
Appendix

This appendix contains the remaining proofs, additional simulations, some background on the RKHS
and the connections between different settings in the literature on kernel ridge regression.

A Verifying reproducing property

To see the reproducing property of the kernel K̃, defined in (5), for the space H̃, note that for any
f =

∑
ℓ αℓψℓ ∈ H̃, we have

⟨f, K̃(·, y)⟩H̃ =

r∑
ℓ=1

r∑
k=1

αℓµkψk(y)⟨ψℓ, ψk⟩H̃ =

r∑
k=1

αkψk(y) = f(y).

B Remaining proofs

Proof of Proposition 1. We write y = (y1, . . . , yn) and ε = (ε1, . . . , εn). Then, the model can be
compactly written as y =

√
nSx(f

∗) + ε. Let ỹ = y/
√
n and ε̃ = w/

√
n so that

ỹ = Sx(f
∗) + ε̃.

By the representer theorem, a general TKRR solution is f̃r,λ = S̃∗
x(ω̃) where ω̃ is a solution of

min
ω ∈Rn

1

n
∥y −

√
nK̃ω∥2 + λωT K̃ω. (18)

The first-order optimality condition gives K̃[(K̃ω̃ − ỹ) + λω̃] = 0. Let us write K = UΛUT for
the eigen-decomposition of the full kernel matrix, where Λ = diag(µ1, . . . , µn) and U has columns
u1, . . . , un. Let U1 = [u1 | u2 | · · · | ur] ∈ Rn×r, U2 = [ur+1 | · · · | un] ∈ Rn×(n−r) and
Λ1 = diag(µ1, . . . , µr) ∈ Rr×r. Then, K̃ = U1Λ1U

T
1 and ω̃ = U1α+ U2β for some vectors α and

β. Substituting into the first-order condition and noting UT
1 U1 = Ir and UT

1 U2 = 0, we have

U1Λ1[(Λ1α− UT
1 ỹ) + λα] = 0.

Let ξ(1) = UT
1 ỹ. Multiplying both sides of the above by Λ−1

1 UT
1 , we obtain (Λ1α− ξ(1)) + λα = 0.

Letting Aλ = Λ1 + λIr, we have α = A−1
λ ξ(1). Thus all the solutions ω̃ of (18) are of the form

ω̃ = U1A
−1
λ ξ(1) + U2β (19)

for an arbitrary β ∈ Rn×(n−r).

Next, combining (5) and (7), we have for any ω ∈ Rn,

S̃x(ω) =
1√
n

n∑
j=1

ωj

r∑
k=1

µkψkψk(xj) =

n∑
j=1

ωj

r∑
k=1

µkψkukj =

r∑
k=1

(uTk ω)µkψk. (20)

Since uTk U2β = 0 for all k = 1, . . . , r, it follows that f̃r,λ = S̃∗
x(ω̃) is the same regardless of the

value of β, proving the uniquness. In fact, noting that uTk ω̃ = (µk + λ)−1uTk ỹ for all k ∈ [r],

f̃r,λ =

r∑
k=1

µk

µk + λ
(uTk ỹ)ψk. (21)

For future reference, f̃r,λ = S̃∗
x(ω̃) implies f̃r,λ(xi) = 1√

n

∑n
j=1 ω̃jK̃(xi, xj) =

√
n[K̃ω̃]i, hence

Sx(f̃r,λ) = K̃ω̃ = (U1Λ1U
T
1 )(U1A

−1
λ ξ(1) + U2β) = U1Λ1A

−1
λ ξ(1). (22)

The proof is complete.
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Proof of Theorem 1. Using the previous notation and recalling that ξ∗ = UTSx(f
∗), we have

ξ := UT ỹ = ξ∗ + z and z := UT ε̃. Writing ξ = UT ỹ = (ξ(1), U
T
2 ỹ), we can rewrite (22) as

Sx(f̃r,λ) = UΓλξ. It follows that

∥f̃r,λ − f∗∥2n = ∥Sx(f̃r,λ)− Sx(f
∗)∥22

= ∥UΓλξ − Uξ∗∥22
= ∥Γλξ − ξ∗∥22 = ∥(Γλ − In)ξ

∗ + Γλz∥22.
Expanding and using E[z] = 0, we get

E∥f̃r,λ − f∗∥2n = ∥(In − Γλ)ξ
∗∥22 + tr

(
Γ2
λE[zzT ]

)
.

Noting that E[zzT ] = cov(z) = UT cov(ε̃)U = σ2

n U
TU = σ2

n In gives

E∥f̃r,λ − f∗∥2n = ∥(In − Γλ)ξ
∗∥22 +

σ2

n
tr(Γ2

λ)

which is the desired result. The expression (10) is obtained by writing
∑n

i=r+1(ξ
∗
i )

2 = ∥ξ∗∥22 −∑r
i=1(ξ

∗
i )

2 and noting that ∥f∥n = ∥ξ∗∥2.

