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Abstract

We introduce a new intrinsic measure of local curvature on point-cloud data called
diffusion curvature. Our measure uses the framework of diffusion maps, including
the data diffusion operator, to structure point cloud data and define local curvature
based on the laziness of a random walk starting at a point or region of the data.
We show that this laziness directly relates to volume comparison results from
Riemannian geometry. We then extend this scalar curvature notion to an entire
quadratic form using neural network estimations based on the diffusion map of
point-cloud data. We show applications of both estimations on toy data, single-cell
data and on estimating local Hessian matrices of neural network loss landscapes.

1 Introduction

With the advent of high-throughput high-dimensional point-cloud data in many fields including
biomedicine, social science, physics, and finance, there is an increasing need for methods to extract
structure and patterns. A key framework for exploring such data is the manifold hypothesis, which
states that high-dimensional data arise as samples from an underlying lower dimensional manifold.
The diffusion geometry and diffusion map framework first introduced by Coifman et al. [1] has
proven to be a useful framework for the shape and structure of the data. Diffusion geometry involves
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converting data into an affinity graph which is then Markov normalized to form a data diffusion
operator. This diffusion operator allows for the understanding of geometric features of the data such
as manifold-intrinsic distances, and intrinsic manifold eigendimensions (also known as diffusion
maps). However, curvature, a salient feature of Riemannian geometry, has received less attention.
Being an inherently smooth quantity, its extension to the discrete case is not straightforward. The
most authoritative definitions of curvature in the discrete setting have been that of Ollivier–Ricci [2]
and of Forman [3], which compute curvature on edges of a graph. By contrast, here we propose a
method of estimating curvature at points or regions in point-cloud data, where there are no inherent
edges to consider—one of the first such formulations to our knowledge.

To achieve this, we utilize the connection between data diffusion and volume to define a new
formulation of curvature known as diffusion curvature based on the volume growth of graph diffusion
starting from a vertex. Starting from a unit mass placed at one or several points, we show that in
cases of positive curvature the volume growth tends to be slower with more of the mass remaining in
the original point, whereas in cases of negative curvature the mass tends to disperse faster to other
points. Therefore the ratio of mass in the original point, compared to the remainder of the cloud gives
a scalar value of curvature. We note that this method avoids the complexity of having to consider all
(potentially exponentially many) edges that would arise by simply attempting to directly translate
notions of edge curvature to the data affinity graph. In addition to the scalar notion of curvature, we
also show that we are able to compute a quadratic form of arbitrarily high dimensions using neural
network training based on diffusion probabilities as the input.

We validate our notion of curvature on toy datasets as well as real single-cell point cloud data of
very high dimensionality. Then, we study both the scalar diffusion as well as the diffusion based
quadratic form in studying the area surrounding found minima in neural network loss landscapes.
The Hessian of the parameter space is generally difficult to compute as it contains O(n2) entries
for a neural network with n parameters. However, restricting ourselves to the area around a local
minima yields a lower dimensional space, where only a subset of parameter combinations change
in the vicinity. We sample in this lower dimensional space and compute a diffusion operator which
allows us to assess the curvature of the minima. First, we can assess if the point of convergence is
indeed a minimum or potentially a saddle. Further, studies have shown that flat minima, i.e., minima
situated in a neighborhood of the loss landscape with roughly similar error, tend to generalize better
than sharp minima. These qualities can be assessed from curvature estimations of minima regions.

Our key contributions include:

• The formulation of diffusion curvature, an intrinsic scalar valued curvature for regions of
high dimensional data sampled from an underlying manifold, computed from data diffusion.

• Proof that our notion of curvature will result in higher values in positive curvature based on
volume comparison results from Riemannian geometry.

• A neural network version that computes a quadratic form starting from a diffusion map.
• Validation of our framework on toy and single cell datasets.
• Application to Hessian estimation in neural networks.

