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Abstract

Diffusion Probabilistic Models (DPMs) have shown a powerful capacity of generat-
ing high-quality image samples. Recently, diffusion autoencoders (Diff-AE) have
been proposed to explore DPMs for representation learning via autoencoding. Their
key idea is to jointly train an encoder for discovering meaningful representations
from images and a conditional DPM as the decoder for reconstructing images.
Considering that training DPMs from scratch will take a long time and there have
existed numerous pre-trained DPMs, we propose Pre-trained DPM AutoEncoding
(PDAE), a general method to adapt existing pre-trained DPMs to the decoders for
image reconstruction, with better training efficiency and performance than Diff-AE.
Specifically, we find that the reason that pre-trained DPMs fail to reconstruct an
image from its latent variables is due to the information loss of forward process,
which causes a gap between their predicted posterior mean and the true one. From
this perspective, the classifier-guided sampling method can be explained as comput-
ing an extra mean shift to fill the gap, reconstructing the lost class information in
samples. These imply that the gap corresponds to the lost information of the image,
and we can reconstruct the image by filling the gap. Drawing inspiration from this,
we employ a trainable model to predict a mean shift according to encoded represen-
tation and train it to fill as much gap as possible, in this way, the encoder is forced
to learn as much information as possible from images to help the filling. By reusing
a part of network of pre-trained DPMs and redesigning the weighting scheme of
diffusion loss, PDAE can learn meaningful representations from images efficiently.
Extensive experiments demonstrate the effectiveness, efficiency and flexibility of
PDAE. Our implementation is available at https://github.com/ckczzj/PDAE.

1 Introduction

Deep generative models such as variational autoencoders (VAEs) [25, 39], generative adversarial
networks (GANs) [13], autoregressive models [50, 48], normalizing flows (NFs) [38, 23] and energy-
based models (EBMs) [9, 45] have shown remarkable capacity to synthesize striking image samples.
Recently, another kind of generative models, Diffusion Probabilistic Models (DPMs) [43, 14] are
further developed and becoming popular for their stable training process and state-of-the-art sample
quality [8]. Although a large number of degrees of freedom in implementation, the DPMs discussed
in this paper will refer exclusively to those trained by the denoising method proposed in DDPMs [14].

Unsupervised representation learning via generative modeling is a popular topic in computer vision.
Latent variable generative models, such as GANs and VAEs, are a natural candidate for this, since
they inherently involve a latent representation of the data they generate. Likewise, DPMs inherently
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yield latent variables through the forward process. However, these latent variables lack high-level
semantic information because they are just a sequence of spatially corrupted images. In light of this,
diffusion autoencoders (Diff-AE) [36] explore DPMs for representation learning via autoencoding.
Specifically, they employ an encoder for discovering meaningful representations from images and a
conditional DPM as the decoder for image reconstruction by taking the encoded representations as
input conditions. Diff-AE is competitive with the state-of-the-art model on image reconstruction and
capable of various downstream tasks.

Following the paradigm of autoencoders, PDAE aims to adapt existing pre-trained DPMs to the
decoders for image reconstruction and benefit from it. Generally, pre-trained DPMs cannot accurately
predict the posterior mean of xt−1 from xt in the reverse process due to the information loss of
forward process, which results in a gap between their predicted posterior mean and the true one.
This is the reason that they fail to reconstruct an image (x0) from its latent variables (xt). From this
perspective, the classifier-guided sampling method [8] can be explained as reconstructing the lost
class information in samples by shifting the predicted posterior mean with an extra item computed by
the gradient of a classifier to fill the gap. Drawing inspiration from this method that uses the prior
knowledges (class label) to fill the gap, we aim to inversely extract the knowledges from the gap,
i.e., learn representations that can help to fill the gap. In light of this, we employ a novel gradient
estimator to predict the mean shift according to encoded representations and train it to fill as much gap
as possible, in this way, the encoder is forced to learn as much information as possible from images
to help the filling. PDAE follows this principle to build an autoencoder based on pre-trained DPMs.
Furthermore, we find that the posterior mean gap in different time stages contain different levels of
information, so we redesign the weighting scheme of diffusion loss to encourage the model to learn
rich representations efficiently. We also reuse a part of network of pre-trained DPMs to accelerate
the convergence of our model. Based on pre-trained DPMs, PDAE only needs less than half of the
training time that Diff-AE costs to complete the representation learning but still outperforms Diff-AE.
Moreover, PDAE also enables some other interesting features.