Proof of Proposition 2. The expression for MSE follows by taking the expectation of both sides
of (10) and noting that E(ξ∗i )2 = 1/b when nonzero and E∥f∗∥2n = 1.

For part (a), first we note that MSE is increasing in intervals [1, ℓ] and [ℓ+ b, n]. This is immediate
from the expression, since in both cases, the middle term in (12) remains constant as a function of r,
while the the estimation error (the third term) contributes positive terms to the MSE when increasing
r. For the middle interval [ℓ, ℓ+ b], we consider the two intervals [ℓ, j∗) = [ℓ, j∗ − 1] and [j∗, ℓ+ b]
separately.

Assume first that j∗ ∈ [ℓ+ 1, ℓ+ b). Since i 7→ µi is decreasing, we have

1 +
2λ

µi
<
σ2

n
b for i ∈ [ℓ+ 1, j∗ − 1],

1 +
2λ

µi
≤ σ2

n
b for i = j∗,

1 +
2λ

µi
>
σ2

n
b for i ∈ [j∗ + 1, ℓ+ b]. (23)

The first two lines above follow since i 7→ µi is an strictly decreasing sequence by the distinctness
of {µi}, hence the inequality can potentially turn into an equality only at the endpoint i = j∗. The
third line, (23), follows by the maximally of j∗. Inequality (23) is equivalent to 1

bai(λ) >
σ2

n µ
2
i

showing that the combined contribution to the MSE by the ith terms of the two sums in (12) is
negative for i ∈ [j∗ + 1, ℓ + b], hence the MSE is decreasing on [j∗, ℓ + b]. Similarly, the first
inequality shows that the combined contribution by the ith terms of the two sums in (12) is positive
for i ∈ [ℓ + 1, j∗ − 1], hence the MSE is increasing in [ℓ, j∗ − 1]. This completes the proof of
part (a) when j∗ ∈ [ℓ+ 1, ℓ+ b). Note that in this case, the MSE is possibly flat only on [j∗ − 1, j∗].
When j∗ = ℓ+ b, the assertion about the interval [j∗, ℓ+ b] is vacuous. When, j∗ = ℓ, by definition,
inequality (23) holds for all i ∈ [ℓ+1, ℓ+b], hence the MSE is decreasing in [ℓ, ℓ+b] by the previous
argument. The proof of part (a) is complete.

For part (b), we note that the variable term of the MSE for ℓ ∈ [0, r − b] is

1

b

ℓ+b∑
i=ℓ+1

−ai(λ)
(µi + λ)2

=
1

b

ℓ+b∑
i=ℓ+1

λ2

(µi + λ)2
− 1. (24)

Since i 7→ λ2

(µi+λ)2 is an increasing function, summing it over a sliding window of length b starting at
ℓ+ 1, produces larger values as ℓ increases.

For part (c), the variable term of MSE is again (24) for b ∈ [1, r− ℓ]. The variable part is the average
of the sequence i 7→ λ2

(µi+λ)2 over a window of length b. Increasing the window length then increases
the average since the sequence is increasing.
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Figure 3: Multiple-descent and phase transition of λ-regularization curve: (a) Expected MSE as a function of
− log(λ) for different values of r, and (b) overall contour plot of expected MSE for r vs. − log(λ).
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Figure 4: (a) The rate exponent function s(γ) for the TKRR, Eq. (17), compared with that of full KRR
s(δ) = s(1 ∧ γ) and the minimax exponent over the RKHS ball s(1/2). (b) The minimum achievable MSE by
TKRR and full KRR, as a function of the sample size, when α = 1 and γ = 10.

C Additional simulations

Multiple-descent and phase transition We study the behavior of the λ-regularization curves
for different values of the truncation parameter r given a fixed noise level σ. The panel plot and
corresponding contour plot are shown in Figure 3a and 3b, respectively. The plots show multiple-
descent and phase transition as demonstrated in the λ-regularization curves for different values of the
noise level and r-regularization curves shown in Section 5.

Rate of TKRR vs. KRR We perform some experiments to coroborate the results of Theorem 2.
We let the eigenvalues and TA scores decay polynomially with rates specified as in (13), and take the
truncation parameter r to be as derived in Theorem 2(a). For the full KRR and TKRR, we calculate
the respective minimum value of MSE among 1000 values of the regularization parameter λ, evenly
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Figure 5: The difference of log(MSE) between the full KRR and TKRR versus the sample size n for γ = 5, and
various values of α and the noise level σ.

distributed between 10−10 and 102. Figure 4(b) shows the MSE for the two methods, when α = 1
and γ = 10, as a function of the sample size, on a log-log scale,. The difference in slope clearly
shows the difference in rate between the two approaches.