2 Background

2.1 High Dimensional Point Clouds and the Manifold Assumption

A useful assumption in representation learning is that high-dimensional data is sampled from an
intrinsic low-dimensional manifold that is mapped via nonlinear functions to observable high-
dimensional measurements; this is commonly referred to as the manifold assumption. Formally,
let Md be a hidden d dimensional manifold that is only observable via a collection of n ≫ d
nonlinear functions f1, . . . , fn : Md → R that enable its immersion in a high-dimensional ambient
space as F (Md) = {f(z) = (f1(z), . . . , fn(z))

T : z ∈ Md} ⊂ Rn from which data is collected.
Conversely, given a dataset X = {x1, . . . , xN} ⊂ Rn of high-dimensional observations, manifold
learning methods assume data points originate from a sampling Z = {zi}Ni=1 ⊂ Md of the underlying
manifold via xi = f(zi), and aim to learn a low dimensional intrinsic representation that approximates
the manifold geometry of Md.
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2.1.1 Diffusion Maps

To learn a manifold geometry from collected point cloud data, we use the popular diffusion maps
construction [1]. This construction starts by considering local similarities defined via a kernel K(x, y),
with x, y ∈ F (Md), that captures local neighborhoods in the data. While the Gaussian kernel is a
popular choice for K, it encodes sampling density information in its computation. Hence, to construct
a diffusion geometry that is robust to sampling density variations, we use an anisotropic kernel

K(x, y) =
G(x, y)

∥G(x, ·)∥α1 ∥G(y, ·)∥α1

with ∥ · ∥1 the 1-norm (or row sum) and G(x, y) = e−∥x−y∥2/σ as proposed in [1], where 0 ≤ α ≤ 1
controls the separation of geometry from density, with α = 0 yielding the classic Gaussian kernel,
and α = 1 completely removing density and providing a geometric equivalent to uniform sampling
of the underlying manifold. In [1], it is shown that in the limit of infinitely many points this becomes
equivalent to a Laplace–Beltrami operator, which encodes geometric properties of the underlying
manifold. Next, the similarities encoded by K are normalized to define transition probabilities
p(x, y) = K(x,y)/∥K(x,·)∥1 that are organized in an N ×N row stochastic matrix Pij = p(xi, xj) that
describes a Markovian diffusion process over the intrinsic geometry of the data. Finally, a diffusion
map is defined by taking the eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λN and (corresponding) eigenvectors
{ϕj}Nj=1 of P, and mapping each data point xi ∈ X to an N dimensional vector:

Φt(xi) = [λt
1ϕ1(xi), . . . , λ

t
NϕN (xi)]

T (1)

Here t represents a diffusion-time. In general, as t increases, most of the eigenvalues become
negligible; truncated diffusion map coordinates can thus be used for dimensionality reduction, and
Euclidean distances in this space are a manifold-intrinsic distance [1, 4]. Note that the trivial
eigenvector, ϕ1 (with corresponding eigenvalue λ1 = 1), is often omitted since it represents the
stationary distribution of the Markov random walk and does not contain information about the data.
Previous work has demonstrated robustness to noise and outlined the best practices for choosing
kernel parameters for various applications, including diffusion-based dimensionality reduction and
manifold learning of single-cell data [5, 6, 7].

The eigenvalues of the Laplace-Beltrami operator, as well as the eigenvalues of the diffusion map,
encode geometry information about a compact Riemannian manifold [1], as can be seen via the
asymptotic expansion of the trace of the heat kernel [8]. Dimension, volume, and total scalar
curvature are spectrally determined properties of the manifold. Given the relationship between
diffusion coordinates and the eigenvectors of the Laplace-Beltrami operator, one can surmise that the
diffusion operator also encodes geometric information. These relations motivate our use of diffusion
to measure curvature on a data manifold. Section A5 in the Appendix contains additional details in
the Riemannian setting.

2.2 Discrete Curvature in Riemannian Geometry

There is a long history in Riemannian geometry of using curvature to study geometric and topological
properties of a Riemannian manifold. In particular, lower bounds on Ricci curvature have been related
to diameter (Bonnet-Myers [9]), volume (Bishop-Gromov [10]), the Laplacian (Cheng-Yau [11]), the
isoperimetric constant (Buser [12]), and topological properties of the manifold (Hamilton’s Ricci
flow [13]). Although somewhat paradoxical, there has recently been work to extend these smooth
Riemannian ideas to the discrete setting, in particular to graphs and Markov chains. Especially
notable in this regard is the definition of discrete Ricci curvature due to Ollivier which makes use of
the transport distance between probability distributions.

