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Abstract

We propose a new stochastic method SAPD+ for solving nonconvex-concave mini-
max problems of the form min maxL(x, y) = f(x) + Φ(x, y)− g(y), where f, g
are closed convex and Φ(x, y) is a smooth function that is weakly convex in x,
(strongly) concave in y. For both strongly concave and merely concave settings,
SAPD+ achieves the best known oracle complexities of O(Lκyε

−4) and O(L3ε−6),
respectively, without assuming compactness of the problem domain, where κy is
the condition number and L is the Lipschitz constant. We also propose SAPD+ with
variance reduction, which enjoys the best known oracle complexity of O(Lκ2

yε
−3)

for weakly convex-strongly concave setting. We demonstrate the efficiency of
SAPD+ on a distributionally robust learning problem with a nonconvex regularizer
and also on a multi-class classification problem in deep learning.

1 Introduction
We consider the following saddle-point (SP) problem:

min
x∈X

max
y∈Y
L(x, y) , f(x) + Φ(x, y)− g(y), (1)

where X and Y are, n and m dimensional Euclidean spaces, the function Φ : X × Y → R is smooth
and possibly nonconvex in x ∈ X and µy-strongly concave in y ∈ Y for some µy ≥ 0 –with the
convention that for µy = 0, Φ is merely concave (MC) in y, and the functions f and g are closed,
convex and possibly nonsmooth. In this paper, we consider a particular case of nonconvexity, i.e.,
we assume that Φ(·, y) is weakly convex (WC) for any fixed y ∈ dom g ⊂ Y . Weakly convex
functions constitute a rich class of non-convex functions and arise naturally in many practical settings
for machine learning (ML) applications [9, 35], precise definitions will be given later in Section
2. In practice, WC assumption is widely satisfied, e.g., under smoothness –see remark 1; most of
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the work in related literature considering nonconvex-(strongly) concave SP problems provide their
analyses under the premise of weak convexity. The problem (1) with µy > 0 is called a weakly
convex-strongly concave (WCSC) saddle-point problem, whereas for µy = 0, it is called a weakly
convex-merely concave (WCMC) saddle-point problem. Both problems arise frequently in many
ML settings including constrained optimization of WC objectives based on Lagrangian duality [22],
Generative Adversarial Networks (GAN) (where x denotes the parameters of the generator network
whereas y represents the parameters of the discriminator network [13]), distributional robust learning
with weakly convex loss functions such as those arising in deep learning [14, 35] and learning
problems with non-decomposable losses [35].

There are two important settings for (1): (i) the deterministic setting, where the partial gradients of Φ
are exactly available, (ii) the stochastic setting, where only stochastic estimates of the gradients are
available. Although, recent years have witnessed significant advances in the deterministic setting
[6, 17, 19, 23, 24, 25, 33, 36, 38]; our focus in this paper will be mainly on the stochastic setting,
which is more relevant and more applicable to ML problems. Indeed, due to large-dimensions and
the sheer size of the modern datasets, computing gradients exactly is either infeasible or impractical
in ML practice, and gradients are often estimated stochastically based on mini-batches (randomly
sampled subset of data points) as in the case of stochastic gradient-type algorithms.

There is a growing literature on the WCSC and WCMC problems in the stochastic setting. Several met-
rics for quantifying the quality of an approximate solution to (1) have been proposed in the literature.
A common way to assess the performance is to define the primal function φ(·),maxy∈Y L(·, y) and
measure the violation of first-order necessary conditions for the non-convex problem minx∈X φ(x).
Given the primal iterate sequence {xk}k≥0 of a stochastic SP algorithm and a threshold ε > 0, a
commonly used metric is the gradient norm of the Moreau envelope (GNME); indeed, the objective
is to provide a bound Kε such that E[‖∇φλ(xk)‖] ≤ ε for all k ≥ Kε, where φλ denotes the Moreau
envelope of the primal function φ –see Definitions 3, 4 and 5. Another commonly used natural metric
is the gradient norm of the primal function φ(·) [4, 17, 16, 26, 37], abbreviated as GNP, where the
aim is to derive Kε such that E[‖∇φ(xk)‖] ≤ ε for all k ≥ Kε. Other metrics such as the notion of
ε-first-order Nash equilibrium (FNE) and its generalized versions also exist in the literature [32, 33].

When using any of the aforementioned metrics, the ultimate goal is to establish a bound on the oracle
(sampling) complexity, i.e.,

∑Kε
k=0 bk, where bk denotes the batch-size for iteration k ≥ 0. For the

WCSC setting, it crucial to note that GNME, GNP and FNE metrics are all equivalent in the sense that
convergence in either of them implies convergence in the other two metric for WCSC problems [23].
In this paper, for the WCSC setting, we adopt both GNME and GNP as the main performance
metrics to analyze our algorithms; indeed, in Theorem 2 we show that, when the non-smooth part
f(·) = 0, we can convert a GNME guarantee to a GNP guarantee by incurring only little additional
cost compared to the computational cost required for the GNME guarantee, and the overall worst-case
complexity (in terms of worst-case dependency to the target accuracy ε) remains the same for both
metrics. When the non-smooth part f(·) 6= 0, we also obtain similar guarantees and show equivalence
between the metrics based on GNME and the generalized gradient mapping. On the other hand, for
the WCMC setting, we provide our guarantees in GNME metric as φ is not necessarily differentiable
for this scenario. Moreover, our work accounts for the individual effects of Lxx, Lxy, Lyx and Lyy,
i.e., the Lipschitz constants of∇xΦ(·, y), ∇xΦ(x, ·), ∇yΦ(x, ·) and ∇yΦ(·, y) (see Assumption 2),
respectively, instead of using the worst-case parameters L , max{Lxx, Lxy, Lyx, Lyy}, while the
majority of related work ignore the influence of these block Lipschitz constants in their analyses. We
emphasize that using the worst-case parameters will lead to a theoretically conservative step sizes,
and this phenomenon has been validated in the work [43].

