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Abstract

Pre-training produces representations that are effective for a wide range of down-
stream tasks, but it is still unclear what properties of pre-training are necessary
for effective gains. Notably, recent work shows that even pre-training on syn-
thetic tasks can achieve significant gains in downstream tasks. In this work, we
perform three experiments that iteratively simplify pre-training and show that
the simplifications still retain much of its gains. First, building on prior work,
we perform a systematic evaluation of three existing synthetic pre-training meth-
ods on six downstream tasks. We find the best synthetic pre-training method,
LIME, attains an average of 67% of the benefits of natural pre-training. Sec-
ond, to our surprise, we find that pre-training on a simple and generic synthetic
task defined by the Set function achieves 65% of the benefits, almost matching
LIME. Third, we find that 39% of the benefits can be attained by using merely
the parameter statistics of synthetic pre-training. We release the source code at
https://github.com/felixzli/synthetic_pretraining.

1 Introduction

Pre-training on a large amount of data from sources such as text from the web—natural pre-training—
is effective for a wide range of downstream tasks (Devlin et al., 2019; Brown et al., 2020; Chen et al.,
2021; Lu et al., 2021). More surprisingly, recent works (Wu et al., 2021; Krishna et al., 2021; Ri &
Tsuruoka, 2022; Anderson & Farrell, 2022) show that pre-training on data that is fully synthetically
generated—synthetic pre-training—can also provide substantial gains, partially closing the gap
between training from a randomly initialized model and a naturally pre-trained model.

What properties of pre-training are necessary for effective gains? In this paper, we conduct a careful
empirical study to help understand this question. We perform three experiments that iteratively
simplify natural pre-training, while still retaining much of the benefits of natural pre-training. See
Figure 1 for an overview of the results obtained in our three experiments.

First, we perform a systematic evaluation of three previously proposed synthetic pre-training methods
over six downstream tasks. Prior works only evaluated each synthetic pre-training method on a single
downstream domain: Wu et al. (2021) on mathematical reasoning benchmarks, Chiang & Lee (2021)
on GLUE, Krishna et al. (2021) on summarization, and Ri & Tsuruoka (2022) on language modeling
and dependency parsing. We instead show how general these methods are as well as how different
synthetic pre-training methods compare against each other. We find that the best performing synthetic
task, LIME (Wu et al., 2021), closes a significant fraction of the gap between random initialization
and natural pre-training for summarization (85%), semantic parsing (83%), reading comprehension
(55%), code translation (43%), and retrosynthesis (49%).
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Figure 1: We compare downstream task performance between natural language pre-training
(Pre-trained_T5), synthetic pre-training (LIME), simpler synthetic pre-training (Set), initializing
from the statistics of Set pre-training (Set Statistics), and initializing just the pre-attention layer norms
to a lower value (Pre-attention Layer Norm Init). The average percent improvement is computed by
taking the average over our six downstream tasks of Performance(Initialization)−Performance(Random_Init)

Performance(Pre-trained_T5)−Performance(Random_Init) .

Second, we discover a surprisingly simple and generic synthetic task that captured nearly the same
effectiveness provided by the existing best synthetic task LIME, closing an average of 65% of the gap
to natural pre-training (compared to 67% for LIME). This simple task, which we call Set, consists of
outputting the input sequence without duplicate tokens in its original order, for example:

Input: a a c b a b ⇒ Output: a c b.

Third, to simplify the initialization even more, we ask whether only the statistics of the pre-trained
weights can explain the effectiveness of synthetic pre-training. We find that initializing parameters
with statistics of a synthetic pre-trained model provides large benefits for some downstream tasks,
closing 39% of the gap to natural pre-training. Simplifying further allows us to see that by initializing
all pre-attention layer norm parameters to a lower value (just one number!), we close more than
40% of the gap to natural pre-training performance for summarization and semantic parsing, and an
average of 21% over all six tasks.

