
A1 Diffusion curvature of embryonic stem cell differen-
tiation

Figure A1: Diffusion curvature of embryonic stem cell differentiation. Left: PHATE visu-
alization of scRNA-seq data color coded by time intervals. Right: PHATE plot colored by
diffusion curvature values.

We applied diffusion curvature to a single-cell RNA-sequencing dataset of human em-
bryonic stem cells [1]. These cells were grown as embryoid bodies over a period of 27 days,
during which they start as human embryonic stem cells and differentiate into diverse cellu-
lar lineages including neural progenitors, cardiac progenitors, muscle progenitors, etc. This
developmental process is visualized using PHATE in Figure A1 (left), where embryonic cells
(at days 0-3, annotated in blue) progressively branch into the two large splits of endoderm
(upper split) and ectoderm (lower split around day 6. Then during days 12-27 they dif-
ferentiate in a tree-like manor into a multitude of lineages. Diffusion curvature, which is
illustrated in the plot on the right shows that the tree-like structure that emerges during
days 12-27 is consistently lower curvature than the initial trajectory which proceeds in a
linear manner at days 0-3. This accords with the idea that divergent lineage structure is
associated with low (negative) curvatures. Conversely, the endpoints of the transition corre-
sponding to the stem cell state (days 0-3) and differentiated state (days 18-27) are associated
with relatively high diffusion curvature values, indicative of positive curvature.

A2 Hessian eigenspectrum of a convolutional neural net
classifier

A CNN with 2 convolution layers (5 × 5 kernel, stride length of 1, 2 pixels zero padding)
containing 16 and 32 output channels respectively, ReLU activation, max pooling, and a
fully connected layer, was trained to classify MNIST images. The model consists of 28, 938
trainable parameters, which were updated using the Adam optimizer with a learning rate
of 0.01 during back-propagation. Parameter and loss values were saved at epochs 1, 2, 5,
10 and 12. The model was evaluated in the neighborhood of the saved parameters (at 1000
points sampled from 28, 938 dimensional hyperspheres of radii between 0.05 and 0.1, scaled
by the parameter values) and its hessian was estimated using CurveNet. The eigenspectrum
of the hessian (Figure A2) shows that the model parameters are at a saddle in epochs 1
and 2 as evidenced by the presence of both positive and negative eigenvalues. At epoch 5
or later, the absence of negative eigenvalues indicates that the parameters occupy a local
minima, which increasingly becomes sharper with further training.
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Figure A2: Density (left) and cumulative density (right) of the eigenspectrum when sam-
pling around an optimum in the loss landscape of a CNN trained on MNIST. At epoch ≥ 5,
we do not observe any negative eigenvalues, indicating that the parameters have reached a
local minima.

A3 Hessian eigenspectrum of ResNet-18 classifier

Figure A3: Density (left) and cumulative density (right) of the eigenspectrum when sam-
pling around an optimum in the loss landscape of ResNet-18 trained on MNIST. At epoch
≥ 2, we do not observe any negative eigenvalues, indicating that the parameters have reached
a local minima.

We trained ResNet-18 from scratch on the MNIST dataset using the implementation
provided by Torchvision. The default architecture was used, except the input layer was
modified to accept single-channel, grayscale images from MNIST. The model consists of
11.2M parameters, which were trained using the RMSProp optimizer with a learning rate
of 0.005. Parameter and loss values were saved at epochs 1, 2 and 5. The model was then
evaluated at 1000 points sampled in the local neighborhood of the saved parameters, and its
hessian was estimated using CurveNet. The eigenspectrum of the hessian (Figure A3) shows
a relatively flat landscape at epoch 1 with most eigenvalues close to 0. Isolated peaks at
positive eigenvalues appear at epoch 2, indicating that the parameter values have a reached
a minima with loss increasing in a few directions and staying constant in others. At epoch 5,
the parameter values have converged to a minima with large positive eigenvalues indicating
that the loss increases in all directions of the parameter space.
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A4 Extrinsic curvature estimation using Gauss–
Codazzi equations

A recent paper [2] proposes an orthogonal method to compute the intrinsic curvature of
point-cloud data via extrinsic measurements. They compute the second fundamental form
of the embedding which then yields the Riemann curvature tensor via the Gauss-Codazzi
equation. Given orthonormal bases for the tangent space and normal space of the embedded
manifold, the neighborhood of any point p can be expressed in terms of coordinates Y =
[t1, t2 . . . td, n1, n2 . . . nn−d] using regress functions nk = fk(t1, t2 . . .) to approximate the
normal coordinates. The Riemann curvature tensor is recovered from the quadratic terms
in the Taylor expansion of each fk via the Gauss-Codazzi equation. Scalar curvature is then
computed by contracting the Riemannian curvature tensor. This method of computation
becomes increasingly inefficient as the gap between ambient and intrinsic dimensions grows,
as with scRNA-sequencing data. Moreover, similar underlying systems measured in different
coordinates (i.e., single cell data measured in scATAC-seq and RNA-seq) can result in
different intrinsic curvatures as this method is dependent on the embedding.