Contributions. Table 1 summarizes the relevant existing work for WCSC and WCMC problems
closest to our setting. More specifically, in Table 1, for the stochastic setting, we report the (oracle)
complexity with respect to the GNP and GNME as the performance metrics for WCSC and WCMC
problems, respectively, and the batch-size (number of data points in the mini-batches) required at
every iteration. We also report whether the method is based on a variance-reduction (VR) technique.
VR-based methods mentioned in Table 1 use a small batch-size b′ all iterations except for few,
where they need a large batch-size b ≥ b′ once in every q iterations. The period q is equal to
the number of times small batches are sampled consecutively plus one, and it is also an algorithm
parameter. Therefore, for VR-methods, we report the batch size as a triplet (b′, b, q). In the column
“Compactness", we list whether achieving the specific complexity requires assuming compactness of
the primal and/or dual domains.
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Ref. Complexity Compactness VR-based Batchsize
Weakly Convex-Strongly Concave (WCSC) problems

∗Rafique et al. [35] O(ε−4 log(ε−1)) (n, n) % O(1)
†Yan et al. [39] O(ε−4 log(ε−1)) (y, y) % O(1)
†Yang et al. [41] O(Lκ2

yε
−4) (n, n) % O(1)

Lin et al. [23] O(Lκ3
yε
−4) (n, y) % O(κyε

−2)

Bot and B̈ohm [4] O(Lκ3
yε
−4) (n, n) % O(κyε

−2)
‡Huang et al. [17] O(κ5

yµ
−1
y ε−3) (n, n) ! O(κyε

−1), O(κ2
yε
−2), O(κyε

−1)
§Huang et al. [16] Õ(L1.5κ3.5

y ε−3) (y, y) ! O(
√
κy)

Luo et al. [26] O(Lκ3
yε
−3) (y, y) ! O(κyε

−1), O(κ2
yε
−2), O(κyε

−1)

Xu et al. [37] O(Lκ3
yε
−3) (y, y) ! O(κyε

−1), O(κ2
yε
−2), O(κyε

−1)

SAPD+, Theorem 3 O(Lκyε
−4) (n, n) % O(1)

SAPD+, Theorem 4 O(Lκ2
yε
−3) (n, n) ! O(κyε

−1), O(κyε
−2), O(ε−1)

Weakly Convex-Merely Concave (WCMC) problems
Rafique et al. [35] O(L3ε−6 log3(Lε−2)) (y, y) - O(1)

Bot and B̈ohm [4] O(L5ε−8) (n, y) - O(1)

Lin et al. [23] O(L3ε−8) (n, y) - O(1)

SAPD+, Theorem 5 O(L3ε−6) (n, y) - O(1)

Table 1: Summary of relevant work for WCSC and WCMC problems. For the column “Compactness”, we
use y and n to indicate when the results require compactness and when do not require it, respectively; the first
argument is for primal domain and the second is for dual domain. For batchsize, we use (b′, b, q) format for
VR-based methods to state small batch (b′), large batch (b), and frequency (q) employed within the algorithm.

Table notes: ∗For WCSC setting, [35] assumes Φ(·, y) , c>(·)y is weakly convex and g(·) is strongly convex.
† In [39], L = Φ and Φ need not be smooth, rather second moment of stochastic subgradients is assumed to
be uniformly bounded. When Φ is L-smooth, Φ(·, y) and Φ(x, ·) are LΦ-Lipschitz, the results in [39] imply
O(L2

Φκ
2
yε
−4 log2(

√
κyLΦ/ε)) complexity. ‡,§The complexity results reported here are different than those

in [17, 16]. The issues in their proofs leading to the wrong complexity results are explained in Appendix I. The
notation Õ ignores logarithmic factors.

To make the comparison of our results with the existing work easier, we provide the results in the
table for the worst-case setting, where κy , L

µy
, and we report the ε-, κy- and L-dependency of the

complexity results for the existing algorithms. That being said, our results have finer granularity in
terms of their dependence to the individual effects of Lxx, Lxy , Lyx and Lyy as we mentioned earlier.

Our contributions (also summarized in section 1) are as follows:

• We propose a new stochastic method, SAPD+, based on the inexact proximal point method (iPPM).
In this framework, one inexactly solves strongly convex-strongly concave (SCSC) saddle point
sub-problems using an accelerated primal-dual method, SAPD [43]. In Theorem 3, we establish an
oracle complexity of O(Lκyε

−4) for WCSC problems, and unlike the majority of existing work
we do not require compactness for neither the primal nor the dual domain. To our knowledge,
our bound has the best κy dependence in the literature; indeed, prior to this work, without using
variance reduction, the best known complexity was O(Lκ2

yε
−4) shown in [41]; hence, we establish

a O(κy) improvement.
• We propose a variance-reduced version of SAPD+ in Theorem 4. For WCSC setting, SAPD+

using variance reduction achieves an oracle complexity of O(Lκ2
yε
−3) –this bound has the best

ε-dependency in the literature to our knowledge, and among all the methods with the O(ε−3)
complexity, our approach has the best condition number, κy, dependency; indeed, prior to this
work, the best known complexity was O(Lκ3

yε
−3); hence, we establish O(κy) factor improvement.

• For the WCMC case, our proposed algorithm SAPD+ results in O(L3ε−6) complexity, which is the
best to our knowledge, improving the best known complexity by log3(L/ε2) factor.

• Finally, we demonstrate the efficiency of SAPD+ on a distributionally robust learning problem and
also on a (worst-case) multi-class classification problem in deep learning.

Notation. Throughout the paper, ‖ · ‖ denotes the Euclidean norm. Given f : Rn → R ∪ {∞}
a closed convex function, proxλf (x) , argminw f(w) + 1

2λ‖w − x‖2 denotes the proximal
map of f . Given random ω, let ∇̃xΦ(x, y;ω) and ∇̃yΦ(x, y;ω) denote unbiased estimators
of ∇Φx(x, y) and ∇Φy(x, y). Moreover, given a random mini-batch B = {ωi}bi=1, we let
∇̃xΦB(x, y), 1

b

∑b
i=1 ∇̃xΦ(x, y;ωi) to denote the stochastic gradient estimate based on the batch

B, and we define ∇̃yΦB(·, ·) similarly.
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2 Preliminaries
We start with describing the notion of weak convexity.
Definition 1. h : Rd → R ∪ {+∞} is γ-weakly convex if x 7→ h(x) + γ

2 ‖x‖
2 is convex.

Definition 2. A differentiable function h : Rd → R ∪ {+∞} is L-smooth if ∃L > 0 such that for
∀x, x′ ∈ domh, ‖∇h(x)−∇h(x′)‖ ≤ L‖x− x′‖.
Remark 1. If a function is L-smooth, then it is also L-weakly convex.

Remark 1 shows that weak convexity is a rich class containing the class of smooth functions. In the
rest of the paper, we consider the SP problem in (1). Next, we introduce our assumptions.
Assumption 1. f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} are proper, closed, convex functions.
Let Φ : X × Y → R be such that (i) for any y ∈ dom g ⊂ Y , Φ(·, y) is γ-weakly convex and
bounded from below; (ii) for any x ∈ dom f ⊂ X , Φ(x, ·) is µy-strongly concave for some µy ≥ 0;
(iii) Φ is differentiable on an open set containing dom f × dom g.