2 Experimental Setup

Architecture We trained a T5-Small model, which is a 60 million parameter encoder-decoder
transformer model with 6 encoder layers, 6 decoder layers, 8 heads, head dimension 64, and MLP
dimension 2048 (Raffel et al., 2020).

Training Details For synthetic pre-training, we use the same hyperparameters that the off-the-shelf
language pre-trained T5-small was trained with: AdaFactor optimizer, batch size 128, sequence
length 512, and inverse square root learning rate 1/

√
max(n, 10000) where n is the current training

step. We evaluate token validation accuracy every 5000 training steps. For all synthetic tasks besides
Dyck, we fine-tuned with the first checkpoint that the model reaches above 99% token validation
accuracy. For Dyck, the model’s validation accuracy plateaued without reaching above 99%, so we
chose to fine-tune using the checkpoint with max validation accuracy of 77.7%. We provide further
pre-training details in Appendix A and fine-tuning details in Appendix B.

Downstream Tasks We fine-tuned synthetically pre-trained models on a diverse suite of down-
stream tasks: 1) Java to C# code translation (10K training examples) (Lu et al., 2021); 2) two semantic
parsing benchmarks, MTOP (17K training examples) (Li et al., 2021) and WebQSP (2.7K training
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Table 1: Evaluation of three previously proposed synthetic pre-training tasks and two simpler synthetic
pre-training tasks. For tasks where we report both Exact Match (EM) and F1, the Average column is
computed using EM.

CNNDM-10K MTOP WebQSP SQuAD Code Trans. Retrosyn. Average
ROUGE1 EM/F1 EM/F1 EM/F1 EM EM

Baselines

Pre-trained_T5 35.81 81.0/95.2 83.1/91.9 77.5/86.0 61.6 43.1 63.7 100%
Random_Init 18.9 38.6/83.0 28.2/72.9 17.2/25.2 57.0 39.2 33.2 0%

Section 3: Benchmarking Existing Synthetic Pre-training

LIME 33.2 73.7/94.0 75.2/88.7 50.4/62.1 59.0 41.1 55.4 67%
Dyck 27.1 65.9/91.9 58.5/83.5 50.3/62.4 58.8 40.4 50.2 49%

Nons_Summary2 32.0 68.0/92.7 65.2/85.2 48.4/60.1 57.3 39.6 51.8 47%

Section 4: Simpler Synthetic Pre-Training

Set 32.8 71.7/93.7 72.2/88.2 48.3/60.0 59.4 40.9 54.2 65%
Identity 30.2 68.6/93.0 69.8/86.8 26.1/35.4 57.8 40.5 48.8 46%

examples) (Yih et al., 2016), consisting of converting a natural language query to a logical form;
3) USPTO-50K retrosynthesis (40K training examples) (Liu et al., 2017), a task that consists of
predicting possible reactants when given a product as input; 4) the reading comprehension benchmark
SQuAD 1.1 (87K training examples) (Rajpurkar et al., 2016); and 5) the summarization benchmark
CNNDM-10K3 which is 10K training examples from the CNNDM (Krishna et al., 2021). See full
descriptions and input-output examples for every downstream task in Appendix D.

Baselines We compared against randomly initialized (Random_Init) and off-the-shelf natural
language pre-trained T5-Small (Pre-trained_T5). Pre-trained_T5 was trained for 524K steps
on the C4 dataset with the span-corruption objective (Raffel et al., 2020). We also compared
against T5-Small trained on Wikipedia (Guo et al., 2020) for 10K steps (Wiki_10K) with the same
pre-training objective as Pre-trained_T5.

Source code We release the source code to reproduce the experiments at https://github.com/
felixzli/synthetic_pretraining.

3 Benchmarking Existing Synthetic Pre-training

We benchmark three previously proposed synthetic pre-training tasks across six downstream
tasks. We compute how much of the benefits using natural pre-training are gained by
each synthetic pre-training method by taking the average over six downstream tasks of

Performance(Initialization)−Performance(Random_Init)
Performance(Pre-trained_T5)−Performance(Random_Init) . We show these numbers in the right-most column of
Table 1. We find that LIME achieves the best performance, gaining 67% of the benefits using natural
pre-training.