2 Background

2.1 Denoising Diffusion Probabilistic Models

DDPMs [14] employ a forward process that starts from the data distribution q(x0) and sequentially
corrupts it to N (0, I) with Markov diffusion kernels q(xt|xt−1) defined by a fixed variance schedule
{βt}Tt=1. The process can be expressed by:

q(xt|xt−1) = N (xt;
√

1− βtxt−1 , βtI) q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) , (1)

where {xt}Tt=1 are latent variables of DDPMs. According to the rule of the sum of normally
distributed random variables, we can directly sample xt from x0 for arbitrary t with q(xt|x0) =

N (xt;
√
ᾱtx0 , (1− ᾱt)I), where αt = 1− βt and ᾱt =

∏t
i=1 αi.

The reverse (generative) process is defined as another Markov chain parameterized by θ to describe
the same but reverse process, denoising an arbitrary Gaussian noise to a clean data sample:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t) , Σθ(xt, t)) pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) , (2)

where p(xT ) = N (xT ;0, I). It employs pθ(xt−1|xt) of Gaussian form because the reversal of the
diffusion process has the identical functional form as the forward process when βt is small [11, 43].
The generative distribution can be represented as pθ(x0) =

∫
pθ(x0:T )dx1:T .

Training is performed to maximize the model log likelihood
∫
q(x0) log pθ(x0)dx0 by minimizing

the variational upper bound of the negative one. The final objective is derived by some parameteriza-
tion and simplication [14]:

Lsimple(θ) = Ex0,t,ϵ

[∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2] , (3)

where ϵθ is a function approximator to predict ϵ from xt.
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2.2 Denoising Diffusion Implicit Models

DDIMs [44] define a non-Markov forward process that leads to the same training objective with
DDPMs, but the corresponding reverse process can be much more flexible and faster to sample from.
Specifically, one can sample xt−1 from xt using the ϵθ of some pre-trained DDPMs via:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱt · ϵθ(xt, t)√

ᾱt

)
+

√
1− ᾱt−1 − σ2

t · ϵθ(xt, t) + σtϵt , (4)

where ϵt ∼ N (0, I) and σt controls the stochasticity of forward process. The strides greater than 1
are allowed for accelerated sampling. When σt = 0, the generative process becomes deterministic,
which is named as DDIMs.

2.3 Classifier-guided Sampling Method

Classifier-guided sampling method [43, 46, 8] shows that one can train a classifier pϕ(y|xt) on noisy
data and use its gradient ∇xt

log pϕ(y|xt) to guide some pre-trained unconditional DDPM to sample
towards specified class y. The conditional reverse process can be approximated by a Gaussian similar
to that of the unconditional one in Eq.(2), but with a shifted mean:

pθ,ϕ(xt−1|xt,y) ≈ N (xt−1;µθ(xt, t) +Σθ(xt, t) · ∇xt log pϕ(y|xt) , Σθ(xt, t)) . (5)
For deterministic sampling methods like DDIMs, one can use score-based conditioning trick [46, 45]
to define a new function approximator for conditional sampling:

ϵ̂θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt · ∇xt

log pϕ(y|xt) . (6)

More generally, any similarity estimator between noisy data and conditions can be applied for guided
sampling, such as noisy-CLIP guidance [33, 31].

3 Method

3.1 Forward Process Posterior Mean Gap

Generally, one will train unconditional and conditional DPMs by respectively learning pθ(xt−1|xt) =
N (xt−1;µθ(xt, t),Σθ(xt, t)) and pθ(xt−1|xt,y) = N (xt−1;µθ(xt,y, t),Σθ(xt,y, t)) to ap-
proximate the same forward process posterior q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0),

1−ᾱt−1

1−ᾱt
βtI).