Assumption 2. There exist Lxx, Lyy ≥ 0, Lxy, Lyx > 0 such that ‖∇xΦ(x, y) − ∇xΦ(x̄, ȳ)‖ ≤
Lxx‖x− x̄‖+ Lxy‖y − ȳ‖, and ‖∇yΦ(x, y)−∇yΦ(x̄, ȳ)‖ ≤ Lyx‖x− x̄‖+ Lyy‖y − ȳ‖ for all
x, x̄ ∈ dom f ⊂ X , and y, ȳ ∈ dom g ⊂ Y .

Assumption 1 allows non-convexity in x while requiring (strong) concavity in the y variable. As-
sumption 2 is standard in the analysis of first-order methods for solving SP problems. It should be
noticed that when Lyx = Lxy = 0, the problem in (1) can be solved separately for the primal and
dual variables; hence, it is natural to assume Lyx, Lxy > 0.

Suppose that we implement SAPD, stated in Algorithm 1, on the SCSC problem

min
x∈X

max
y∈Y
L(x, y) +

µx + γ

2
‖x− x0‖2 (2)

for some given µx > 0 and x0 ∈ X –strong convexity follows from L(·, y) being γ-weakly convex.

Algorithm 1 SAPD Algorithm
1: Input: τ, σ, θ, µx, x0, y0, N
2: Φ̄(x, y)← Φ(x, y) + µx+γ

2
‖x− x0‖2

3: q̃0 ← 0
4: for k = 0, 1, 2, ..., N do
5: s̃k ← ∇̃yΦ(xk, yk;ωyk) + θq̃k
6: yk+1 ← proxσg(yk + σs̃k)

7: xk+1 ← proxτf (xk − τ∇̃xΦ̄(xk, yk+1;ωxk))

8: q̃k+1 ← ∇̃yΦ(xk+1, yk+1;ωyk+1)− ∇̃yΦ(xk, yk;ωyk)
9: end for

10: Output:(x̄N , ȳN ) = 1
N

∑N−1
k=0 (xk+1, yk+1)

We make the following assumption on
the statistical nature of the gradient noise
as in, e.g., [5, 11, 43].
Assumption 3. Given arbitrary x0 ∈ X
and µx > 0, let {xk, yk} sequence
be generated by SAPD, stated in Algo-
rithm 1, running on (2). There exist
δx, δy ≥ 0 such that for all k ≥ 0, the
stochastic gradients ∇̃xΦ(xk, yk+1;ωxk),
∇̃yΦ(xk, yk;ωyk) and random sequences
{ωxk}k, {ωyk}k satisfy the conditions:

(i) E[∇̃xΦ(xk, yk+1;ωxk)|xk, yk+1] = ∇xΦ(xk, yk+1);
(ii) E[∇̃yΦ(xk, yk;ωyk)|xk, yk] = ∇yΦ(xk, yk);

(iii) E[‖∇̃xΦ(xk, yk+1;ωxk)−∇xΦ(xk, yk+1)‖2|xk, yk+1] ≤ δ2
x;

(iv) E[‖∇̃yΦ(xk, yk;ωyk)−∇yΦ(xk, yk)‖2|xk, yk] ≤ δ2
y .

Assumption 3 says that the gradient noise conditioned on the iterates is unbiased with a finite
variance1. Such assumptions are common in the literature, e.g., [5, 11, 43], and are satisfied when
gradients are estimated from randomly sampled data points with replacement.

For WCSC minimax problems, a commonly adopted definition for ε-stationary is based on Moreau
envelope, e.g., see [23, 39]. It is inspired by Davis and Drusvyatskiy’s work [9] for solving weakly
convex minimization problems. For the sake of completeness, we briefly review this idea below.
Definition 3. Let φ : Rd → R ∪ {+∞} be γ-weakly convex. Then, for any λ ∈ (0, γ−1), Moreau
envelope of φ is defined as φλ : Rd → R such that φλ(x) , minw∈X φ(w) + 1

2λ‖w − x‖
2.

1When we run SAPD, stated in Algorithm 1, on (2), we use the convention that ∇̃xΦ̄(xk, yk+1;ωxk) ,
∇̃xΦ(xk, yk+1;ωxk) + (µx + γ)(xk − x0).
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Lemma 1. Let φ : Rd → R ∪ {+∞} be a γ-weakly convex function. For any given λ ∈ (0, γ−1),
φλ(·) is well-defined on X . Moreover, ∇φλ(x) = λ−1(x − proxλφ(x)) for x ∈ X ; hence, φλ is
λ−1-smooth, where proxλφ(x), argminw∈X {φ(w) + 1

2λ‖w − x‖
2}.

Definition 4. Under Assumption 1, let φ, φs : Rd → R ∪ {+∞} such that φ(x) , maxy∈Y L(x, y)

and φs(x) = φ(x)− f(x) for x ∈ dom f , i.e., φs(x) , maxy∈Y Φ(x, y)− g(y) for x ∈ dom f .
Remark 2. Under Assumption 1, since Φ(·, y) is γ-weakly convex for any y ∈ dom g, φs is γ-weakly
convex2; hence, φ is also γ-weakly convex. Note that

proxλφ(x) = argmin
w∈X

{φ(w) + 1
2λ‖w − x‖

2} = argmin
w∈X

max
y∈Y
L(w, y) + 1

2λ‖w − x‖
2. (3)

Furthermore, when µy > 0, φs is differentiable on dom f .

In the following definition, we introduce the notion of ε-stationary with respect to the GNME metric.
Definition 5. A point xε is an ε-stationary point of a γ-weakly convex function φ if ‖∇φλ(xε)‖ ≤ ε
for some λ ∈ (0, γ−1). If ε = 0, then xε is a stationary point of φ.

Thus, from Lemma 1, computing an ε-stationary point xε for φ is equivalent to searching for xε such
that ‖xε − proxλφ(xε)‖ is small. Recall that for any λ ∈ (0, γ−1), proxλφ(x) is well-defined and
unique. We also observe from (3) that proxλφ(·) computation is indeed an SCSC SP problem. To
compute xε such that ‖xε−proxλφ(xε)‖ is small, it is natural to consider the iPPM algorithm – e.g.,
see [18]. A generic iPPM generates {xt0}t≥0 such that xt+1

0 ≈ proxλφ(xt0), i.e., proximal steps are
“inexactly” computed for t ≥ 0, starting from an arbitrary given point x0

0 ∈ X .

In the next section, we describe the proposed SAPD+ method, an iPPM algorithm employing SAPD to
inexactly solve the SCSC subproblems arising in the iPPM iterations.