The plots in Figure 5 show the difference in minimum log(MSE) between the full KRR and TKRR
versus the sample size (on the log-scale), for different combinations of decay rate α and the noise
level σ. For all the plots, we have γ = 5. According to Theorem 2, for sufficiently large n, the
difference in minimum log(MSE) between the full KRR and TKRR should follow a line with positive
slope when plotted as a function of log n. This is clearly shown in Figure 5, where the positivity of
the slope signifies the difference in rates between the two methods.

D RKHS background

Assume that X is a measurable space with a σ-finite measure µ and H is a separable RKHS over X
with a measurable kernel K : X × X → R. We write L2 := L2(µ) for the L2 space of functions
from X to R. For simplicity, we write ∥K∥L2 for the L2 norm of the function x 7→

√
K(x, x). We

assume

∥K∥L2 <∞. (25)

Then H is a subset of L2 and the inclusion map J : H → L2 is continuous. The adjoint of this map
J∗ : L2 → H is the following integral operator

J∗f(x) =

∫
K(·, x)fdµ = ⟨K(·, x), f⟩L2 f ∈ L2.

Let T = JJ∗ : L2 → L2. This can be thought of a the same integral operator acting on L2 with
output in L2. The decomposition T = JJ∗ shows that T is self-adjoint and positive. Condition (25)
implies that T is a Hilbert-Schmidt, and hence a compact, operator.

The spectral theorem for self-adjoint compact operators on L2 implies that

Tf =
∑
i∈I

λiei⟨f, ei⟩L2 for all f ∈ L2

where {λi}i∈I are the non-zero eigenvalues of T order in decreasing fashion and {ei}i∈I ⊂ L2 a
corresponding sequence of eigenvectors (at most countable), forming an orthonormal system (ONS)
in L2. That is, Tei = λiei and ⟨ei, ej⟩L2 = 1{i = j}.
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One can also view {ei} as functions in H, and it is not hard to see that {ei}i∈I is an orthogonal
sequence in H with ∥ei∥2H = 1/λi. That is, ⟨ei, ej⟩H = 1{i = j}/λi. In other words, {

√
λiei}i∈I is

an ONS in H.

Assume from now on that we are dealing with a Mercer kernel K, that is, X is a compact space and
K is a continuous function. Then, we have the Mercer decomposition of the kernel function

K(x, y) =
∑
i

λiei(x)ei(y), ∀x, y ∈ X (26)

where the convergence is uniform and absolute. It then follows that {
√
λiei} is an orthonormal basis

(ONB) of H and we have

H =
{∑

i

αiei |
∑
i

α2
i

λi
<∞

}
.

The treatment up to this point follows more or less the treatment in [23, Chapter 4].

From now on, we patch the sequence {ei}i∈I to a complete orthonormal basis for the entire L2

namely {ei}i∈I′ where I ′ is a proper subset of I . Let I0 := I ′ \ I . Then, ei, i ∈ I0 span the
orthogonal complement of the image of T (i.e., the null space of T ). We let λi = 0 for i ∈ I0, so that

Tf =
∑
i∈I′

λiei⟨f, ei⟩L2 for all f ∈ L2

still holds. The statement ∥ei∥2H = 1
λi

also hold over i ∈ I ′, interpreting 1/0 as ∞. That is,
∥ei∥H = ∞ when i ∈ I0, consistent with the fact that such ei are not in H (or more precisely do not
have a version that is in H).

D.1 Target alignment

With this notation, every function in L2 has a decomposition of the form f =
∑

i∈I′ αiei where
αi = ⟨f, ei⟩L2 . Then, the RKHS H consists of those f for which

∥f∥2H =
∑
i∈I′

α2
i

λi
<∞. (27)

One can think of either {αi}i∈I or {αi}i∈I′ as the population level kernel alignment spectrum (that is,
the population counterpart of Definition 1). Note that if αi is nonzero for any i ∈ I0, then ∥f∥H = ∞
and that f is not in H. Even if αi = 0 for all i ∈ I0, {αi}i∈I needs to decay as imposed in (27) for
the function to belong to the RKHS. For example, a necessary condition is αi = o(

√
λi) for i ∈ I0.

In other words, belonging to the RKHS itself implies some amount of alignment between the target
and the kernel (i.e. some level of decay for {αi}.)

To summarize, we can write

H =
{
f ∈ L2 |

∑
i∈I′

⟨f, ei⟩2L2

λi
<∞

}
.

Let us connect to the setup of [9] and [12]. In short, these two papers impose the following condition

f =
∑
i∈I′

αiei,
∑
i∈I′

α2
i

λci
<∞ (28)

for some c ∈ [1, 2]. If c = 1 this just means that f ∈ H. If c > 1 it means that it is in a proper subset
of H. The c here is the same as the c in [9] and we have c = 2r for parameter r used in [12]. In our
notation in this paper, c = 2γ. (Note that in our paper, r is reserved to the spectral truncation level
and is a different parameter.)