Ollivier’s Ricci curvature [2] starts with a metric space X equipped with a random walk (a probability
measure mx(·) for each x ∈ X) and assigns the edge-wise scalar curvature kOR(x, y) = 1 −
W1(mx,my)/d(x,y) where W1(·, ·) is the L1 transportation distance (also known as earth mover’s
distance or Wasserstein distance). In the Riemannian setting, if one defines the random walk to be
dmr

x(y) = dvol(y)/volB(x,r) then Ollivier demonstrates that kOR(x, y) = r2Ric(v,v)/2d+2 + O(r3 +
d(x, y)r2) where v is a unit tangent vector, and y is a point on the geodesic issuing from v with
d(x, y) small enough. Ollivier (and others [14], [15]) have used lower bounds on this notion of
curvature to study global properties of the space (i.e. diameter, volume growth, spectral gap).
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The main downsides of Ollivier’s Ricci curvature are that it is an edge-wise notion and that it requires
knowledge of the transport distance. A priori point cloud data does not come with a graph structure.
We therefore propose a diffusion based method for prescribing a point-wise scalar curvature to point
cloud data. Like Ollivier’s notion, this diffusion curvature is based on the idea that the spread of
geodesics is influenced by Riemannian curvature. We prove theoretical bounds on the diffusion
curvature by appealing to the Bishop-Gromov volume comparison theorem.

2.3 The Loss Landscape and Hessian of Neural Networks

In the context of neural networks, second-order information about the loss function contains useful
information about the generalizability of minima, the heuristic being that flat minima generalize better
than sharp minima. Previous studies have sought to directly examine the loss landscape of a neural
network. Li et al. [16] used random samples around found minima to visualize and quantify sharpness
of minima, Horoi et al. [17] utilized jump-and-retrain sampling to visualize and classify “good” and
“bad” minima. However, computing the full Hessian of the parameter space is only possible in special
cases such as variational quantum classifiers [18] and it is generally intractable for high-dimensional
systems (such as the parameter space of a neural network). Consequently, previous work has sought
to approximate the largest (and smallest) eigenvalues of the Hessian [19, 20], yielding an incomplete
picture. To circumvent this, we estimate a low dimensional Hessian of the loss function around its
optimum using a quadratic approximation. Restricting ourselves to the area around the optimum
yields a lower dimensional space, where only a subset of parameter combinations change in the
vicinity. This Hessian approximation is achieved by sampling around the optimum, constructing a
diffusion operator based on these sampled points, and using a neural network to learn the coefficients
of the quadratic approximation.

Neural networks are trained such that their output function f(X, θ) matches a given function y(X)
on training data X by performing, e.g., stochastic gradient descent on a loss function comparing y
and f with respect to the parameters θ. A typical example of a loss function is mean squared error
L(X, θ) =

∑
x∈X ||f(x)− y(x)||2. The loss function defines a loss landscape for fixed training data

X . Here, we use data diffusion to directly estimate the Hessian of the loss landscape, with respect
to the parameters of a neural network, around found minima, providing a quantitative measure of
the region in terms of its spectrum and condition number. In general, the Hessian of a scalar-valued
function, L(θ) is a symmetric matrix of partial derivatives with the quadratic form:

HL(v) = (v1 . . . vn)


∂2L

∂θ1∂θ1
. . . ∂2L

∂θ1∂θn
...

. . .
...

∂2L
∂θn∂θ1

. . . ∂2L
∂θn∂θn


v1

...
vn


Since the gradient is zero at critical points, i.e., ∇L(θ0) = 0, the quadratic approximation to the
function around its critical points is given by: L(θ) ≈ L(θ0) + 1/2HL(θ − θ0). We see that
the signature of the Hessian (the signs of its eigenvalues) precisely classifies the critical points
(∇L(θ0) = 0) as a local maximum (all eigenvalues are negative), minimum (all eigenvalues are
positive) or saddle (eigenvalues have mixed signs). Computing a local Hessian yields rich information
about the local curvature around the optimal point in the neural network parameter space.