3.1 Synthetic Tasks

For each synthetic task, we generated one million examples. To generate synthetic task data, we
sampled tokens a vocabulary of size 32K, matching the vocabulary size of Pre-trained_T5. Details
about data generation can be found in the original papers. We provide an example of each task in
Figure 2.

1This number was obtained using pre-trained T5_1.1 instead of T5_1.0 which we used for all other tasks.
Using pre-trained T5_1.0 would be an unfair comparison because it has already been trained on all 290K
CNNDM task training data. Full differences between T5_1.1 and T5_1.0 are described in Appendix Section C.

2We obtained different results than Krishna et al. (2021) on CNNDM-10K because of our choice of optimizer.
We were able to match their results when we used Adam like they did in their work instead of Adafactor. We
chose to use Adafactor instead of Adam because training took about three times less steps.

3We followed Krishna et al. (2021) to evaluate on CNNDM-10K instead of the full CNNDM. They used
CNNDM-10K because less training examples makes the impact of pre-training more visible.
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Figure 2: We show examples of Section 3 previously proposed synthetic tasks in the top row and
Section 4 simpler synthetic tasks in the bottom row. Top Left: LIME deduct task, whose input
consists of a "rule string" and "substitution dictionary" and output is a "result string." The "rule
symbols" and "math symbols" are written as actual letters and math operations for reader clarity.
In real generated data, each example’s rule and math symbols are randomly sampled tokens. Top
Middle: T5 style masked language modelling with Dyck language. In the input, the grey boxes
indicate masked out spans. The model is trained to predict the masked spans, each separated by a
special token <s>. In this example, the "noise_density" is 0.33 (so 5 out of 15 input brackets are
corrupted) and the "span_corruption_length" is 1 (so each masked span is of length 1). In actual
generated data, the "span_corruption_length" is 3 and the "noise_density" is 0.15, which are the same
parameter values used for natural language Pre-trained_T5. Top Right: Nonsense_Summary
task. In this example, two operations to create the summary are "copy sentence containing a keyword"
and "identify keyword sentiment." Bottom Left: Set task. Bottom Right: Identity task.

LIME LIME is a set of three tasks—Deduct, Induct, and Abduct—inspired by Charles Peirce’s three
reasoning primitives (Wu et al., 2021). Each task consists of three elements: a rule string, a dictionary
that represents substitutions, and a result string that is the result of applying those substitutions to
the rule string. The three tasks are then constructed by using two of the three elements as inputs to
predict the remaining element.

Dyck Artificial Language We consider a Dyck language with multiple bracket types (taken from
Ri & Tsuruoka (2022)), which we refer as Dyck. We turn generated text into a sequence-to-sequence
task by using the T5 span-corruption pre-training objective (Raffel et al., 2020). The motivation
behind the design of Dyck is how “sentences of natural language often have dependency relations
where the existence of a certain word can be predictive of another word” (Ri & Tsuruoka, 2022).

Nonsense Summary Krishna et al. (2021) developed the nonsense summarization task, which
we refer to as Nonsense_Summary, by conducting a qualitative analysis of summarization data and
identifying 21 elementary operations used to create summaries such as “CopyFirstSentence” and
“CopyQuoted.” Each synthetic task example consists of an input that is a nonsense document made of
randomly sampled tokens and an output that is the corresponding nonsense summary consisting of
applying a random subset of the 21 operations to the document.
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3.2 Results

Table 1 shows results of evaluating the synthetic tasks across six downstream tasks, and Appendix
Table 4 shows results of ablating the dataset size for retrosynthesis, CNNDM, and SQuAD.