In addition [9] assumes λi ≍ i−b which is the same as the condition in [12], that is, λi ≍ i−α,
for α = b. Here, our notation matches that of [12]; see (13) which is the empirical counterpart of
λi ≍ i−α. Also, [9] consider the case where λi drop to zero exactly after some point (finite RKHS)
which they refer to as the case b = ∞.
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D.2 Details of matching the setups

The conditions [9, 12] are not stated as cleanly as (28). Let us see how they can be reformulated in
this equivalent fashion. The paper [9] which seems to be the origin of this condition works in the
abstract setting of vector-valued RKHSs. We adapt the notation to the scalar-valued RKHSs. They
work with operator Kx : R → H whose adjoint K∗

x : H → R is given by K∗
xf = f(x) for every

f ∈ H. We then have aK∗
xf = ⟨Kxa, f⟩H for any a ∈ R by the definition of an adjoint operator.

Since aK∗
xf = af(x) = ⟨aK(·, x), f⟩H, it follows that

Kxa = aK(·, x), a ∈ R.

Then, they define the operator Tx := KxK
∗
x : H → H and T =

∫
X Txdµ(x). We have

⟨ei, Txej⟩L2 = ⟨ei,KxK
∗
xej⟩L2 = ⟨ei,Kxej(x)⟩L2

= ⟨ei, ej(x)K(·, x)⟩L2

= ej(x)⟨ei,K(·, x)⟩L2 = ej(x)λiei(x)

where the last step is since ei is an eigenvector of the integral operator f 7→ (x 7→ ⟨f,K(·, x)⟩L2)
from L2 to L2, and that the range of this operator is in fact in H (so evaluations make sense). This
also follows from the Mercer decomposition. It then follows that

⟨ei, T ej⟩L2 =

∫
⟨ei, Txej⟩L2dµ(x) = λi

∫
ei(x)ej(x)dµ(x) = λi⟨ei, ej⟩L2 = λi1{i = j}.

That is T can be viewed as a diagonal matrix T = diag(λi, i ∈ I ′) in the basis {ei}i∈I′ .

The condition in [9] is f = T (c−1)/2g where g ∈ H (or more precisely ∥g∥2H ≤ R). Let us write
g =

∑
i∈I′ βiei and f =

∑
i∈I′ αiei. Since T (c−1)/2 is a diagonal matrix in this basis, we have

αi = λ
(c−1)/2
i βi or equivalently βi = λ

(1−c)/2
i αi. Then, g ∈ H iff

∑
i β

2
i /λi < ∞ which is

equivalent to ∑
i

1

λi
(λ

(1−c)/2
i )2α2

i <∞ ⇐⇒
∑
i

α2
i

λci
<∞

and this is the desired condition.

Now to see that the condition in [12] is the same with 2r = c, note that they require ∥Σ1/2−rθ∗∥H <
∞ in their equation (7) which is a typo and is meant to be ∥Σ1/2−rθ∗∥ℓ2 < ∞ in the ℓ2 sequence
norm. Here Σ = diag(λi) in our notation.

As for θ∗ = (θ∗i ) which is a sequence in ℓ2, it is defined by the expansion f∗ =
∑

i θ
∗
i ψi where

ψi =
√
λiei in our notation. Thus, if we let f =

∑
i αiei, then αi =

√
λiθ

∗
i . So the condition

imposed in [12] is∑
i

(λ
1/2−r
i θ∗i )

2 <∞ ⇐⇒
∑
i

(λ
1/2−r
i λ

−1/2
i αi)

2 <∞ ⇐⇒
∑
i

λ−2r
i α2

i <∞

which is the desired condition with c = 2r.

Immediately after stating this condition in [12], it is abandoned in favor of the condition λ−2r
i α2

i ≍
i−1 which gives, together with λi ≍ i−b

αi ≍ i−1/2λri ≍ i−
1+2rb

2 .

or equivalently θ∗i ≍ λ
−1/2
i αi ≍ O(i−

1+b(2r−1)
2 ). This is condition (8) in [12].

D.3 Minimax rates

Theorem 1 and 2 in [9] together establish that the minimax rate for the signal model (28) when
c ∈ (1, 2] is given by (1/ℓ)bc/(bc+1), where ℓ is the sample size. Moreover, the same rate is minimax
for c = 1 up to logarithmic factors. Translating to our notation with c = 2γ, ℓ = n and b = α, the
minimax rate in our model is (1/n)2γα/(2γα+1) when γ ∈ (1/2, 1], as claimed in Section 4.2.
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