Here y is some condition that contains some prior knowledges of corresponding x0, such as class
label. Assuming that both Σθ is set to untrained time dependent constants, under the same experi-
mental settings, the conditional DPMs will reach a lower optimized diffusion loss. The experiment
in Figure 1 can prove this fact, which means that µθ(xt,y, t) is closer to µ̃t(xt,x0) than µθ(xt, t).
This implies that there exists a gap between the posterior mean predicted by the unconditional
DPMs

(
µθ(xt, t)

)
and the true one

(
µ̃t(xt,x0)

)
. Essentially, the posterior mean gap is caused by

the information loss of forward process so that the reverse process cannot recover it in xt−1 only
according to xt. If we introduce some knowledges of x0 for DPMs, like y here, the gap will be
smaller. The more information of x0 that y contains, the smaller the gap is.

Moreover, according to Eq.(5), the Gaussian mean of classifier-guided conditional reverse process
contains an extra shift item compared with that of the unconditional one. From the perspective of
posterior mean gap, the mean shift item can partially fill the gap and help the reverse process to
reconstruct the lost class information in samples. In theory, if y in Eq.(5) contains all information of
x0, the mean shift will fully fill the gap and guide the reverse process to reconstruct x0. On the other
hand, if we employ a model to predict mean shift according to our encoded representations z and
train it to fill as much gap as possible, the encoder will be forced to learn as much information as
possible from x0 to help the filling. The more the gap is filled, the more accurate the mean shift is,
the more perfect the reconstruction is, and the more information of x0 that z contains. PDAE follows
this principle to build an autoencoder based on pre-trained DPMs.

3.2 Unsupervised Representation Learning by Filling the Gap

Following the paradigm of autoencoders, we employ an encoder z = Eφ(x0) for learning compact
and meaningful representations from input images and adapt a pre-trained unconditional DPM
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) to the decoder for image reconstruction.
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Figure 1: Comparison of diffusion loss
between unconditional and conditional
DPM trained on MNIST [28].

skip connections 

forward pass

Figure 2: Network and data flow of PDAE. The gray
part represents the pre-trained DPM, which is frozen
during training.

Specifically, we employ a gradient estimator Gψ(xt, z, t) to simulate ∇xt
log p(z|xt), where p(z|xt)

is some implicit classifier that we will not use explicitly, and use it to assemble a conditional DPM
pθ,ψ(xt−1|xt, z) = N (xt−1;µθ(xt, t)+Σθ(xt, t) ·Gψ(xt, z, t) , Σθ(xt, t)) as the decoder. Then
we train it like a regular conditional DPM by optimizing following derived objective (assuming the
ϵ-prediction parameterization is adopted):

L(ψ,φ) = Ex0,t,ϵ

[
λt
∥∥ϵ− ϵθ(xt, t) +

√
αt
√
1− ᾱt
βt

·Σθ(xt, t) ·Gψ(xt,Eφ(x0), t)
∥∥2] , (7)

where xt =
√
ᾱtx0+

√
1− ᾱtϵ and λt is a new weighting scheme that we will discuss in Section 3.4.

Note that we use pre-trained DPMs so that θ are frozen during the optimization. Usually we
set Σθ = 1−ᾱt−1

1−ᾱt
βtI to untrained time-dependent constants. The optimization is equivalent to

minimizing
∥∥Σθ(xt, t)·Gψ(xt,Eφ(x0), t)−

(
µ̃t(xt,x0)−µθ(xt, t)

)∥∥2, which forces the predicted
mean shift Σθ(xt, t) ·Gψ(xt,Eφ(x0), t) to fill the posterior mean gap µ̃t(xt,x0)− µθ(xt, t).

With trained Gψ(xt, z, t), we can treat it as the score of an optimal classifier p(z|xt) and use
the classifier-guided sampling method in Eq.(5) for DDPM sampling or use the modified function
approximator ϵ̂θ in Eq.(6) for DDIM sampling, based on pre-trained ϵθ(xt, t). We put detailed
algorithm procedures in Appendix ??.

Except the semantic latent code z, we can infer a stochastic latent code xT [36] by running the
deterministic generative process of DDIMs in reverse:

xt+1 =
√
ᾱt+1

(
xt −

√
1− ᾱt · ϵ̂θ(xt, t)√

ᾱt

)
+

√
1− ᾱt+1 · ϵ̂θ(xt, t) . (8)

This procedure is optional, but helpful to near-exact reconstruction and real-image manipulation for
reconstructing minor details of input images when using DDIM sampling.