3 The proposed algorithm SAPD+ and its analysis
The convergence and robustness properties of SAPD for SCSC SP problems are analyzed in [43].
For the WCSC SP problems, as we explained in the previous section, the main idea is to apply the
iPPM framework as stated in SAPD+ (see Algorithm 2) which requires successively solving SCSC SP
problems. In the rest, the counter for iPPM outer iterations is denoted with t ∈ Z+. At each outer
iteration t ≥ 1, we inexactly compute the prox map, i.e., xt+1

0 ≈ proxλφ(xt0), which is well-defined
for λ ∈ (0, γ−1); hence, to derive our preliminary results, we fix λ = (µx + γ)−1 for some given
µx > 0 – thus, L(x, y) + µx+γ

2 ‖x− xt0‖2 is SCSC in (x, y) with moduli (µx, µy) and has a unique
saddle point. Consider the following SCSC SP problem:

min
x∈X

max
y∈Y
Lt(x, y) , f(x) + Φt(x, y)− g(y), where Φt(x, y),Φ(x, y) +

µx + γ

2
‖x− xt0‖2. (4)

Algorithm 2 SAPD+ Algorithm
1: Input: {τ, σ, θ, µx}, (x0

0, y
0
0) ∈ X × Y , {Nt}t≥0 ∈ Z+

2: for t = 0, 1, 2, ..., T do
3: if VR-flag == false then
4: (xt+1

0 , yt+1
0 )← SAPD(τ, σ, θ, µx, x

t
0, y

t
0, Nt)

5: else
6: (xt+1

0 , yt+1
0 )← VR-SAPD(τ, σ, θ, µx, x

t
0, y

t
0, Nt)

7: end if
8: end for

We will construct {xt0}Tt=1 ⊂ dom f
by inexactly solving (4) at each outer it-
eration t ∈ Z+ through running SAPD
for Nt ∈ Z+ iterations –we will spec-
ify Nt ∈ Z+ later. Next, we briefly
explain the main step of SAPD+ with
VR-flag=false. The statement in line
4 of Algorithm 2 means that (xt+1

0 , yt+1
0 )

is generated using SAPD, where is dispa-
lyed in Algorithm 1 –indeed, SAPD is run
on (4) forNt iterations with SAPD param-
eters (τ, σ, θ) and starting from the initial point (xt0, y

t
0). To analyze the convergence of SAPD+, we

first define the gap function Gt for t-th SAPD+ iteration:

Gt(x, y) , max
y′∈Y

Lt(x, y′)− min
x′∈X

Lt(x′, y). (5)

Recall that Lt is an SCSC function; therefore, i) it has a unique saddle point denoted by (xt∗, y
t
∗), and

it is important to note that xt∗ = proxλφ(xt0) for φ(x) = maxy∈Y L(x, y) and λ = (γ + µx)−1; ii)

2One can argue that φs(·) + γ
2
‖ · ‖2 is a pointwise supremum of convex functions.
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for any (x, y) ∈ dom f × dom g, the following quantities are well-defined:

xt∗(y) , argmin
x′∈X

Lt(x′, y), y∗(x) , argmax
y′∈Y

Lt(x, y′)= argmax
y′∈Y

L(x, y′). (6)

Thus, it follows that Gt(x, y) = Lt(x, y∗(x)) − Lt(xt∗(y), y). Moreover, for (x, y) ∈ dom f ×
dom g, we also define G(x, y) , supy′∈Y L(x, y′)− infx′∈X L(x′, y). Assumption 1 ensures that
G is well defined.

Next, we first provide our oracle complexity in the GNME metric under the compactness assumption
of the primal-dual domains; later, in section 3.1, we show that under a particular subdifferentiability
assumption compactness requirement can be avoided.
Assumption 4. dom f and dom g are compact sets.
Theorem 1. Suppose Assumptions 1, 2, 3, and 4 hold. Let µx = γ, θ = 1, τ, σ and N be chosen as

N = 33 max{ 4
γτ
, 8
µyσ
}, τ = min{ 1

Lyx+Lxx+2γ
, 1
Lxy

, 1
480γ

· ε
2

δ2x
}, σ = min{ 1

Lyx+2Lyy
, 1

4512γ
· ε

2

δ2y
}.
(7)

Then, for any ε > 0, when VR-flag=false, SAPD+ guarantees ε-stationary,
mint=0,...,T E [‖∇φλ(xt0)‖] ≤ ε, for T ≥ 96G(x0

0, y
0
0) · γε2 + 1, which requires Cε stochas-

tic first-order oracle calls in total where

Cε =O
((

max{Lxx,Lyx,Lxy}
γ

+
max{Lyy,Lyx}

µy

)
γ · ε−2 +

(
δ2x
γ

+
δ2y
µy

)
γ2 · ε−4

)
G(x0

0, y
0
0).

Proof. See appendix A for the proof.

Remark 3. Since E [mint=0,...,T ‖∇φλ(xt0)‖] ≤ mint=0,...,T E [‖∇φλ(xt0)‖], the guarantees given
in Theorem 1 also hold for achieving E

[
mint=0,...,T ‖∇φλ(xt0)‖

]
≤ ε.

Remark 4. For any y ∈ dom g, since Φ(·, y) Lxx-smooth, it is necessarily Lxx-weakly convex;
hence, γ ≤ Lxx. To get a worst-case complexity, let

L , max{Lxy, Lyx, Lxx, Lyy}, κy , L/µy, δ , max{δx, δy}, γ = L. (8)

Our oracle complexity Cε in Theorem 1 can be simplified as Cε = O
(

max{1, δ
2

ε2
}κyLG(x00,y

0
0)

ε2

)
.

In fact, Li et al. [21] (see also [42]) provide a lower complexity bound for a class of first-order stochastic
algorithms that do not use variance reduction. The lower bound for finding ε-stationary points of smooth WCSC

problems in GNP metric is Ω(L∆φ(
√
κyε
−2 + κ

1
3
y ε
−4)), where ∆φ , φ(x0) −minx∈X φ(x) and x0 is an

arbitrary initial point.

