denote the intersection of the ℓp ball and the

positive orthant.

2.2 Online convex optimization

We consider the online convex optimization (OCO) problem. At each round t the player A chooses
xt ∈ K where K ⊂ Rd is some convex domain, then the adversary reveals loss function ft(x) and
player suffers loss ft(xt). The goal is to minimize regret:

Regret(A) =

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

The player is allowed to get access to the (sub-)gradient ∇xft(xt) as well.

2.3 Reparameterizing continuous-time mirror flow as gradient flow

In the continuous-time setting, we have exact conditions from [4] where the trajectory of mirror-flow
exactly coincides with that of gradient descent in a reparameterized space. Concretely, mirror flow on
f : Rd → R is defined by the following ordinary differential equation (ODE):

∂

∂t
∇R(x(t)) = −η∇f(x(t)) . (1)

In Theorem 2 of [4], this update is shown to be equivalent to the following gradient flow ODE with
x(t) = q(u(t)):

∂u

∂t
= −η∇f(q(u(t))) , (2)

if the mirror descent regularizer R and reparameterization function q satisfy [∇2R(q(u))]−1 =
Jq(u)Jq(u)

⊤. This relationship between the Hessian of the OMD regularizer and the reparameteriza-
tion function assures that, up to second order factors in ∥u− v∥2

DR(q(u)||q(v)) ≈
1

2
∥u− v∥22 , (3)

so the geometry induced by R is approximately transformed into a Euclidean geometry by q−1.
Because higher order factors vanish in continuous time, this assures that mirror flow and this
reparameterized gradient flow coincide as desired.
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2.4 Discretizing the updates

Unfortunately, continuous-time updates cannot be implemented in practice so we must rely on
discretization. Using the forward Euler scheme for discretization of (1), yields the mirror descent
algorithm. After discretization, the exact equivalence of mirror descent and reparameterized gradient
descent no longer holds as higher order factors in (3) are relevant. This motivates the open problem of
[4] of finding general conditions under which the discretizations of these continuous time trajectories
closely track each other. We tackle extending these results through the online setting described above.

The Online Mirror Descent (OMD) algorithm has the following update on xt:

∇R(yt+1) = ∇R(xt)− η∇ft(xt)

xt+1 = argmin
x∈K

DR(x∥yt+1)

where R : K → R is a 1-strongly convex regularization over the domain4, DR is the Bregman
divergence, and y1 is initialized to satisfy ∇R(y1) = 0.

Another equivalent interpretation of OMD is

xt+1 = argmin
x∈K

∇ft(xt)
⊤(x− xt) +

1

η
DR(x||xt) .

The most important special case is online gradient descent (OGD): xt+1 = ΠK(xt − η∇ft(xt)) ,
which is OMD with DR(x||xt) =

1
2∥x− xt∥22. In this paper we consider reparameterizing general

OMD update as a simple OGD update. We introduce assumptions of the regularizer, reparameteriza-
tion, and losses in the sequel.

2.5 Assumptions

Assumption 1. There exists a convex domain K′ ⊂ Rd and a bijective reparameterization function
q : K′ → K satisfying [∇2R(x)]−1 = Jq(u)Jq(u)

⊤, with x = q(u).

We also make the following smoothness/Lipschitz assumptions:

Assumption 2. Let G > 1 be a constant. We assume q is G-Lipschitz, and the 1- strongly convex
regularization R is smooth with its first and third derivatives upper bounded by some constant G.
The first and second derivatives of q−1 are bounded by G. Furthermore, assume that for all x ∈ K
DR(x∥·) is G-Lipschitz over K.

Finally, we assume loss functions have bounded gradients and the convex domain has bounded
diameter with respect to the Bregman divergence.

Assumption 3. The loss functions ft have gradients bounded by ∥∇ft(x)∥2 ≤ GF for all x ∈ K.
The diameter of K, supx,y∈K DR(x∥y) ≤ D .

3 Algorithm

We now provide our main result, a regret bound for Algorithm 2. We note, Algorithm 1 and
Algorithm 2 are the (projected) forward euler discretizations of (1) and (2). It’s tempting to directly
analyze the regret of OGD with losses f̃t(u) = ft(q(u)). The main barrier in doing so is that f̃ isn’t
necessarily convex. However, we show that the OMD and OGD updates are in fact O(η

3
2 )-close to

each other, therefore the OGD update still suffers only sublinear regret.