In Table A1, we compare the mean squared error (MSE) and runtime of the proposed
CurveNet model against the second fundamental form scalar scurvature estimate using a test
data of 100 randomly generated quadric hypersurfaces. Although the second fundamental
form provide a better estimate of curvature, this methodology has a significantly higher
computational expense in comparison to the trained neural network.

Table A1: Hessian estimation of randomly generated quadric hypersurfaces using CurveNet
and Gauss–Codazzi equations. All MSE values scaled by 103, lower is better. Average
runtime in milliseconds is computed per test sample.

Intrinsic dim. CurveNet (1000 epochs) Gauss-Codazzi
(# nonzero coeffs.) MSE Avg. Runtime (ms) MSE Avg. Runtime (ms)

2 (4) 2.115± 1.250 2.20 0.018± 0.020 2885
5 (16) 0.964± 0.144 2.55 0.110± 0.143 2786
10 (56) 0.752± 0.013 3.49 0.806± 0.273 5024
15 (121) 0.766± 0.022 5.57 0.394± 0.065 14002
20 (211) 0.712± 0.034 6.47 0.551± 0.109 56600

A5 Relationship between diffusion operator and curva-
ture

Given the strong relationship between diffusion coordinates and the eigenvectors of the
Laplace–Beltrami operator, one can believe that these two objects capture similar properties
of the manifold. As explored below, the eigenvalues of the Laplace–Beltrami operator relate
to the curvature of a compact Riemannian manifold via the asymptotics of the trace of the
heat kernel, and this lends credence to use of the diffusion probabilities to measure curvature
on a data manifold. This section follows closely the exposition in [3].

On a compact Riemannian manifold M we define the Laplace–Beltrami operator ∆ to be
∆(f) = −div(grad(f)). We consider the eigenvalues ∆(f) = λf and note that the spectrum
of ∆ acting on L2(M) is a discrete set of non-negative numbers {0 = λ0 < λ1 ≤ λ2 ≤ · · ·}
where each eigenvalue is written as many times as its multiplicity.

For compact Riemannian manifolds the heat kernel (or fundamental solution of the heat
equation ut +∆(u) = 0) exists uniquely and is given by

K(t, x, y) =
∑
j

e−λjtϕj(x)ϕj(y)
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where the λj and ϕj are the eigenvalues and associated eigenfunctions of the Laplace–
Beltrami operator, with the eigenfunctions normalized to form an orthonormal basis of
L2(M).

We take the trace of the heat kernel and note that

Z(t) ≡
∫
M

K(t, x, x) dx =

∞∑
j=0

e−λjt

so that the spectrum {λj} determines the heat trace Z(t).

Minakshisundaram and Pleijel’s formula [4] for the asymptotic expansion of Z(t) as
t → 0+ is given by

Z(t) = (4πt)−n/2
∞∑
k=1

akt
k

where the coefficients ak are expressed via the metric and its derivatives. The first handful
of coefficients have been calculated explicitly:

a0 = vol(M), a1 =
1

6

∫
M

τ, a2 =
1

360

∫
M

(5τ2 − 2|Ric|2 − 10|R|2)

where n is the dimension, τ is the scalar curvature, Ric is the Ricci tensor, and R is the
curvature tensor. In this way we see that the Laplace–Beltrami operator, via its eigenvalues,
determines geometric information about the manifold, including the dimension, volume, and
total scalar curvature. In the closed surface setting (n = 2) one can use Gauss-Bonnet to
additionally recover the genus.

While the spectrum of the Laplace–Beltrami operator certainly contains interesting geo-
metric information, it does not determine the isometry class of the manifold. Indeed, Milnor
in 1964 produced the first examples of isospectral, non-isometric manifolds. Many additional
examples have been produced, and with each pair one can reveal geometric information that
is not encoded in the spectrum. These inaudible properties include the fundamental group,
diameter, maximum scalar curvature, and even the local geometry of the manifold. One
must therefore be prudent when using diffusion (and its relation to the Laplace–Beltrami
operator) to prescribe curvature on a data manifold.

The Bochner formula similarly relates the Laplace-Beltrami operator on a Riemannian
manifold to its Ricci tensor. It states

1

2
∆|∇f |2 = g(∇∆f,∇f) + |∇2f |2 +Ric(∇f,∇f)

where ∆ is the Laplace-Beltrami operator, g(·, ·) is the metric, ∇ is the gradient, ∇2 is the
Hessian, and Ric is the Ricci tensor. When f ∈ C∞(M) is harmonic, i.e. ∆(f) = 0, the
metric term disappears and we have

1

2
∆|∇f |2 = |∇2f |2 +Ric(∇f,∇f).

We take these formulas as further evidence that the diffusion operator should contain infor-
mation about the curvature of its associated data manifold.

A6 Data and code availability

All source code and data are available under the MIT License at https://github.com/

KrishnaswamyLab/CurveNet.
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