Consider φ = f + φs as given in definition 4. For λ > 0, the map Gλ : Rd → Rd defined as

Gλ(x̃) ,
1

λ
[x̃− proxλf

(
x̃− λ∇φs(x̃)

)
] (9)

is called the generalized gradient mapping and its norm is frequently used in optimization for assessing
stationarity (see e.g. [10]). Theorem 1 provides guarantees in the GNME metric. Theorem 2 shows
that given xε, an ε-stationary point in GNME metric (see definition 5) in expectation, we can generate
x̃ such that E[‖Gλ(x̃)‖] ≤ ε for some λ > 0, i.e., an ε-stationary point in generalized gradient
mapping metric, within Õ(1/ε2) SAPD iterations. Indeed, when f(·) = 0, this metric and the GNP
metric are the same.
Theorem 2. Suppose Assumptions 1, 2, 3 hold, and xε, an ε-stationary point for the γ-weakly convex
function φ(·) = maxy∈Y L(·, y) in expectation, i.e., E[‖∇φλ(xε)‖] ≤ ε

2 for some fixed λ ∈ (0, γ−1)
is given. Then, there exists some τ, σ, θ – see eq. (35) in appendix B, such that initialized from xε,
SAPD, stated in Algorithm 1, can generate x̃ such that E

[
‖Gλ(x̃)‖ ≤ ε within Õ( 1

ε2 ) stochastic
first-order oracle calls, where φs(·) = maxy∈Y Φ(·, y)− g(y) so that φ = f +φs as in Definition 4.

Proof. See appendix B for the proof.

Remark 5. Based on Remark 3, the random vector xε in Theorem 2 can be chosen as xt∗0 where
t∗ , argmin0≤t≤T ‖∇φλ(xt0)‖. However, since t∗ can not be computed in practice, we provide
an alternative method in the appendix to generate a point xε such that E[‖∇φλ(xε)‖] ≤ ε within

Õ
(
LκyG(x0

0,y
0
0)

ε2 +
Lκyδ

2G(x0
0,y

0
0)

ε4

)
stochastic first-order oracle calls – see Theorem 7 in appendix D.
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3.1 Relaxing the compactness assumption
In Theorem 1, we assume that dom f and dom g are compact sets, e.g., f(·) = 1X(·) and g(·) =
1Y (·), where X ⊂ X and Y ⊂ Y are compact convex sets. In this section, we show that SAPD+ can
also handle unbounded domains under the following assumption.
Assumption 5. For f and g closed convex, suppose ∃Bf , Bg > 0 such that inf{‖sf‖ : sf ∈
∂f(x)} ≤ Bf for all x ∈ dom f and inf{‖sg‖ : sg ∈ ∂g(y)} ≤ Bg for all y ∈ dom g.

Remark 6. Assumption 5 holds when f is an indicator function of a closed convex set (not necessarily
bounded) or for f : Rd → R ∪ {+∞} such that dom f is open and f is Lipschitz. Two important
examples for this scenario are: (i) f(·) = 0, (ii) f is a norm, e.g., `1-, `2-, or the Nuclear norms.

The existing work based on iPPM framework either require compactness, e.g., [39], or some special
structure on L, e.g., [35]. This is also true for VR-based methods, e.g.,[16, 26, 37]. To our knowledge,
ours is the first one to overcome this difficulty and strictly improve the best known complexity
bound for the WCSC setting without compactness assumption; moreover, the same idea also works
simultaneously with a variance reduction technique that will be discussed later (see section 4). Finally,
the same trick for removing compactness assumption for the WCSC setting also helps removing
the compactness assumption for the primal domain in WCMC setting and we still improve the best
known complexity for this setting as well (see section 5).

Remark 7. In [23], when f = g = 0, boundedness of dual space is required while Assumption 5 is
a weaker requirement. Furthermore, based on the discussion with the authors of [39], compactness
of the domain is needed for their proof to hold. In [17], the sub-level set {x : φ(x) + f(x) ≤ α}
is required to be compact for all α > 0. There are simple convex functions that do not satisfy this
condition such as f(x) = max{0, x}. Bot and B̈ohm [4] use milder assumptions than [23] without
requiring compactness; however, their complexity is the same as the complexity of [23].
Theorem 3. The result of Theorem 1 continues to hold, if one replaces the compact domain assump-
tion, i.e., Assumption 4, with Assumption 5.

Proof. See appendix E for the proof.

4 Variance reduction
Algorithm 3 VR-SAPD Algorithm
1: Input: τ, σ, θ, µx, x0, y0, N, b, b

′
x, b
′
y, q

2: Φ̄(x, y)← Φ(x, y) + µx+γ
2
‖x− x0‖2

3: Let Bx0 ,By0 be random mini-batch samples with |Bx0 | = |By0 | = b

4: w0 ← ∇̃yΦBy0 (x0, y0), s̃0 ← w0

5: for k ≥ 0 do
6: yk+1 ← proxσg(yk + σs̃k)
7: if mod(k, q) == 0 then
8: vk ← ∇̃xΦ̄Bx

k
(xk, yk+1)

9: else
10: Let Ixk be random mini-batch sample with |Ixk | = b′x
11: vk ← ∇̃xΦ̄Ix

k
(xk, yk+1)− ∇̃xΦ̄Ix

k
(xk−1, yk) + vk−1

12: end if
13: xk+1 ← proxτf (xk − τvk)

14: Let Bxk+1,Byk+1 be random mini-batch samples with
|Bxk+1| = |Byk+1| = b

15: if mod(k + 1, q) == 0 then
16: wk+1 ← ∇̃yΦBy

k+1
(xk+1, yk+1)

17: else
18: Let Iyk+1 be mini-batch sample with |Iyk+1| = b′y
19: q̃k+1 ← ∇̃yΦIy

k+1
(xk+1, yk+1)− ∇̃yΦIy

k+1
(xk, yk)

20: wk+1 ← wk + q̃k+1

21: end if
22: s̃k+1 ← (1 + θ)wk+1 − θwk
23: end for
24: Output: (x̄N , ȳN ) = 1

N

∑N−1
k=0 (xk+1, yk+1)

Variance reduction techniques have
been found useful for solving SCSC
problems in finite sum form, e.g.,
[34] –see also [5] using Richardson-
Romberg extrapolation in solving
SCSC problems with noisy gradi-
ents to obtain improved practical
performance.

In this section, we equip SAPD+ with
SPIDER variance reduction tech-
nique [12], a variant of SARAH [31,
31] More precisely, for inexactly
solving SCSC subproblems given
in (4), we propose using VR-SAPD
as stated in Algorithm 3. Note
VR-SAPD employs a large batchsize
of b in every q iterations and use
small batchsizes of b′x and b′y for
the rest. We prove that SAPD+ us-
ing variance reduction, i.e., with
VR-flag=true, achieves an oracle
complexity of O(Lκ2

yε
−3); hence,

we show an O(κy) factor improve-
ment over the best known complexity in the literature to our knowledge.