Synthetic pre-training provides large gains over random initialization. We observed large gains
from all three synthetic tasks we evaluated. Out of these, LIME provided the most benefits across
all six downstream tasks. We computed how much of the natural pre-training benefit is captured by
LIME as Performance(LIME)−Performance(Random_Init)

Performance(Pre-trained_T5)−Performance(Random_Init) . LIME closed 84.6%, 82.8%, 85.6%, 55.1%,
43.5%, and 48.7% of the gap for CNNDM-10K, MTOP, WebQSP, SQuAD, Code Translation, and
Retrosynthesis respectively.

Task or domain prior is not required for pre-training benefits. For example, LIME benefits
tasks including summarization (CNNDM-10K) and reading comprehension (SQuAD) despite LIME
pre-training data involving no natural language like Pre-trained_T5, representing no structure
of natural language like Dyck, and not being explicitly designed to reflect the operations used in
summarization like Nonsense_Summary.

Varying degrees of benefits. Comparing Nonsense_Summary and Dyck, we see that the two
synthetic tasks benefit MTOP, WebQSP, and SQuAD similarly, yet their benefits for the three other
tasks are very different. The difference between Nonsense_Summary and Dyck as well as the
superiority of LIME are examples of how different synthetic pre-training can have significantly
different effectiveness.

Synthetic pre-training is not more efficient. One of the advantages argued for synthetic pre-
training is its computational efficiency (Wu et al., 2021; Krishna et al., 2021). To explore this
potential advantage, we pre-trained our model using the T5 span-corruption pre-training objective on
Wikipedia (Guo et al., 2020) for 10K steps, and the result is shown in Table 1 labelled Wiki_10K.
Wikipedia pre-training for 10K steps provided more significant gains than LIME pre-training for
30K steps and Set pre-training for 10K steps. Based on this result, we see no evidence that the
evaluated synthetic pre-training tasks provides computational efficiency benefits over natural language
pre-training, unlike what Wu et al. (2021) suggested.

Natural language pre-training benefits non-natural language tasks. Natural language pre-
training, including Wiki_10K, outperforms synthetic pre-training on the non-natural language tasks
of Code Translation and Retrosynthesis.

4 Simpler Synthetic Pre-training

Encouraged by the results in the previous section, we want to explore what is necessary for synthetic
pre-training benefits. We evaluate pre-training with simpler and more generic synthetic tasks similar
to basic Python API functions. Surprisingly, a simple and generic task defined by the Set function
provides significant benefits (65%), almost matching the previous best synthetic task LIME (67%).
Furthermore, another simple task defined by the Identity function also provided significant benefits
(46%).

4.1 Simpler Synthetic Tasks

We constructed 18 simpler synthetic tasks similar to basic Python API functions. As we did for
the three existing synthetic tasks, for each simpler synthetic task we generated one million data
points with a vocabulary of 32K tokens, matching the vocabulary size of Pre-trained_T5. In
Appendix G.1, we define each task, explain how examples are randomly generated, and provide
input-output examples. We first evaluated all tasks on CNNDM-10K. We then evaluated Set, one
of the best performing tasks on CNNDM-10K, and Identity, one of the simplest tasks, on all six
downstream tasks.
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Figure 3: For each simple synthetic task, we pre-train on it and then fine-tune on CNNDM-10K. Set
performed the best and Identity, one of the simplest tasks, provided significant benefit. The Set
and Identity tasks are defined in 4.1, and the other tasks are defined in G.

Set The Set task consists of outputting the input sequence in its original order except without
tokens appearing more than once. An example input is [a b b a a a c d c], and the corresponding
output is [a b c d]. The Set task data generation is explained in Appendix G.

Identity The Identity task consists of copying the input tokens to the output. An example input
is [a d e a a], and the corresponding output is [a d e a a]. To generate one example, we uniformly
sample a sequence of tokens between length 10 and length 220 to be the input and output.