4Usually, the strong convexity of a mirror descent regularizer is with respect to some norm that is not
necessarily the ℓ2 norm. In this work, the focus is on the dependence on the regret on T , so for simplicity we
consider just the ℓ2 strong convexity, which will worsen constants, but does not affect the dependence on T .
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Algorithm 1 Online Mirror Descent
1: Input: Initialization x1 ∈ K, regularizer R.
2: for t = 1, . . . , T do
3: Predict xt

4: Observe ∇ft(xt)
5: Update

yt+1 = (∇R)−1(∇R(xt)− η∇ft(xt))

xt+1 = ΠR
K(yt+1)

6: end for

Algorithm 2 Online Gradient Descent
1: Input: Initialization u1 ∈ K′ = q−1(K).
2: for t = 1, . . . , T do
3: Predict ut

4: Observe ∇f̃t(ut) = ∇ft(q(ut)))
5: Update

vt+1 = ut − η∇f̃t(ut)

ut+1 = ΠK′(vt+1)

6: end for

Remark 1. The gradient oracle ∇f̃t can also be calculated from an oracle of ∇ft if we know the
reparameterization function q.
Remark 2. The reparameterized gradient descent uses Euclidean projection rather than Bregman
projection. This can potentially be an advantage if Euclidean projection can be computed efficiently
on q−1(K) (eg. via method like [29]), while Bregman projection is less efficient on K.

Theorem 3. Under Assumptions 1-3, by setting η = T−2/3D2/3G−10/3G−1
F the regret of Algorithm

2 is upper bounded by O(T 2/3D1/3G10/3GF ).

Proof of the theorem is in Section 4.

3.1 Examples

We now provide a few example settings. Note that in all three settings, q are such that f̃(u) = f(q(u))
can be nonconvex for a convex f .

Exponentiated gradient using quadratic reparameterization One of the most popular algorithms
for online learning over the filled-in simplex5 K = B+

1 is the Exponentiated Gradient (EG) [8]. In
this case, we show that OGD with quadratic reparameterization q(u) = 1

4u⊙u has vanishing average
regret. We empirically verify that reparameterized GD iterates and EG iterates stay close on a toy
problem in Figure 1. In [3] custom analysis is provided for linear losses that achieves optimal regret,
but our approach has a simpler and more general analysis. If R(x) =

∑d
i=1 xi log(xi) then OMD is

EG. In this case, if x = q(u), then

Jq(u)Jq(u)
⊤ = diag(u/2)diag(u/2) = diag(u⊙ u/4) = diag(q(u)) = diag(x) = [∇2R(x)]−1

K ′ = q−1(B+
1 ) = {u ∈ Rd

+ :
1

4

d∑
i=1

u2
i ≤ 1} = 2B+

2 .

We note that for this example, Assumptions 2 will not hold as relative entropy is not sufficiently
behaved near the boundary of the simplex. This can be handled by modifying K to be the smoothed
simplex where all weights are at least ε for some ε. This is a fairly standard technique. ε can be
chosen such that the full regret in sublinear (see App. B).

Log barrier with exponential reparameterization Consider the case of a log-barrier regularization
R(x) = −

∑d
i=1 log(xi) with K = [ε, 1]d. It can readily be shown that the box constraint maps

to a box constraint. Consider x = q(u) = exp(u), where the exponential is elementwise. We see
Assumption 1 is satisfied as

Jq(u)Jq(u)
⊤ = diag(exp(u))diag(exp(u)) = diag(q(u)2) = diag(x2) = [∇2R(x)]−1 .

Tempered Bregman divergences with power reparameterization A more recently studied
family of mirror descent regularizers interpolate between ℓ2 regularization and negative entropy
regularization [5]. Regularization for this family uses link function ∇R(x) = logτ (x) =

1
1−τ (x

1−τ−
5One drawback of our approach is that the current analysis does not work for the true simplex like [3] because

q−1(K) is the positive part of the unit sphere, which is not a convex set.
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Figure 1: Gradient Descent using reparameterization q(u) = 1
4u⊙ u produces iterates that closely

track Exponential Gradient for a simple fixed quadratic loss example.

1), where τ is a temperature that can range between 0 and 1. As τ approaches 1, the link function
approaches the natural logarithm, and hence the update approaches EG, while τ = 0 corresponds to
ℓ2 regularization. Such divergences are amenable to reparameterization when K = B+

p .

To see this, ignoring constant factors [∇2R(x)]−1 = xτ for τ ∈ [0, 1). Now if q(u) = u
2

2−τ where
the power is elementwise, then Jq(u) = diag(u

τ
2−τ ) = diag(q(u)τ/2) = diag(xτ/2) as desired.