Here, we use ∇̃yΦtBy
k
(xk, yk) to represent 1

|By
k
|

∑
ωi
k
∈By

k
∇̃yΦ(xk, yy;ϑy,ik ), where Byk = {ϑy,ik }

b
i=1 is

the mini-batch with |Byk | = b and we define ∇̃xΦtBx
k
(xk, yk+1) similarly. In addition, Ixk = {ωx,ik } and
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Iyk = {ωy,ik } with |Ixk | = b′x and |Iyk | = b′y denote the small mini-batches for generating ∇̃yΦtIy
k

(xk, yk)

and ∇̃xΦtIx
k

(xk, yk+1). When we run VR-SAPD on a generic subproblem as in (2), we use the
convention that ∇̃xΦ̄Bx

k
(xk, yk+1) , ∇̃xΦBx

k
(xk, yk+1) + (µx + γ)(xk − x0).

Throughout this section we make a continuity assumption on the stochastic first-order oracles similar
to [17, 16, 26, 37].
Assumption 6. ∃Lxx, Lxy, Lyx, Lyy≥0 such that ∀x, x̄ ∈ dom f ⊂ X and ∀y, ȳ ∈ dom g ⊂ Y ,

‖∇̃yΦ(x, y;ω)− ∇̃yΦ(x̄, ȳ;ω)‖ ≤ Lyx‖x− x̄‖+ Lyy‖y − ȳ‖, w.p. 1,

‖∇̃xΦ(x, y;ω)− ∇̃xΦ(x̄, ȳ;ω)‖ ≤ Lxx‖x− x̄‖+ Lxy‖y − ȳ‖, w.p. 1.
(10)

Assumption 7. Consider SAPD+ with VR-flag = true. We assume (i) for any k ≥ 0, the random
mini-batches Bxk , Bxk , Ixk and Iyk consist of independent elements, and Bkx is independent from Byk;
(ii) for i ∈ {k − 1, k} Bxk , Ixk are independent of (xi, yi+1), and Byk , Iyk are independent of (xi, yi).

Remark 8. For finite-sum type problems of the form minx maxy
1
n

∑n
i=1 Φi(x, y), we can set the

stochastic gradient according to ∇̃xΦ(x, y;ω) = ∇xΦω(x, y) and ∇̃yΦ(x, y;ω) = ∇yΦω(x, y)
where ω is uniformly drawn at random from {1, . . . , n}. Therefore, if mini-batch samples are drawn
from {1, . . . , n} uniformly at random with replacement; batches will be independent of the past
iterates satisfying Assumption 7.
Theorem 4. Suppose Assumptions 1,3,6 and 7 hold. Moreover, either Assumption 4 or Assumption 5
holds. Let µx = γ, θ = 1, and τ , σ, b and N be chosen as follows:

τ =
(
Lyx + Lxx + 2γ + 2(q − 1)

( (Lxx + 2γ)2

γb′x
+

10L2
yx

µyb′y

))−1

, N = 2(1 + ζ) max
{ 1

γτ
− 1,

1

µyσ

}
,

σ =

(
2Lyy + Lyx + 2(q − 1)

(L2
xy

γb′x
+

10L2
yy

µyb′y

))−1

, b ≥
⌈

max
{144δ2

x

γ
, 360δ2

y
1

µy

} γ
ε2

⌉
.

(11)
For any ε > 0 and parameters b′x, b

′
y, q ∈ N+, when VR-flag = true, SAPD+ guarantees ε-stationary,

mint=0,...,T E [‖∇φλ(xt0)‖] ≤ ε, for T ≥ 288G(x0
0, y

0
0) · γε2 , which requires T (Nb/q+N(b′x + b′y))

stochastic first-order oracle calls in total, where

N = O
(

max
{Lyx + Lxx

γ
+

q

b′x

L2
xx

γ2
+

q

b′y

L2
yx

γµy
,

Lyy + Lyx
µy

+
q

b′y

L2
yy

µ2
y

+
q

b′x

L2
xy

γµy

})
. (12)

Proof. See appendix F for the proof.

Remark 9. For any y ∈ dom g, since Φ(·, y) Lxx-smooth, it is necessarily Lxx-weakly convex;
hence, γ ≤ Lxx. To get a worst-case complexity, consider the setting in (8), and let b′x = b′y = b′.

Then, Theorem 4 implies that setting b = O
(
κy

δ2

ε2

)
, N = O

(
κy +κ2

y
q
b′

)
, and T = O

(
LG(x00,y

0
0)

ε2

)
leads

to Nb/q+Nb′ = O
(
κy

b
q

+κ2
y
b
b′ +κyb

′+κ2
yq
)

. Thus, setting q =
√

b
κy

and b′ =
√
bκy leads to the oracle

complexity of T (Nb/q +Nb′) = O
(
κ2
y
δ
ε
· LG(x00,y

0
0)

ε2

)
.

Remark 10. The results in Theorem 4 continues to hold under a weaker form of Assumption 6 as in
[26, 37], i.e., we replace eq. (10) with

E
[
‖∇̃yΦ(x, y;ω)− ∇̃yΦ(x̄, ȳ;ω)‖2

]
≤ 2Lyx‖x− x̄‖2 + 2Lyy‖y − ȳ‖2,

E
[
‖∇̃xΦ(x, y;ω)− ∇̃xΦ(x̄, ȳ;ω)‖2

]
≤ 2Lxx‖x− x̄‖2 + 2Lxy‖y − ȳ‖2.

5 Weakly convex-merely concave (WCMC) problems
In this section, we state the convergence guarantees of SAPD+ for solving WCMC problems. In
particular, we will consider (1) such that f(·) = 0 and µy = 0, i.e., Φ(x, ·) is merely concave for
all x ∈ X . Instead of directly solving (1) in WCMC setting, we will solve an approximate model
obtained by smoothing the primal problem in a similar spirit to the technique in [30]. More precisely,
we approximate (1) with the following WCSC problem: given an arbitrary ŷ ∈ dom g, consider

min
x∈X

max
y∈Y
L̂(x, y) , Φ̂(x, y)− g(y), where Φ̂(x, y) , Φ(x, y)− µ̂y

2
‖y − ŷ‖2. (13)
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Theorem 5. Under Assumptions 1, 2, 3, consider (1) such that f(·) ≡ 0, µy = 0, and DY ,
supy1,y2∈dom g ‖y1 − y2‖<∞. When either Assumption 4 or Assumption 5 holds, for any given
ε > 0, SAPD+ with VR-flag = false, applied to (13) with µ̂y = Θ(ε2/(LD2

y)), is guaranteed
to generate xε ∈ X such that E [‖∇φλ(xε)‖] ≤ ε for λ = 1/(2γ) within O(L3ε−6) stochastic
first-order oracle calls.

Proof. See appendix G for the proof.