We also train a latent DPM pω(zt−1|zt) to model the learned semantic latent space, same with that
in Diff-AE [36]. With a trained latent DPM, we can sample z from it to help pre-trained DPMs to
achieve faster and better unconditional sampling under the guidance of Gψ(xt, z, t).

3.3 Network Design

Figure 2 shows the network and data flow of PDAE. For encoder Eφ, unlike Diff-AE that uses the
encoder part of U-Net [40], we find that simply stacked convolution layers and a linear layer is
enough to learn meaningful z from x0. For gradient estimator Gψ, we use U-Net similar to the
function approximator ϵθ of pre-trained DPM. Considering that ϵθ also takes xt and t as input, we
can further leverage the knowledges of pre-trained DPM by reusing its trained encoder part and time
embedding layer, so that we only need to employ new middle blocks, decoder part and output blocks
of U-Net for Gψ . To incorporate z into them, we follow [8] to extend Group Normalization [53] by
applying scaling & shifting twice on normalized feature maps:

AdaGN(h, t,z) = zs(tsGroupNorm(h) + tb) + zb , (9)
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image 
manifold

mixed sampling procedure (input 0~9 when classifier-guided sampling)

critical-stage late-stageearly-stage

early-stage

critical-stage

late-stage

Figure 3: Investigations of the effects of mean shift
for different time stages. We perform a 50-step-grid-
search for (t1, t2) pairs to find the shortest critical-
stage that can ensure high accuracy of conditional
generation. For MNIST [28], it is (400, 700).

Figure 4: Normalized weighting schemes
of diffusion loss for different DPMs rel-
ative to the true variational lower bound
loss. Linear variance schedule is used.

where [ts, tb] and [zs, zb] are obtained from a linear projection of t and z, respectively. Note that we
still use skip connections from reused encoder to new decoder. In this way, Gψ is totally determined
by pre-trained DPM and can be universally applied to different U-Net architectures.

3.4 Weighting Scheme Redesign

We originally worked with simplified training objective like that in DDPMs [14], i.e. setting λt = 1
in Eq.(7), but found the training extremely unstable, resulting in slow/non- convergence and poor
performance. Inspired by P2-weighting [7], which has shown that the weighting scheme of diffusion
loss can greatly affect the performance of DPMs, we attribute this phenomenon to the weighting
scheme and investigate it in Figure 3.

Specifically, we train an unconditional DPM and a noisy classifier on MNIST [28], and divide the
diffusion forward process into three stages: early-stage between 0 and t1, critical-stage between t1
and t2 and late-stage between t2 and T , as shown in the top row. Then we design a mixed sampling
procedure that employs unconditional sampling but switches to classifier-guided sampling only during
the specified stage. The bottom three rows show the samples generated by three different mixed
sampling procedures, where each row only employs classifier-guided sampling during the specified
stage on the right. As we can see, only the samples guided by the classifier during critical-stage match
the input class labels. We can conclude that the mean shift during critical-stage contains more crucial
information to reconstruct the input class label in samples than the other two stages. From the view of
diffusion trajectories, the sampling trajectories are separated from each other during critical-stage and
they need the mean shift to guide them towards specified direction, otherwise it will be determined by
the stochasticity of Langevin dynamics. Therefore, we opt to down-weight the objective function for
the t in early- and late-stage to encourage the model to learn rich representations from critical-stage.
Inspired by P2-weighting [7], we redesign a weighting scheme of diffusion loss (λt in Eq.(7)) in
terms of signal-to-noise ratio [24] (SNR(t) = ᾱt

1−ᾱt
):

λt = (
1

1 + SNR(t)
)1−γ · ( SNR(t)

1 + SNR(t)
)γ , (10)

where the first item is for early-stage and the second one is for late-stage. γ is a hyperparameter that
balances the strength of down-weighting between two items. Empirically we set γ = 0.1. Figure 4
shows the normalized weighting schemes of diffusion loss for different DPMs relative to the true
variational lower bound loss. Compared with other DPMs, our weighting scheme down-weights the
diffusion loss for both low and high SNR.