4.2 Results: simpler synthetic tasks provide similar benefits as existing synthetic tasks

Figure 3 shows results on CNNDM-10K for models pre-trained on each of 18 simpler synthetic
tasks. Table 1 shows results on all six downstream tasks for Set and Identity pre-trained models.
Averaged across the six downstream tasks, Set and Identity gain 65% and 46% of the natural pre-
training benefits compared to 67% for LIME, the best previously proposed synthetic task evaluated in
Section 3. Identity provides at least as much benefit as Nested Language and Nonsense Summary
for all tasks besides Code Translation, for which Nested Language benefits more.

The significant benefits of Set and Identity pre-training suggest that the complexities of the
three previously proposed synthetic tasks we evaluated—representing three fundamental logical
operations, having a structural property that mimics natural language, and reflecting operations used
for summarization—may not be the necessary factors for why pre-training on those tasks provides
benefits. Also, due to their simplicity, Set and Identity may be useful for future work towards
understanding pre-training and how to design better synthetic tasks.

5 Even Simpler Synthetic Pre-training with Statistics

Inspired by the previous section, we tried to find even simpler initializations that achieve the the
benefits of pre-training. We explored how benefits of synthetic pre-training can be attained by
initialization based only on statistics of pre-trained weights. We found: (1) Initialization using
the mean and standard deviation (SD) of synthetic pre-trained parameters can gain more than 70%
of the benefit from synthetic pre-training for CNNDM-10K and MTOP (or an average of 39% of
natural pre-training benefits). (2) Initialization using simpler schemes involving less statistics can still
provide benefits. (3) Specifically the pre-attention layer norm plays an important role for initialization
benefits.
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Figure 4: Illustration of Section 5.1 Per_Param_Mean_SD init scheme. We use this init scheme
with LIME, Set, or Identity pre-trained models before fine-tuning on the downstream tasks. As an
example, if we were to use this init scheme with an Identity pre-trained model, we would initialize
the encoder layer 2 query matrix weights by sampling from a Gaussian with the the mean and SD of
the encoder layer 2 query matrix from an Identity pre-trained model, and we would initialize every
other parameter in the same manner. The Per_Param_Mean_SD init scheme recovered more than
70% of the benefit of normally fine-tuning a synthetic pre-trained model (or an average of 39% of
natural pre-training benefits).

5.1 How much of synthetic pre-training benefit can be attributed to better statistics for
initialization?

We compare normal fine-tuning, which we call Full_Init, with fine-tuning a model that is initialized
with the mean and standard deviation (SD) of each synthetic pre-trained model’s parameter. We call
this initialization scheme Per_Param_Mean_SD and illustrate it in Figure 4. Specifically, for each
parameter p (e.g. an attention query matrix) in the synthetic pre-trained model, we compute the the
mean µp and the standard deviation σp of all entries in p. We then randomly initialize the model with
the same µp and σp for each parameter p. For example, if a pre-trained model had a 2× 2 parameter
matrix p = [[−1, 2], [2, 5]], then µp = 2 and σp = 2.4, and we would initialize p by sampling the
each entry of this 2× 2 matrix from a normal distribution N (2, 2.42). We list all all the parameters
we initialize for T5-Small in this manner in Appendix K.

As shown in Table 2, using the Per_Param_Mean_SD initialization scheme achieves a large proportion
of the benefit from normally fine-tuning a synthetic pre-trained model. For example, for LIME
Identity and Set, the Per_Param_Mean_SD initialization recovered 78%, 85%, and 97%2 of
MTOP Full_Init performance (or 65%, 66%, 69% of the benefits by natural pre-training). The
remaining gap between Per_Param_Mean_SD and Full_Init supports the possibility that other
factors besides better initialization statistics may cause the benefits of synthetic pre-training. We note
that it does not preclude the possibility that better initialization statistics is the sole cause of benefits:
there may exist other initialization schemes such that the statistics of the pre-trained model are a
subset of the statistics from the initialization scheme.

5.2 Can simpler initialization schemes still produce benefits?

Next we explore if simpler initialization schemes that use a smaller number of statistics
than Per_Param_Mean_SD can still provide benefits. We present three initialization schemes:
Per_Param_Scale, Whole_Model_Scale, and Subset_Per_Param_Scale, with results shown
in Table 2. We also tried two other initialization schemes, Across_Layers_Scale and
Per_Layer_Scale, discussed in Appendix H.