6 Numerical experiments
The experiments are conducted on a PC with 3.6 GHz Intel Core i7 CPU and NVIDIA RTX2070
GPU. We consider distributionally robust optimization and fair classification. In the rest, n and d
represent the number of samples in the dataset and the dimension of each data point, respectively. In
this section, SAPD+ means calling SAPD+ with VR-flag=false, and SAPD+VR means calling SAPD+
with VR-flag=true.

Distributionally Robust Optimization (DRO). First, we consider nonconvex-regularized variant
of DRO problem [1, 28, 20, 26, 43, 40] which arises in distributionally robust learning. Let {ai, bi}ni=1

be the dataset where ai ∈ Rd are the features and bi ∈ {−1, 1} are labels. The DRO problem is

(DRO): min
x∈Rd

max
y∈Y

1

n

n∑
i=1

yi`i(x) + f(x)− g(y), (14)

where `i(x) = log(1 + exp(−bia>i x)) is the logistic loss, f(x) = η1

∑d
i=1

αx2
i

1+αx2
i

is a nonconvex

regularizer [2], g(y) = 1
2η2‖ny − 1‖2, and Y , {y ∈ Rd+ : 1>y = 1} – here, 1 denotes the vector

with all entries equal to one. This problem can be viewed as a robust formulation of empirical risk
minimization where the weights yi are allowed to deviate from 1/n; and the aim is to minimize
the worst-case empirical risk. We perform experiments on three data sets: i) a9a with n = 32561,
d = 123; ii) gisette with n = 6000, d = 5000; iii) sido0 with n = 12678, d = 4932. The
dataset sido0 is obtained from Causality Workbench3 while the others can be downloaded from
LIBSVM repository4.

Parameter tuning. We set the parameters according to [40, 26, 20], i.e., , α = 10, η1 = 10−3,
η2 = 1/n2. We compare SAPD+ and SAPD+VR against PASGDA [4], SREDA [26], SMDA, SMDA-VR [17]
algorithms. As suggested in [26], we tune the primal stepsizes of all the algorithms based on a
grid-search over the set {10−3, 10−2, 10−1} and the ratio of the primal stepsize to dual stepsize,
i.e., τ/σ, is varied to take values from the set {10, 102, 103, 104}. For all variance reduction-based
algorithms, i.e., for SAPD+VR, SREDA, SMDA-VR, we tune the large batch size b , |B| from the set
{3000, 6000}, and the small batch size b′ ,|I| from grid search over the set {10, 100, 200}. For the
frequency parameter q, we let q = b′ = |I| for SAPD+VR and SMDA-VR (as suggested in [17]); for
SREDA, when we set q and m (SREDA’s inner loop iteration number) toO(n/|I|) as suggested in [26],
we noticed that SREDA does not perform well against SAPD+VR and SMDA-VR. Therefore, to optimize
the performance of SREDA further, we tune q,m from a grid search over {10, 100, 200}. For methods
without variance reduction, i.e., for SAPD+, SMDA and PASGDA, we also use mini-batch to estimate the
gradients and tune the batch size from {10, 100, 200} as well. For SAPD+ and SAPD+VR, we tune the
momentum θ from {0.8, 0.85, 0.9} and the inner iteration number from N = {10, 50, 100}.
Results. To fairly compare the performances of algorithms using different batch sizes, we plot loss
against epochs in x-axis5. In fig. 1, we plot the average loss against the epoch number based on
30 simulations (runs). The standard deviations of the runs are also illustrated around the average
in lighter color as shaded regions. We observe that SAPD+ and SAPD+VR consistently outperforms
over other algorithms. For a9a, gisette, sido0 datasets, the average training accuracy of SAPD+
are 84.06%, 95.41%, 96.43%, and of SAPD+VR are 84.33%, 97.69%, 97.46%, respectively. The best
performance for a9a, gisette, sido0 among all the other algorithms are 75.92%, 93.07%, 96.43%,
respectively. More importantly, we observe that as an accelerated method, SAPD+VR enjoys fast
convergence properties while still being robust to gradient noise.

3http://www.causality.inf.ethz.ch/challenge.php?page=datasets
4https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
5an epoch is completed whenever an algorithm does one pass over the whole data set through sampling

mini-bathes without replacement.
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Figure 1: Comparison of SAPD+ and SAPD+VR against PASGDA [4], SREDA [26], SMDA, SMDA-VR [17]
on real-data for solving eq. (14) with 30 times simulation.

Figure 2: Comparison of SAPD+VR against other Variance Reduction algorithms, SREDA [26],
SMDA-VR [17] on real-data for solving eq. (15) with 30 times simulation.

Fair Classification. In the context of multi-class classification, Mohri et al. [27] propose training a
fair classifier thorough minimizing the worst-case loss over the classification categories. In the spirit
of [32, 17], we adopt a nonconvex convolutional neural network (CNN) model as a classifier and set
the number of categories to 3, resulting in a minimax problem of the form:

min
x∈X

max
y∈Y

3∑
i=1

yi`i(x)− g(y), s.t.

3∑
i=1

yi = 1, yi ≥ 0, ∀ i (15)

where x ∈ Rp represents the parameters of the CNN, and `1, `2, `3 correspond to the loss of three
categories whose details are given in appendix H, g(y) = η

2‖y‖
2
2 is a regularizer with η > 0. We train

(15) on the datasets to classify: i) gray-scale hand-written digits {0, 2, 3} from MNIST; ii) fashion
images with target classes {T-shirt/top, Sandal, Ankle boot} from F-MNIST; iii) RBG colored images
with target classes {Plane, Truck, Deer} from CIFAR10. For both MNIST and F-MNIST p = 43831,
n = 18000 and d = 28× 28× 1, and for CIFAR10 p = 61411, n = 15000, and d = 32× 32× 3.

We let the regularization parameter η = 0.1 as suggested in [17]. We compare SAPD+VR against
the other VR-based algorithms SREDA and SMDA-VR over 30 runs.We tune the primal stepsizes of
SAPD+VR and SREDA by a grid search over the set {10−2, 5× 10−3, 10−3} and the ratio of primal to
dual stepsizes, i.e., τ/σ, is chosen from {10, 102, 5× 102, 103}. For SMDA-VR, the primal and dual
stepsizes are 10−3 and 10−5 as suggested in [17] –we also tried stepsizes bigger than the suggested;
but, it caused convergence issues in the experiments. We set the large batchsize |B| = 3000 and the
small batchsize |I| = 200 for all algorithms and data sets; the frequency q = 200 is used for SAPD+VR
and SMDA-VR, and we tune q for SREDA taking values from {10, 50, 100, 200}. The momentum θ
for SAPD+VR is tuned taking values from {0.8, 0.85, 0.9} and inner iteration number is tuned from
N = {10, 50, 100}. For SREDA, we tune the inner loop iteration from {10, 50, 100}. Fig. 2 shows
that SAPD+VR outperforms the other VR-based algorithms clearly in terms of both the average loss
and the standard deviation of the loss.