4 Experiments

To compare PDAE with Diff-AE [36], we follow their experiments with the same settings. Moreover,
we also show that PDAE enables some added features. For fair comparison, we use the baseline DPMs
provided by official Diff-AE implementation as our pre-trained models (also as our baselines), which

5
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Figure 5: Left: Predicted x̂0 by denoising xt for only one step. The first row use pre-trained DPM
and the second row use PDAE. Right: Average posterior mean gap for all steps.

have the same network architectures (hyperparameters) with their Diff-AE models. For brevity, we
use the notation such as "FFHQ128-130M-z512-64M" to name our model, which means that we use a
baseline DPM pre-trained with 130M images and leverage it for PDAE training with 64M images, on
128× 128 FFHQ dataset [21], with the semantic latent code z of 512-d. We put all implementation
details in Appendix ?? and additional samples of following experiments in Appendix ??.

4.1 Training Efficiency

We demonstrate the better training efficiency of PDAE compared with Diff-AE from two aspects:
training time and times. For training time, we train both models with the same network architectures
(hyperparameters) on 128×128 image dataset using 4 Nvidia A100-SXM4 GPUs for distributed train-
ing and set batch size to 128 (32 for each GPU) to calculate their training throughput (imgs/sec./A100).
PDAE achieves a throughput of 81.57 and Diff-AE achieves that of 75.41. Owing to the reuse of
the U-Net encoder part of pre-trained DPM, PDAE has less trainable parameters and achieves a
higher training throughput than Diff-AE. For training times, we find that PDAE needs about 1

3 ∼ 1
2

of the number of training batches (images) that Diff-AE needs for loss convergence. We think this is
because that modeling the posterior mean gap based on pre-trained DPMs is easier than modeling a
conditional DPM from scratch. The network reuse and the weighting scheme redesign also help. As
a result, based on pre-trained DPMs, PDAE needs less than half of the training time that Diff-AE
costs to complete the representation learning.

4.2 Learned Mean Shift Fills Posterior Mean Gap

We train a model of "FFHQ128-130M-z512-64M" and show that our learned mean shift can fill
the posterior mean gap with qualitative and quantitative results in Figure 5. Specifically, we select
some images x0 from FFHQ, sample xt =

√
ᾱtx0 +

√
1− ᾱtϵ for different t and predict x̂0 from

xt by denoising them for only one step (i.e., x̂0 = xt−
√
1−ᾱtϵ̂√
ᾱt

), using pre-trained DPM and PDAE
respectively. As we can see in the figure (left), even for large t, PDAE can predict accurate noise from
xt and reconstruct plausible images, which shows that the predicted mean shift fills the posterior
mean gap and the learned representation helps to recover the lost information of forward process.
Furthermore, we randomly select 1000 images from FFHQ, sample xt =

√
ᾱtx0 +

√
1− ᾱtϵ and

calculate their average posterior mean gap for each step using pre-trained DPM: ∥µ̃t(xt,x0) −
µθ(xt, t)∥2 and PDAE: ∥µ̃t(xt,x0)− (µθ(xt, t) +Σθ(xt, t) ·Gψ(xt,Eφ(x0), t))∥2 respectively,
shown in the figure (right). As we can see, PDAE predicts the mean shift that significantly fills the
posterior mean gap.

4.3 Autoencoding Reconstruction

We use "FFHQ128-130M-z512-64M" to run some autoencoding reconstruction examples using
PDAE generative process of DDIM and DDPM respectively. As we can see in Figure 6, both
methods generate samples with similar contents to the input. Some stochastic variations [36] occur in
minor details of hair, eye and skin when introducing stochasticity. Due to the similar performance
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Input DDPMDDIM
(T=100, inferred 𝑥𝑥𝑇𝑇)

DDIM
(T=100, random 𝑥𝑥𝑇𝑇)

Figure 6: Autoencoding reconstruction examples generated by "FFHQ128-130M-z512-64M" with
different sampling methods. Each row corresponds to an example.

Table 1: Autoencoding reconstruction quality of "FFHQ128-130M-z512-64M" on CelebA-HQ.