Now, we note that the reparameterization is a power, so B+
p would get mapped to the B+

2p
2−τ

, which is

convex as long as p > 1− τ/2.

3.2 Challenges

In some situations, we do not have a closed form solution to the differential equation described
by Jq. For example with the β-hypentropy regularizer of [14], the reparameterization involves
q−1(x) =

∫
(x2 + β2)−1/4dx, and this integral does not have a known closed form. Furthermore,

other cases of interest, like von Neumann Entropy regularization for Matrix Multiplicative Weights
[28] seem difficult to fit into this framework as Assumption 1 is challenging to use with spectral
functions.

4 Reparameterization analysis

We now move on to the proof of Theorem 3. The proof idea is to show that the OMD and OGD
iterates are close to each other after a single update step starting from the same initial point. Then we
can view the OGD update a perturbed version of OMD, and combine it with the fact that the OMD
algorithm can tolerate bounded noise per trial.

We begin with the following key lemma showing that the updates xt+1 and q(ut+1) created by OMD
and OGD respectively, are close to each other from the same initial point xt = q(ut). To do this,
we carefully analyze the errors that occur due to the approximation in (3) starting from a proximal
formulation of mirror descent. We can show that the two updates are solutions to approximately the
same strongly-convex objective, hence the solutions must be close.

Lemma 4. Suppose Assumptions 1-3 hold and xt = q(ut), then we have that ∥xt+1 − q(ut+1)∥2 =

O(G4G
3/2
F η3/2).
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Proof. We consider the following forms of Algorithms 1 and 2.

xt+1 = argmin
x∈K

∇ft(xt)
⊤(x− xt) +

1

η
DR(x||xt)

ut+1 = argmin
u∈K′

∇f̃t(ut)
⊤(u− ut) +

1

2η
∥u− ut∥22

We observe that both objectives we are minimizing can be written as the sum of a linear function plus
a strongly convex function. In particular, if ∥x−xt∥2 > 2ηGF , then the objective takes positive value
which can’t be minimal because taking x = xt gives 0. Define Kr,xt = K ∩ {x : ∥x− xt∥2 ≤ r},
then the OMD iterate xt+1 ∈ Kt := K2ηGF ,xt . Likewise, ut+1 ∈ K′

t := K′
2ηGF ·G,ut

.

Using Taylor expansion with Assumption 2, for DR(x||xt) with ∥x− xt∥2 ≤ 2ηGF , we rewrite it as

DR(x||xt) = R(x)−R(xt)−∇R(xt)
⊤(x− xt)

=
1

2
(x− xt)

⊤∇2R(xt)(x− xt) +O(G ·G3
F η

3)

=
1

2
∥x− xt∥2∇2R(xt)

+ ε(x) ,

where ε(x) = O(G ·G3
F η

3) for x ∈ Kt. And the OMD update becomes

xt+1 = argmin
x∈Kt

∇ft(xt)
⊤(x− xt) +

1

2η
∥x− xt∥2∇2R(xt)

+ ε(x) .

We now use Taylor expansion to relate ∇f̃t(ut)
⊤(u − ut) to ∇ft(xt)

⊤(x − xt). Let x = q(u) for
u ∈ K′

t, hence x ∈ K̄t := K2ηGF ·G2,xt
, then we have

∇f̃⊤
t (ut)

⊤(u− ut) = ∇ft(xt)
⊤Jq(ut)(u− ut)

= ∇ft(xt)
⊤Jq(ut)(q

−1(x)− q−1(xt))

= ∇ft(xt)
⊤Jq(ut)(J

−1
q (ut)(x− xt)) + ε̃(x)

= ∇ft(xt)
⊤(x− xt) + ε̃(x) ,

where ε̃(x) = O(G5G3
F η

2).

Using the above approximation, we can rewrite the OGD update as

q(ut+1) = argmin
x∈K̄t

∇ft(xt)
⊤(x− xt) +

1

2η
∥q−1(x)− q−1(xt)∥22 + ε̃(x) .