3 Methods

3.1 Diffusion Curvature

We now illustrate how diffusion can be used to measure the relative spreading of geodesics under the
influence of Riemannian curvature. To build intuition, we first discuss the case of surfaces (dimension
n = 2). Three canonical surfaces are the sphere, the cylinder, and the saddle. The Gaussian curvature
of these surfaces are positive, zero, and negative, respectively. Imagine taking a sticker and trying
to adhere it to one of these surfaces. The sticker, having been printed on a flat piece of paper, has
zero Gaussian curvature. It will adhere perfectly to the cylinder, will bunch up (there will be too
much sticker material) when trying to adhere it to the sphere, and will rip (there will be too little
sticker material) when trying to adhere it to the saddle. This example showcases the area comparison
definition [21, pp. 225–226] of Gaussian curvature, k, where one computes the limiting difference

4



between the area A(r) of a geodesic disk on the manifold and a standard Euclidean disk,

k = lim
r→0+

12
πr2 −A(r)

πr4
.

For example, Gaussian curvature will be positive when πr2 > A(r), i.e., when the area of the sticker
exceeds the area of the corresponding geodesic disk on the sphere. The Bishop-Gromov volume
comparison theorem formalizes how to extend this into dimensions n > 2. Here we will compare
to Mn

k , the complete n-dimensional simply-connected Riemannian manifold of constant sectional
curvature k, i.e the sphere of radius 1/

√
k when k > 0, Euclidean n-space when k = 0, and the

appropriately scaled version of hyperbolic n-space when k < 0.

Theorem 1 (Bishop-Gromov). Let (Mn, g) be a complete Riemannian manifold with Ricci curvature
bounded below by (n − 1)k. Let B(p, r) denote the ball of radius r about a point p ∈ M and
B̄(pk, r) denote a ball of radius r about a point pk ∈ Mn

k (as defined above). Then ϕ(r) =
Vol(B(p,r))/Vol(B̄(pk,r)) is a non-increasing function on (0,∞) which tends to 1 as r → 0. In particular,
Vol(B(p, r)) ≤ Vol(B̄(pk, r)).

Theorem 1 captures the sticker phenomenon: as curvature increases, the volume of comparable
geodesic balls decreases. Positive curvature corresponds to geodesic convergence and smaller
volumes, whereas negative curvature corresponds to geodesic divergence (spread) and larger volumes.
The discrete nature of the data manifold makes it impossible to compare volumes as the distance
scale (radius) goes to zero. Theorem 2 gives us access to the intrinsic distance between data points,
i.e., the diffusion distance, which we then use to define metric balls on the Riemannian manifold M .

Theorem 2 (Coifman et al. [22]). The diffusion map Φt(xi) = [λt
1ϕ1(xi), . . . , λ

t
NϕN (xi)]

T embeds
data into a Euclidean space where the Euclidean distance is equal to the diffusion distance Dm, i.e.
D2

m(x, y) = ∥Φt(x)− Φt(y)∥2(1 +O(e−αm)) .

We can now define Bm(x, r) = {y ∈ M : Dm(x, y) ≤ r} ⊂ M to be the ball centered at x ∈ M
with diffusion radius r. Let B(x, r) denote the set of sampled points from Bm(x, r) and let |B(x, r)|
denote the cardinality of this set. To define diffusion curvature, we generate a random walk from a
point x by diffusing a Dirac based at x, i.e., mx(·) = δxP

t where δx is the one-hot vector, so that
mx(y) = Pt(x, y) is the transition probability from x to y.

Definition 1. The pointwise diffusion curvature C(x) is the average probability that a random walk
starting from a point x ends within B(x, r) after t steps of data diffusion, i.e.,

C(x) =

∑
y∈B(x,r) mx(y)

|B(x, r)|
(2)

We can extend this definition to a contiguous region U of the manifold M consisting of neighboring
points U = {xj}kj=1 by defining mU (·) = δUP

t, where δU is the indicator vector on the set U .

We have C(x) ∈ [0, 1/N ] where N = |B(x, r)| with larger values indicating higher curvature
relative to lower values. The idea is to use diffusion probabilities to capture the relative spreading of
geodesics. Intuitively, a random walker is more likely to return to their starting point in a region of
positive curvature (where paths converge) than negative curvature (where paths diverge).

More precisely, in negatively curved regions, the random walker can get lost in the various divergent
(disconnected) branches, whereas in positively curved regions the paths of the random walker exhibit
more inter-connectivity, so that the return probability of a walk is higher. We make this idea more
formal in the following:

Theorem 3. If we sample uniformly from a Riemannian manifold Mn with Ricci curvature bounded
below by k(n− 1) then C(x) ≥ C(xk), where x ∈ Mn and xk ∈ Mn

k (as defined above).