Model Latent dim SSIM ↑ LPIPS ↓ MSE ↓
StyleGAN2 (W inversion) [22] 512 0.677 0.168 0.016
StyleGAN2 (W+ inversion) [1, 2] 7,168 0.827 0.114 0.006
VQ-GAN [10] 65,536 0.782 0.109 3.61e-3
VQ-VAE2 [37] 327,680 0.947 0.012 4.87e-4
NVAE [47] 6,005,760 0.984 0.001 4.85e-5
Diff-AE @130M (T=100, random xT ) [36] 512 0.677 0.073 0.007
PDAE @64M (T=100, random xT ) 512 0.696 0.094 0.005
DDIM @130M (T=100) [44] 49,152 0.917 0.063 0.002
Diff-AE @130M (T=100, inferred xT ) [36] 49,664 0.991 0.011 6.07e-5
PDAE @64M (T=100, inferred xT ) 49,664 0.993 0.008 5.48e-5

between DDPM and DDIM with random xT , we will always use DDIM sampling method in later
experiments. We can get a near-exact reconstruction if we use the stochastic latent code inferred from
aforementioned ODE, which further proves that the stochastic latent code controls the local details.

To further evaluate the autoencoding reconstruction quality of PDAE, we conduct the same quantita-
tive experiments with Diff-AE. Specifically, we use "FFHQ128-130M-z512-64M" to encode-and-
reconstruct all 30k images of CelebA-HQ [20] and evaluate the reconstruction quality with their
average SSIM [52], LPIPS [56] and MSE. We use the same baselines described in [36], and the
results are shown in Table 1. We can see that PDAE is competitive with the state-of-the-art NVAE
even with much less latent dimensionality and also outperforms Diff-AE in all metrics except the
LPIPS for random xT . Moreover, PDAE only needs about half of the training times that Diff-AE
needs for representation learning, which shows that PDAE can learn richer representations from
images more efficiently based on pre-trained DPM.

4.4 Interpolation of Semantic Latent Codes and Trajectories

Given two images x1
0 and x2

0 from FFHQ, we use "FFHQ128-130M-z512-64M" to encode them into
(z1,x1

T ) and (z2,x2
T ) and run PDAE generative process of DDIM starting from Slerp(x1

T ,x
2
T ;λ)

under the guidance of Gψ

(
xt, Lerp(z

1, z2;λ), t
)

with 100 steps, expecting smooth transitions
along λ. Moreover, from the view of the diffusion trajectories, PDAE generates desired sam-
ples by shifting the unconditional sampling trajectories towards the spatial direction predicted by
Gψ(xt, z, t). This enables PDAE to directly interpolate between two different sampling trajectories.
Intuitively, the spatial direction predicted by the linear interpolation of two semantic latent codes,
Gψ

(
xt, Lerp(z

1, z2;λ), t
)
, should be equivalent to the linear interpolation of two spatial directions

predicted by respective semantic latent code, Lerp
(
Gψ(xt, z

1, t),Gψ(xt, z
2, t);λ

)
. We present

some examples of these two kinds of interpolation methods in Figure 7. As we can see, both methods
generate similar samples that smoothly transition from one endpoint to the other, which means that
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0.0 0.1 0.2 0.3 0.4 0.5 0.70.6 0.8 0.9 1.0𝜆𝜆x01 x02

Figure 7: Interpolation examples generated by "FFHQ128-130M-z512-64M". For each example,
the first row use the guidance of Gψ

(
xt, Lerp(z

1, z2;λ), t
)

and the second row use the guidance of
Lerp

(
Gψ(xt, z

1, t),Gψ(xt, z
2, t);λ

)
.

Smiling No_Beard

Male Young

- +

- + - +

- +

Figure 8: Attribute manipulation examples generated by "CelebA-HQ128-52M-z512-25M". For
each example, we manipulate the input image (middle) by moving its semantic latent code along the
direction of corresponding attribute found by trained linear classifiers with different scales.

Gψ

(
xt, Lerp(z

1, z2;λ), t
)
≈ Lerp

(
Gψ(xt, z

1, t),Gψ(xt, z
2, t);λ

)
, so that Gψ(xt, z, t) can be

seen as a function of z analogous to a linear map. The linearity guarantees a meaningful semantic
latent space that represents the semantic spatial change of image by a linear change of latent code.