2These percentages are computed by performance(Per_Param_Mean_SD)−performance(Random_Init)
performance(Full_Init)−performance(Random_Init)
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Table 2: Evaluating different initialization schemes with statistics of LIME, Set, and Identity
pre-trained models. Results for Per_Param_Mean_SD for the four other tasks as well as five seeds
for CNNDM-10K, MTOP, and SQuAD are in Appendix Table 7. Results for two other initialization
ablations and three other Subset_Per_Param_Scale subset choices we tried are in Appendix
Table 5.

CNNDM-10K MTOP
LIME Set Identity LIME Set Identity

Section 5.1

Full_Init 33.2 32.8 30.2 73.7/94.0 71.7/93.7 68.6/93.0
Per_Param_Mean_SD 29.3 29.8 28.8 66.1/92.3 66.6/92.3 67.8/92.6

Section 5.2

Per_Param_Scale 29.0 29.5 29.0 67.3/92.5 66.5/92.4 66.3/92.3
Whole_Model_Scale 15.5 26.1 20.5 34.3/81.4 38.7/83.1 59.8/91.0

Pre-attn_LN_Per_Param_Scale 27.8 25.1 27.3 59.9/90.3 58.9/89.0 46.7/86.3

Baseline CNNDM-10K MTOP

Random_Init 18.9 38.6/83.0
Pre-trained_T5 35.8 81.0/95.2

Per Param Scale We use the term “scale statistic” to denote the mean of layer norm parameters or
the SD of non layer norm parameters. Unlike the Per_Param_Mean_SD init scheme in the previous
subsection, where we initialize each parameter with two statistics (mean and SD), Per_Param_Scale
initializes each parameter with only the scale statistic: initialize layer norm parameters by setting their
value to the mean of the corresponding pre-trained parameter weights, and initialize non layer norm
parameters by sampling from a Gaussian with mean 0 and the SD of the corresponding pre-trained
parameter weights.

Whole Model Scale We initialize the whole model with only two statistics: the SD over all non
layer norm weights σm and the mean over all layer norm weights µm. Initialize each non layer norm
weight by sampling from N (0, σ2

m) and Initialize each layer norm weight as the value µm.

Per Param Scale: Subset The motivation for this init scheme is to find a smaller set of parameters
whose initialization can provide significant benefit. We initialize a subset of the parameters (e.g.,
attention parameters) with the Per_Param_Scale initialization and initialize the rest of the parame-
ters with the default Random_Init. With this initialization scheme, we tried four different subsets:
attention parameters, MLP parameters, pre-attention layer norms, and pre-MLP layer norms.

Results Per_Param_Scale provided almost identical benefits as the Per_Param_Mean_SD initial-
ization, suggesting that just the scale statistics, rather than both the mean and SD, are sufficient to
provide benefits of initialization.

Whole_Model_Scale initialization was much worse than Per_Param_Mean_SD, yielding almost no
improvements. A finer scale initialization rather than simply increasing the scale of weights across
the whole model as Whole_Model_Scale does may be necessary for benefits.

For the Subset_Per_Param_Scale init scheme, pre-attention layer norms was the only subset we
tried that provided significant initialization benefits, covering 46% and 39% of the gap between
From Scratch and Pre-trained_T5 for CNNDM-10K and MTOP. See results in Table 2 (labeled
Pre-attn_LN_Per_Param_Scale) and results for all four subsets tried in Appendix Table 5.

5.3 A Better Pre-attention Layer Norm Initialization

Synthetic pre-training results in lower pre-attention layer norm means. Motivated by benefits
from the Subset_Per_Param_Scale initialization scheme—initializing pre-attention layer norms
using their synthetic pre-trained means and all other parameters with the default initialization—we
wanted to see if the pre-attention layer norm mean values in synthetic pre-trained models have a
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Table 3: Results from initializing pre-attention layer norm parameters to a particular value. They are
initialized to the value of 1.0 in the Random_Init baseline which is the default T5 initialization.
Pre-attn LN Init Value CNNDM-10K MTOP WebQSP SQuAD Code Trans. Retrosyn.