On the other hand, we can rewrite 1
2∥q

−1(x)− q−1(xt)∥22 as

1

2
∥q−1(x)− q−1(xt)∥22 =

1

2
∥J−1

q (xt)(x− xt) +O(G5G2
F η

2)∥22

=
1

2
∥x− xt∥2J−1

q (xt)J
−1
q (xt)⊤

+O(G8G3
F η

3)

Then by Assumption 1, ∇2R(xt) = J−1
q (xt)J

−1
q (xt)

⊤, so we conclude that 1
ηBR(x||xt) and

1
2η∥q

−1(x)− q−1(xt)∥22 are O(G8G3
F η

2)-close. We can then rewrite the OGD update as

q(ut+1) = argmin
x∈K̄t

∇ft(xt)
⊤(x− xt) +

1

2η
∥x− xt∥2∇2R(xt)

+ ε̄(x) ,

where ε̄(x) = O(G8G3
F η

2) for x ∈ K̄t. We note that Kt ⊆ K̄t as needed.

Comparing both OMD and OGD updates, the objective functions are only off by an O(G8G3
F η

2)

term, therefore the minimizers are also O(G4G
3/2
F η

3
2 )-close since the objective functions are both

Θ( 1η ) strongly convex.
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Remark 5. It can be shown that if projection is not required, ∥xt+1 − qut+1∥2 = O(η2) in Lemma 4.
Furthermore, if the projection operation that Algorithms 1 and 2 perform are the same, the distance
only gets closer. Such a bound would result in an O(

√
T ) regret bound. For the case of EG over the

simplex, the projection operations in both are the same weight scaling operations, so this could be
a part of making O(

√
T ) regret possible, though this still requires a better approach for handling

exploding Lipschitz constants (see App. B).

Next, we show that the OMD algorithm is actually robust to noise: with a (potentially non-stochastic)
bounded perturbation on the output xt per round, we can still get vanishing regret.
Lemma 6. Suppose Assumptions 2 and 3 hold and Algorithm A does the following update:

xt+1 = rt + argmin
x∈K

∇ft(xt)
⊤(x− xt) +

1

η
DR(x∥xt)

where ∥rt∥2 ≤ C. The regret of Algorithm A can be upper bounded by

Regret(A) ≤ CTG

η
+

D

η
+

ηG2T

2

This follows from a slightly modified analysis of OMD from [16], where the effect of the perturbation
is bounded due to the Bregman divergence being Lipschitz. In particular, we end up with the standard
regret bound for mirror descent that follows from a telescoping argument with an additional error
term

1

η

T∑
t=1

DR(x
∗∥xt)−DR(x

∗∥xR
t ) ≤

CTG

η
,

where xR
t is the counterfactual mirror descent iterate with rt = 0.

Full proof of Lemma 6 can be found in Appendix A. Combining both lemmas, we complete our proof
of Theorem 3:

Proof. Algorithm 2 gives a perturbed version of OMD with perturbation bounded by C = O(η
3
2 )

due to Lemma 4. Plugging C = O(G4G
3/2
F η3/2) into the bound of Lemma 6, the regret is upper

bounded by O(G5G
3/2
F

√
ηT + D

η ) ignoring the lower order term. Optimizing this and all constants
gives the choice of η = T−2/3D2/3G−10/3G−1

F and regret bound O(T 2/3D1/3G10/3GF ).

5 Implicit OMD reparameterization

We have shown that a general convex OMD can be reparameterized as a (potentially) non-convex
OGD, with vanishing O(T

2
3 ) regret. The other direction from OGD to OMD is even more interesting:

given a non-convex OGD, can we show its global convergence by showing the existence of a convex
OMD which corresponds to OGD implicitly?

In other words, given a convex and compact domain K′, what do we need to know about the domain
K′ and the (not necessarily convex) loss f̃t to ensure the existence of such equivalence? Fully
characterizing the necessary and sufficient condition seems hard, and we provide here a simple
sufficient condition which covers some known scenarios.
Assumption 4. We assume the following properties about q.

• There exists a function q such that f̃t(u) can be written as ft(q(u)) where ft is convex.

• q is a C3-diffeomorphism, and Jq(u) is diagonal.

• q(K′) is convex and compact.

We argue that once the conditions above are satisfied, there exists a regularization R and a corre-
sponding OMD with the desired equivalence. The only thing we need to verify is the existence of a
strongly convex regularization R which satisfies Assumption 1. We first show that Jq(u) always has
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non-zero (in fact, with the same sign because of continuity) determinant due to the fact that q is a
diffeomorphism. Then R can be reconstructed by integrating twice its Hessians which we compute
from the equation in Assumption 1. R is also strongly convex as the Hessians are strictly PSD. We
note that such conditions may not be tight, but are general, succinct and may cover some interesting
examples.

Theorem 7. Given a convex and compact domain K′, and not necessarily convex loss f̃t satisfying
Assumption 3. When Assumption 4 is met, there exists an OMD object with convex loss ft, a
convex domain and a strongly convex regularization R satisfying Assumption 1. As a result, running
Algorithm 2 on loss f̃t(u) has regret upper bound Õ(T

2
3 ).