4.5 Attribute Manipulation

We can further explore the learned semantic latent space in a supervised way. To illustrate this, we
train a model of "CelebA-HQ128-52M-z512-25M" and conduct attribute manipulation experiments
by utilizing the attribute annotations of CelebA-HQ dataset. Specifically, we first encode an image
to its semantic latent code, then move it along the learned direction and finally decode it to the
manipulated image. Similar to Diff-AE, we train a linear classifier to separate the semantic latent
codes of the images with different attribute labels and use the normal vector of separating hyperplane
(i.e. the weight of linear classifier) as the direction vector. We present some attribute manipulation
examples in Figure 8. As we can see, PDAE succeeds in manipulating images by moving their
semantic latent codes along the direction of desired attribute with different scales. Like Diff-AE,
PDAE can change attribute-relevant features while keeping other irrelevant details almost stationary
if using the inferred xT of input image.

4.6 Truncation-like Effect

According to [8, 15], we can obtain a truncation-like effect in DPMs by scaling the strength of
classifier guidance. We have assumed that Gψ(xt, z, t) trained by filling the posterior mean gap
simulates the gradient of some implicit classifier, and it can actually work as desired. In theory, it can
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Figure 9: The truncation-like effect
for "ImageNet64-77M-y-38M" by scaling
Gψ(xt,y, t) with 0.0, 0.5, 1.0, 1.5, 2.0, 2.5,
3.0 respectively.

Dataset Model FID
T=10 T=20 T=50 T=100

FFHQ DDIM 31.87 20.53 15.82 11.95
Diff-AE 21.95 18.10 13.14 10.55
PDAE 20.16 17.18 12.81 10.31

Horse [55] DDIM 25.24 14.41 7.98 5.93
Diff-AE 12.66 9.21 7.12 5.27
PDAE 11.94 8.51 6.83 5.09

Bedroom [55] DDIM 14.07 9.29 7.31 5.88
Diff-AE 10.79 8.42 6.49 5.32
PDAE 10.05 7.89 6.33 5.47

CelebA DDIM 18.89 13.82 8.48 5.94
Diff-AE 12.92 10.18 7.05 5.30
PDAE 11.84 9.65 7.23 5.19

Table 2: FID scores for unconditional sampling.

also be applied in truncation-like effect. To illustrate this, we directly incorporate the class label into
Gψ(xt,y, t) and train it to fill the gap. Specifically, we train a model of "ImageNet64-77M-y-38M"
and use DDIM sampling method with 100 steps to generate 50k samples, guided by the predicted
mean shift with different scales for a truncation-like effect. Figure 9 shows the sample quality
effects of sweeping over the scale. As we can see, it achieves the truncation-like effect similar to
that of classifier-guided sampling method, which helps us to build connections between filling the
posterior mean gap and classifier-guided sampling method. The gradient estimator trained by filling
the posterior mean gap is an alternative to the noisy classifier.

4.7 Few-shot Conditional Generation

Following D2C [42], we train a model of "CelebA64-72M-z512-38M" on CelebA [20] and aim to
achieve conditional sampling given a small number of labeled images. To achieve this, we train a
latent DPM pω(zt−1|zt) on semantic latent space and a latent classifier pη(y|z) using given labeled
images. For binary scenario, the images are labeled by a binary class (100 samples, 50 for each class).

Table 3: FID scores for few-shot conditional generation using
"CelebA64-72M-z512-38M".

Scenario Classes PDAE Diff-AE [36] D2C [42] Naive

Binary

Male 11.21 11.52 13.44 25.70
Female 6.81 7.29 9.51 14.16
Blond 16.96 16.10 17.61 24.78
Non-Blond 8.13 8.48 8.94 1.12

PU

Male 9.41 9.54 16.39 25.70
Female 8.97 9.21 12.21 14.16
Blond 6.34 7.01 10.09 24.78
Non-Blond 7.17 7.91 9.09 1.12

For PU scenario, the images are ei-
ther labeled positive or unlabeled
(100 positively labeled and 10k unla-
beled samples). Then we sample z
from pω(zt−1|zt) and accept it with
the probability of pη(y|z). We use
the accepted z to generate 5k sam-
ples for every class and compute the
FID score between these samples
and all images belonging to corre-
sponding class in dataset. We com-
pare PDAE with Diff-AE and D2C.
We also use the naive approach that
computes the FID score between the training images and the corresponding subset of images in
dataset. Table 3 shows that PDAE achieves better FID scores than Diff-AE and D2C.