0.05 28.2 25.7/73.3 30.5/71.2 22.8/31.2 57.9 39.3
0.1 28.3 32.5/77.5 28.9/70.6 23.5/31.7 57.6 39.9
0.2 28.2 56.4/89.3 30.6/72.3 28.2/37.3 57.0 39.4
0.4 24.4 56.9/89.9 30.0/72.8 36.3/46.9 57.3 39.6
0.8 18.6 50.7/88.5 28.0/71.6 34.2/44.6 57.2 39.9

Baseline CNNDM-10K MTOP WebQSP SQuAD Code Trans. Retrosyn.

Random_Init 18.9 (0.5) 38.6/83.0 (2.1/1.2) 25.8/71.5 (0.7/0.5) 16.0/24.2 (2.1/2.0) 57.6 (0.3) 39.0 (0.5)
Pre-trained_T5 35.8 (0.1) 81.0/95.2 (0.3/2.2) 82.3/91.7 (0.8/0.4) 77.4/86.1 (0.2/0.2) 61.2 (0.7) 43.5 (0.3)

pattern. In Appendix Figure 6, we plotted pre-attention layer norm parameter means of each layer for
LIME, Set, and Identity pre-trained models. We noticed that the pre-attention layer norm means
from the synthetic pre-trained models are much smaller values (below 0.4 for most layers) compared
to the default initialization of 1.0.

Lower value pre-attention layer norm initialization provides benefits. Inspired by the above
observation, we tried an initialization scheme where all the pre-attention layer norm parameters are
initialized to a specific value, and all other parameters are initialized with the default initialization.
We tried five different values ranging from 0.05 to 0.8. Results in Table 3 show that initializing the
pre-attention layer norm parameters to a lower value than the default initialization of 1.0 provided
significant benefits: initializing them to 0.2 improved CNNDM-10K from 18.9 to 28.2 ROUGE1,
MTOP from 38.6% to 56.4% EM, and SQuAD from 16.0 to 22.8 EM.

6 Related Work

Synthetic Pre-training Past work has shown that synthetic pre-training can benefit a wide range
of downstream tasks. For example, it has been shown that pre-training on artificial languages that
intuitively mimic properties of natural language can benefit language modeling, dependency parsing,
and GLUE (Ri & Tsuruoka, 2022; Papadimitriou & Jurafsky, 2020; Chiang & Lee, 2021). Pre-
training on LIME, a mixture of three synthetic tasks motivated from reasoning primitives, benefits
mathematical reasoning benchmarks (Wu et al., 2021). For summarization, Krishna et al. (2021)
designed a suite of synthetic summarization tasks on a corpus of random tokens, and they show such
pre-training can almost match up with natural pre-training. Synthetic pre-training also has been
applied outside of text-based domains: Anderson & Farrell (2022) shows pre-training on synthetically
generated fractal images nearly matches the benefits of pre-training with ImageNet.

Cross-domain Transfer Learning Synthetic pre-training benefiting downstream tasks across
a wide range of domains is an instance of cross-domain transfer learning, which past work has
demonstrated the efficacy of. Pre-training language models with many languages benefits downstream
tasks in a new unseen language (Liu et al., 2020). More surprisingly, pre-training on music, code,
and amino acid sequences benefits natural language downstream tasks (Papadimitriou & Jurafsky,
2020; Chiang & Lee, 2020). It was also shown recently that pre-training on natural language benefits
offline RL (Reid et al., 2022).