Proof. From Theorem 1 we have vol(Bm(x, r)) ≤ vol(B̄m(xk, r)) and together with uniform
sampling this yields |B(x, r)| ≤ |B̄(xk, r)|. We then have 1/|B(x, r)| ≥ 1/|B̄(xk, r)| so that even
with uniform transition probability measures we achieve the desired inequality. Moreover, as the
probability measure mx(·) is constructed by diffusing a Dirac according to affinities based on a
Gaussian kernel, the measure decays with relative diffusion distance from x. Hence for sets centered
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Figure 1: Diffusion recovers Gaussian curvature information (up to a scaling factor and offset) on test
manifolds, e.g. sphere, torus, ellipsoid and hyperboloid.

at x, larger cardinality implies lower average transition probability. We may therefore conclude that

C(x) =

∑
y∈B(x,r) mx(y)

|B(x, r)|
≥

∑
y∈B̄(xk,r)

mxk
(y)

|B̄(xk, r)|
= C(xk).

Limitations. While diffusion curvature can be computed easily, it also necessitates an accurate
sampling procedure, which can be problematic for difficult spaces. Moreover, due to its formulation,
diffusion curvature only provides relative (non-negative) values.

3.2 Neural Network Implementation of Quadratic Forms

In the previous section, we have shown that the diffusion operator and associated diffusion proba-
bilities contain information for computation of curvature from point cloud data. In this section, we
extend this measure from a scalar quantity to an entire quadratic form by training a neural network on
the diffusion map embedding of the point cloud. A schematic of our neural network, called CurveNet,
is shown in Figure 2.

CurveNet takes as input points {Xi = (xi, yi)}Ni=1 sampled near a local minimum or saddle point
(xs, ys). Here xi ∈ Rk are input parameters for an objective function or loss, f , with yi = f(xi)
and ∇f(xs) = 0. Points sampled from the parameter space of a neural network are mapped to an
N dimensional diffusion vector, Φt(Xi) = [λt

1ϕ1(Xi), . . . , λ
t
Nϕn(Xi)]

T . Recall from Equation
1 that the diffusion map is an eigendecomposition of the diffusion operator Pt. Hence, without
reduction of dimensionality, it encodes all information present in the diffusion operator, and contains
N dimensions for a sampling of N points. Here we utilize this to estimate a k × k quadratic form of
the sampled point cloud, yi = xT

i Q̂xi, using a neural network. Note that when the point cloud is a
sample of a local region in the manifold, this gives a localized quadratic form describing 2nd order
information in the region sampled.

Since our focus is on local quadratic approximation, we train CurveNet on samples from idealized
surfaces of the form f(x) = xTQx where Q is a symmetric matrix with dimensionality dependent
on the cardinality of the point cloud; see Figure 3 for some examples of generated 2-D surfaces. We
generate a series of such surfaces by varying parameters within Q and sampling points. We then
provide the diffusion map embedding of the sampled points to the neural network and train it to
predict Q using a mean-squared error loss. We also include an L1 regularization term to promote
sparsity in the coefficients, which estimates the dimensionality of the input data, leading to

L(Q, Q̂) =

k∑
j=1

j∑
j′=1

(Qjj′ − Q̂jj′)
2 + α|Qjj′ |. (3)
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Figure 2: The neural network is trained on points (xi, yi) sampled from randomly generated quadrics
and tested on weights (Wi) and loss values (li) sampled from the loss landscape of neural networks.
Objective function values, yi, and loss values, li, are treated as special axes containing curvature
information. Points sampled from the loss landscape, Xi, are embedded using the diffusion map Φt.

Curvature and the Hessian. In the classical setting of surfaces, a relevant notion of curvature is
the Gaussian curvature κ. In the special case that M is realized as the graph of a function f(x, y),
the Gaussian curvature can be calculated explicitly from the Hessian matrix H of f by the formula

κ(x, y) =
det(H(x,y)f)

(1 + |∇(x,y)f |2)2
.