4.8 Improved Unconditional Sampling

As shown in Section 4.2, under the help of z, PDAE can generate plausible images in only one step.
If we can get z in advance, PDAE can achieve better sample quality than pre-trained DPMs in the
same number of sampling steps. Similar to Diff-AE, we train a latent DPM on semantic latent space
and sample z from it to improve the unconditional sampling of pre-trained DPMs.

Unlike Diff-AE that must take z as input for sampling, PDAE uses an independent gradient estimator
as a corrector of the pre-trained DPM for sampling. We find that only using pre-trained DPMs
in the last few sampling steps can achieve better sample quality, which may be because that the
gradient estimator is sensitive to z in the last few sampling steps and the stochasticity of sampled
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z will lead to out-of-domain samples. Asyrp [27] also finds similar phenomenon. Empirically, we
carry out this strategy in the last 30% sampling steps. We evaluate unconditional sampling result on
"FFHQ128-130M-z512-64M", "Horse128-130M-z512-64M", "Bedroom128-120M-z512-70M" and
"CelebA64-72M-z512-38M" using DDIM sampling method with different steps. For each dataset,
we calculate the FID scores between 50k generated samples and 50k real images randomly selected
from dataset. Table 2 shows that PDAE significantly improves the sample quality of pre-trained
DPMs and outperforms Diff-AE. Note that PDAE can be applied for any pre-trained DPMs as an
auxiliary booster to improve their sample quality.

5 Related Work

Our work is based on an emerging latent variable generative model known as Diffusion Probabilistic
Models (DPMs) [43, 14], which are now popular for their stable training process and competitive
sample quality. Numerous studies [34, 24, 8, 15, 44, 19, 46, 30] and applications [5, 26, 18, 32, 57,
6, 29, 41, 3, 16, 17] have further significantly improved and expanded DPMs.

Unsupervised representation learning via generative modeling is a popular topic in computer vision.
Latent variable generative models, such as GANs [13], VAEs [25, 39], and DPMs, are a natural
candidate for this, since they inherently involve a latent representation of the data they generate.
For GANs, due to its lack of inference functionality, one have to extract the representations for any
given real samples by an extra technique called GAN Inversion [54], which invert samples back
into the latent space of trained GANs. Existing inversion methods [58, 35, 4, 1, 2, 51] either have
limited reconstruction quality or need significantly higher computational cost. VAEs explicitly learn
representations for samples, but still face representation-generation trade-off challenges [49, 42].
VQ-VAE [49, 37] and D2C [42] overcome these problems by modeling latent variables post-hoc in
different ways. DPMs also yield latent variables through the forward process. However, these latent
variables lack high-level semantic information because they are just a sequence of spatially corrupted
images. In light of this, diffusion autoencoders (Diff-AE) [36] explore DPMs for representation
learning via autoencoding. Specifically, they jointly train an encoder for discovering meaningful
representations from images and a conditional DPM as the decoder for image reconstruction by
treating the representations as input conditions. Diff-AE is competitive with the state-of-the-art model
on image reconstruction and capable of various downstream tasks. Compared with Diff-AE, PDAE
leverages existing pre-trained DPMs for representation learning also via autoencoding, but with better
training efficiency and performance.

A concurrent work with the similar idea is the textual inversion of pre-trained text-to-image DPMs [12].
Specifically, given only 3-5 images of a user-provided concept, like an object or a style, they learn to
represent it through new "words" in the embedding space of the frozen text-to-image DPMs. These
learned "words" can be further composed into natural language sentences, guiding personalized
creation in an intuitive way. From the perspective of posterior mean gap, for the given new concept,
textual inversion optimizes its corresponding new "words" embedding vector to find a best textual
condition

(
c
)
, so that which can be fed into pre-trained text-to-image DPMs

(
ϵθ(xt, c, t)

)
to fill as

much gap
(
ϵ− ϵθ(xt, ∅, t)

)
as possible.

6 Conclusion

In conclusion, we present a general method called PDAE that leverages pre-trained DPMs for
representation learning via autoencoding and achieves better training efficiency and performance
than Diff-AE. Our key idea is based on the concept of posterior mean gap and its connections with
classifier-guided sampling method. A concurrent work, textual inversion of pre-trained text-to-image
DPMs, can also be explained from this perspective. We think the idea can be further explored to
extract knowledges from pre-trained DPMs, such as interpretable direction discovery [51], and we
leave it as future work.
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