Understanding Pre-training Past work has explored what properties of the pre-training data are
important for benefits. Ri & Tsuruoka (2022) and Papadimitriou & Jurafsky (2020) use synthetic pre-
training to identify general properties of pre-training data that correlate with improved downstream
language task performance by leveraging how synthetic data is easy to modify in a controlled manner.
Papadimitriou & Jurafsky (2020) found that changing the distribution of tokens in an artificial
language can affect downstream performance, and Ri & Tsuruoka (2022) found that for an artificial
brackets language using a nesting structure as well as different tokens for bracket pairs results in
better performance than using a flat structure and the same token for bracket pairs. K et al. (2020),
Conneau et al. (2020), and Dufter & Schütze (2020) explore data properties related to cross-language
transfer learning. Sinha et al. (2021) shows that word order within sentences is not essential for
natural langauge pre-training benefits.

9



Other past work has used probing methods to explore what potentially transferable knowledge is
gained from pre-training. Ri & Tsuruoka (2022) explored how much knowledge of "position-aware
context dependence" was gained from artificial language and natural language pre-training. Chi
et al. (2020) and Papadimitriou et al. (2021) explored potentially transferable knowledge gained from
multi-lingual language pre-training.

Initialization Our work tried to understand pre-training through the lens of initialization statistics
that benefit optimization. There has been past work on improving transformer initialization to achieve
more stable training and benefits with deeper models (Zhang et al., 2019; Huang et al., 2020; Zhang
et al., 2020; Wang et al., 2022). These papers do not explore benefits from initializing with pre-trained
model statistics.

7 Discussion

Limitations of current synthetic tasks In this work, we show that synthetic pre-training can
provide significant benefits across many different tasks. However, synthetic pre-training still lags
behind natural pre-training by an average of 33% for the six downstream tasks we fine-tuned on.
This is expected for natural language downstream tasks, but it is important to note that even on
non-natural language tasks, natural language pre-training still outperforms synthetic pre-training.
This result suggests that natural language pre-training produces effects that are missing from the
evaluated synthetic pre-training. Exploring the differences between different pre-training may be an
interesting direction for future work.

We emphasize that this paper does not support any claims regarding the practical efficacy of synthetic
pre-training. The metric of "percentage of natural pre-training gap closed" measures relative perfor-
mance along a meaningless linear scale, and for downstream tasks retrosynthesis and code translation,
the magnitude of the improvement over from scratch for natural pre-training is low to begin with. This
paper’s goal is not to communicate that synthetic pre-training is practically effective, but rather to
communicate that synthetic pre-training produces nontrivial differences in model behavior compared
to a randomly initialized model, and also that there is nontrivial variation in model behavior from
differing synthetic pre-training and initialization schemes involving pre-trained weight statistics.

Synthetic pre-training requires deeper understanding Our results show that initialization using
the statistics from synthetic pre-trained models can recover more than 70% of the benefit from
synthetic pre-training. The remaining gap leaves open the possibility that the benefits of synthetic pre-
training are due to other factors besides better statistics for initialization. Due to their simplicity, Set
and Identity may be useful for future work towards deeper understanding of synthetic pre-training.

In the long term, as we learn more about synthetic pre-training and pre-training in general, we
believe that for some downstream tasks it may be possible to develop synthetic pre-training that
outperforms natural pre-training: the complexity of existing natural data is fixed, while in some sense
the complexity of fully synthetically generated data is infinite.

Privacy and Ethics This work focuses on the understanding of synthetic pre-training. But synthetic
pre-training can also have practical implications for privacy and ethics. Standard pre-training data,
even when its public, can contain private user information. Large pre-trained models are capable
of memorizing training examples, which makes them vulnerable to privacy attacks (Carlini et al.,
2020). Synthetic data on the other hand is divorced from the real world, which can help mitigate
privacy issues. Large pre-trained corpora can contain harmful text (e.g., hate speech). With synthetic
pre-training, since we have complete control over what goes into the data, we can potentially mitigate
some of the harmful behavior of existing models. Unfortunately, synthetic pre-training is currently
not as performant as natural pre-training, so real-world data would still have to be used to close the
performance gap.
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