Note that at a local optimum of f (where ∇f = 0) the Gaussian curvature is completely characterized
by the eigenvalues of the Hessian. In higher dimensions, by contrast, a single number is no longer
sufficient to capture the full curvature information of a Riemannian manifold, and one instead
appeals to the Riemann curvature tensor. In the special case that M is realized as the graph of a
function f : Rn → R, the spectrum of the Hessian of f again contains important (albeit not complete)
curvature information. As we are interested in measuring curvature in the setting of loss landscapes,
we apply CurveNet described above to directly compute the Hessian of the parameters with respect
to the loss function of a neural network in question.

4 Results

We validate both diffusion curvature and CurveNet using (a) synthetic test cases, and (b) single-cell
RNA sequencing data (scRNA-seq). Moreover, we analyze the quality of our curvature estimation
methods in a data sampling scenario, where we sample points in the vicinity of an optimum. All test
cases are chosen to assess the efficiency and accuracy of our methods.

We trained CurveNet on N = 1000 samples from idealized quadratic surfaces. Later, we sampled
1000 points in the local neighborhood of the model parameters to estimate curvature of the loss
landscape via the diffusion map embedding. As the parameter space of neural networks can be
large, sampling points around the minima is a method of reducing dimensionality and restricting
the estimation to a less complex space. In these local neighborhoods, the intrinsic dimension of
the loss manifold is low, since trainable parameters are unlikely to change near the minimum.
We used intrinsic dimensions of k = {2, 3, . . . 20} to generate idealized surfaces to ensure that
CurveNet can approximate the Hessian within a reasonable range of intrinsic dimensions. We
trained on 5000 different randomly generated quadrics, all sampled using N = 1000 points, for
each intrinsic dimension. CurveNet then outputs a quadratic form with K(K + 1)/2 entries, where
(K = max(k) = 20), which we compare with the known ground truth using mean squared error
(Table 1). Training and testing were done on 8 core Tesla K80 GPUs with 24 GB memory/chip.
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Table 1: MSE (µ± σ) of neural network Hessian estimation. All values scaled by 103, lower is better.

Test Data CurveNet CurveNet Baseline
Intrinsic dim. (# epochs = 1000) (# epochs = 100) (random)
(# nonzero coeffs.)

2 (4) 2.115± 1.250 14.071± 8.664 612.145± 2.836
5 (16) 0.964± 0.144 4.865± 3.382 554.652± 1.704
10 (56) 0.752± 0.013 0.798± 0.029 530.203± 0.645
15 (121) 0.766± 0.022 0.085± 0.007 521.050± 0.485
20 (211) 0.712± 0.034 0.082± 0.004 515.739± 0.397

Figure 3: Curvature estimation on toy dataset of quadric surfaces.

4.1 Toy test cases for curvature estimation

First, we calculated diffusion curvature for simple 2-manifolds embedded in R3. We performed t-step
random walks on points sampled from test surfaces like the torus, sphere, ellipsoid and hyperboloid,
shown in Figure 1. The resulting diffusion curvature measurement is strongly correlated Gaussian
curvature, a well known intrinsic notion of curvature. Next, we generated a series of synthetic datasets
representing minima and saddles where the primary objective is to estimate curvature at central
points (which are not affected by edge effects). Figure 3 shows a series of artificially generated 3D
surfaces whose curvature varies in two principal directions from positive to negative. In the left
column we show the curvature estimate given by diffusion curvature (Eqn. 2). The second, third and
fourth columns show comparisons to Gaussian curvature (defined in Section 3.1), mean curvature
and Ollivier’s Ricci curvature (defined in Section 2.2) respectively. The last column contains biaxial
plots showing the correlation between Gaussian and diffusion curvature.

We observe that diffusion curvature captures Gaussian Curvature on these data. Despite being scaled
differently, diffusion curvature highlights essentially the same structures as Gaussian Curvature. This
qualitative observation is quantified by the correlation. Overall, we obtain high correlations for
the different surfaces. The last surface is slightly different, as high values measured by diffusion
curvature are more concentrated within the “cusp”, whereas Gaussian curvature spreads out such
values over a larger part of the surface. This example demonstrates the benefits of diffusion curvature,
though: in the context of loss landscape analysis, diffusion curvature is much more sensitive to such
sharper minima, thus facilitating their detection.
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Figure 4: Diffusion curvature of the iPSC data.