Proof. The first two properties are satisfied by the assumption. We verify the third property by
constructing a regularization R, which is strongly convex and satisfies Assumption 1. The rest
follows Theorem 3. By the fact that q is a diffeomorphism, Jq(u) is an invertible matrix. The fact that
Jq(u) is an invertible matrix implies that Jq(u)Jq(u)⊤ is invertible, and further Jq(u)Jq(u)⊤ ≻ 0.

Denote H(u) = [Jq(u)Jq(u)
⊤]−1 ≻ 0 which is well defined by the above argument, we want to

construct R such that ∇R2(q(u)) = H(u). By the assumption that Jq(u) is diagonal, we can write
q(u) as

q(u) = (q1(u1), q2(u2), ..., qd(ud))

where each qi is a scalar function, such that H(u) is diagonal with H(u)ii = 1/(q′i(ui))
2, which only

depends on ui. We set R(q(u)) =
∑d

i=1 Ri(qi(ui))) and denote the function R̃i(ui) = Ri(qi(ui))
with variable ui, then by the chain rule we have that

R̃i
′
(ui) = q′i(ui)R

′
i(xi)

R̃i
′′
(ui) = q′′i (ui)R

′
i(xi) + (q′i(ui))

2R′′
i (xi) .

Plugging the first formula into the second one, we eliminate the R′
i(xi) term:

R̃i
′′
(ui) =

q′′i (ui)R̃i
′
(ui)

q′i(ui)
+ (q′i(ui))

2R′′
i (xi) .

Recall, we want to find R such that R′′
i (xi) = 1/(q′i(ui))

2. Plugging it back to the equation above,
the problem is reduced to find Ri such that it satisfies the ODE

q′i(ui)R̃i
′′
(ui)− q′′i (ui)R̃i

′
(ui)− q′i(ui) = 0 .

It’s known that there exists a solution to any linear and continuous second-order ODE. In fact, using
the standard variation of constant method, one example solution R̃i

′
(ui) can be

R̃i
′
(ui) = q′i(ui)

∫ ui

Ci

1

q′i(u)
du+ ciq

′
i(ui) .

where ci, Ci are constants and Ci = minu∈K′ ui . It’s well-defined because q′i(ui) always has the
same sign. To verify the correctness, we calculate that

R̃i
′′
(ui) = q′′i (ui)

∫ ui

Ci

1

q′i(u)
du+ 1 + ciq

′′
i (ui) ,

which solves the ODE together with the solution of R̃i
′
(ui).

Next, plugging R̃i(ui) =
∫ ui

Ci
R̃i

′
(u)du and u = q−1(x) into the expression of R gives a solution

of the regularization. Its strong-convexity is implied by the fact that ∇2
R(x) = H(u) ≻ 0 and is

continuous over a compact domain, thus there exists a constant c > 0 such that ∇2
R(x) ≻ cI .

Finally, q being a C3-diffeomorphism means that both q and q−1 are 3 times continuously differen-
tiable. By the compactness of domains and the continuity of the derivatives, there exists a constant G
satisfying Assumption 2. A similar argument holds for R.
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6 Conclusion

We study the convergence of non-convex gradient descent in this paper, by showing (approximate)
algorithmic equivalence between gradient descent and mirror descent in the discrete setting. We
prove that under certain geometric and smoothness conditions, running OGD on non-convex losses
obtained by reparameterizing a convex OMD has regret bound O(T

2
3 ), answering an open problem

in [4]. Our analysis is based on a new algorithmic equivalence technique, combining the one-step
closeness between OMD and the reparameterized OGD and the robustness of OMD. We further
extend our result to the other direction, providing sufficient conditions for a non-convex OGD to
have an implicit corresponding OMD and thus converge well. We leave several questions as future
directions.

1. Is the O(T
2
3 ) regret bound improvable to O(

√
T ) in general? The decay in the bound in

this work seems to be caused by differences in projection in the reparameterized space and
the original Bregman projection. Perhaps a different analysis technique can produce optimal
bounds.

2. Can assumptions for reparameterization be relaxed? For example, it is not clear that
Assumption 1 is a necessary condition. In the implicit mirror descent direction, it may be
possible to lift the diagonal Jq(u) assumption in Theorem 7 with more refined conditions
on PDEs. Perhaps the commuting parameterization conditions from [23] can be adapted
from the continuous to the discrete setting.
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