4.2 Curvature estimation for single-cell data

We also estimated the curvature of a publicly available single-cell point cloud dataset obtained
using mass cytometry of mouse fibroblasts. The dataset does not contain any identifiable or human
information. Mass cytometry is used to quantitatively measure 2005 mouse fibroblast cells induced
to undergo reprogramming into stem cell state using using 33 channels representing various protein
biomarkers. Such a system is often called induced pluripotent stem cell (iPSC) reprogramming [23].
This dataset shows a progression of the fibroblasts to a point of divergence where two lineages emerge,
one lineage which successfully reprograms and another lineage that undergoes apoptosis [4]. We note
that our model correctly identifies the initial branching point (with cells that don’t survive) as having
low values of diffusion curvature indicating relatively negative curvature due to divergent paths out
of the point (resulting in divergent random walks, see Figure 4). On the other hand it shows higher
values indicating flat curvature along the horizontal branch. Diffusion curvature of another single-cell
dataset, measuring embryonic stem cell differentiation, is provided in Section A1 of the Appendix.

4.3 Hessian estimation and sampling

To obtain second-order information around a critical point, xs, we estimate a local Hessian: we
first (for both toy test cases and neural networks) sample n points, x1, x2 . . . xn, at random in the
neighborhood of the critical point. Here xi ∈ Rk,, where k is the full dimensionality of the domain of
the toy functions or the neural network: f : Rk → R and the value of the objective function or loss,
f ∈ R can be obtained by evaluating f(xi). In both settings, this allows us to obtain an Rn×(k+1)

matrix. Each row represents a sampled point xi ∈ Rk with its associated loss or objective function in
the last column. We consider this column as a special loss axis and use it as an input to the neural
network to learn the coefficients along with the diffusion axes, which are obtained from the sampled
points.

The diffusion axes were obtained by constructing a diffusion map inRn based on the sampled points
around the optimum, i.e., the minimum. We uniformly sampled 1000 points on a k-dimensional
hypersphere which was then scaled by the parameter space of the optimum or saddle, as well as the
gradient at that point. Special care was taken to ensure the points were sampled locally by evaluating
at the relative difference between the evaluated loss at locally sampled points around the optimum or
saddle and the actual loss at the optimum or saddle. We then use these diffusion coordinates Φ(x)
and the value at the sampled point f(x) ∈ R as an input pair (Φ(x), f(x)) to the neural network,
which we ultimately use to estimate the Hessian. Figure 5 shows the eigenspectrum of the Hessian
estimated using CurveNet for a feed-forward neural network trained to classify MNIST digits. We
observe that the number of negative eigenvalues of the Hessian matrix (indicative of a maximum
in the loss landscape) decrease over training epochs. In Figure 5, when comparing epoch 25 and
epoch 200, we observe a marked shift in the (cumulative) density of eigenvalues towards positive
eigenvalues, showing that the feed-forward neural network is approaching a minima in the parameter
space. Hessian eigenspectrums estimated using CurveNet for a convolutional neural network and
ResNet-18 are provided in the Appendix (Sections A2 and A3).
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Figure 5: Density (left) and cumulative density (right) of the eigenspectrum when sampling around
an optimum. At epoch 200, we observe a substantial decrease in the number of negative eigenvalues,
showing that CurveNet is better capable of approximating the minimum.

5 Conclusion

We proposed diffusion curvature, a new measure of intrinsic local curvature of point clouds. Our
measure leverages the laziness of random walks, obtained using the diffusion maps framework. We
link diffusion curvature to existing volume comparison results from Riemannian geometry. In contrast
to these notions, diffusion curvature can be computed effectively via neural networks even for high-
dimensional data. While we demonstrated the effectiveness of such a curvature measure by analyzing
numerous datasets of varying complexities, our formulation also leads to new research directions.
Of particular interest will be proving additional results about our measure, relating it to existing
quantities such as the Laplace–Beltrami operator, as well as formally proving its stability properties.
We also want to develop new methods that use diffusion curvature to compare different datasets; being
a quantity that is invariant under transformations (such as rotations of a point cloud), we consider
diffusion curvature to be a suitable candidate for assessing the similarity of high-dimensional complex
point clouds.
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