7 Conclusion
In this paper, we considered both WCSC and WCMC saddle-point problems assuming we only have
an access to an unbiased stochastic first-oracle with a finite variance. This setting arises in many
applications ranging from distributionally robust learning to GANs. We proposed a new method
SAPD+, which achieves an improved complexity in terms of target accuracy ε for both WCSC and
WCMC problems; moreover, our bound for SAPD+ has a better dependency to the condition number
κy for the WCSC scenario. We also showed that our algorithm SAPD+ can support the SPIDER
variance-reduction technique. Finally, we provided numerical experiments demonstrating that SAPD+
can achieve a state-of-the-art performance on distributionally robust learning and on multi-class
classification problems arising in ML.
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[14] Mert Gürbüzbalaban, Andrzej Ruszczyński, and Landi Zhu. A stochastic subgradient method
for distributionally robust non-convex learning. arXiv preprint arXiv:2006.04873, 2020.

[15] Erfan Yazdandoost Hamedani and Necdet Serhat Aybat. A primal-dual algorithm for general
convex-concave saddle point problems. arXiv preprint arXiv:1803.01401, 2018.

[16] Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Accelerated zeroth-order and first-
order momentum methods from mini to minimax optimization. Journal of Machine Learning
Research, 23(36):1–70, 2022.

[17] Feihu Huang, Xidong Wu, and Heng Huang. Efficient mirror descent ascent methods for
nonsmooth minimax problems. Advances in Neural Information Processing Systems, 34, 2021.

[18] Alfredo N Iusem, Teemu Pennanen, and Benar Fux Svaiter. Inexact variants of the proximal
point algorithm without monotonicity. SIAM Journal on Optimization, 13(4):1080–1097, 2003.

[19] Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-
nonconcave minimax optimization? In International Conference on Machine Learning, pages
4880–4889. PMLR, 2020.

11



[20] Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex
optimization. In International Conference on Machine Learning, pages 1895–1904. PMLR,
2017.

[21] Haochuan Li, Yi Tian, Jingzhao Zhang, and Ali Jadbabaie. Complexity lower bounds for
nonconvex-strongly-concave min-max optimization. arXiv preprint arXiv:2104.08708, 2021.

[22] Zichong Li and Yangyang Xu. Augmented lagrangian–based first-order methods for convex-
constrained programs with weakly convex objective. INFORMS Journal on Optimization,
3(4):373–397, 2021.

[23] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. In International Conference on Machine Learning, pages 6083–6093.
PMLR, 2020.

[24] Tianyi Lin, Chi Jin, and Michael. I. Jordan. Near-Optimal Algorithms for Minimax Optimization.
arXiv e-prints, page arXiv:2002.02417, February 2020.

[25] Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen. Hybrid block successive
approximation for one-sided non-convex min-max problems: algorithms and applications. IEEE
Transactions on Signal Processing, 68:3676–3691, 2020.

[26] Luo Luo, Haishan Ye, Zhichao Huang, and Tong Zhang. Stochastic recursive gradient descent
ascent for stochastic nonconvex-strongly-concave minimax problems. Advances in Neural
Information Processing Systems, 33:20566–20577, 2020.

[27] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In
International Conference on Machine Learning, pages 4615–4625. PMLR, 2019.

[28] Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust
optimization with f-divergences. In Advances in Neural Information Processing Systems, pages
2208–2216, 2016.

[29] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stoc. programming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009.

[30] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

[31] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
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A The general construction used in the proof of Theorem 1

In general, the proof of Theorem 1 can be divided into two parts: (1) inner loop and outer loop
convergence analysis, (2) combining these results to derive the overall complexity.

• We first study the convergence properties of Algorithm 1 for solving the SCSC subproblems
in eq. (4). In Lemma 2, we provide guarantees for the inner loop iterates using the expected
gap function as our metric.

• Since the convergence guarantee for the inner loop is provided in terms of Gt, we also
consider the relationship between Gt(xt0, yt0) and GNME, i.e., ||∇xφλ(xt0)||. Indeed, Lem-
mas 3,4, and 5 allow us to translate the expected gap result of inner loops to the convergence
in terms of GNME for the outer loops. In Theorem 6, we provide the convergence result
in the GNME metric and state the requirements on the parameters to be able to derive the
complexity bound in Theorem 1.

• In Lemma 6, we provide a particular step size rule for solving the SCSC subproblems in
eq. (4), and we use this specific choice to compute the overall complexity for solving the
WCSC problem eq. (1) by using SAPD+.

A.1 The construction for the convergence analysis

Based on Lemma 1, the key step for establishing SAPD+ convergence is to bound ‖xt0−proxλφ(xt0)‖,
where φ(x) , maxy∈Y L(x, y) for every x ∈ X and λ = (γ + µx)−1. To achieve this, we first give
a bound on the gap function Gt at the t-th outer iteration.
Lemma 2. Suppose Assumptions 1, 2, 3 hold. Given {Nt}t≥0 ⊂ Z+, let {xt0, yt0}t≥1 be generated
by SAPD+, stated in Algorithm 2, when VR-flag=false, initialized from (x0

0, y
0
0) ∈ dom f × dom g

and using τ, σ, θ, µx > 0 that satisfy
µy (θ − 1)Lyx (θ − 1)Lyy 0

(θ − 1)Lyx
1
τ
− L′xx 0 −θLyx

(θ − 1)Lyy 0 1
σ
− α −θLyy

0 −θLyx −θLyy α

 � 0 (16)

for some α ∈ [0, 1
σ ), where L′xx , Lxx + µx + γ. Then for all t ≥ 0, it holds that

E
[
Gt(xt+1

0 , yt+1
0 )

]
≤ Mτ,σ,θ

Nt

(µx
4
E
[
‖xt∗(yt+1

0 )− xt0‖2
]

+
µy
4
E
[
‖y∗(xt+1

0 )− yt0‖2
])

+ Ξτ,σ,θ,

(17)
where Nt ∈ N+ and Mτ,σ,θ , max{ 4

µxτ
, 4+4θ
µyσ
},

Ξτ,σ,θ , τ

(
Ξxτ,σ,θ +

1

2

)
δ2
x + σ

(
Ξyτ,σ,θ +

1 + 2θ

2

)
δ2
y,

Ξxτ,σ,θ ,

(
1 +

σθ(1 + θ)Lyx
2

)
, (18a)

Ξyτ,σ,θ , (1 + 3θ + σθ(1 + θ)Lyy + τσθ(1 + θ)LyxLxy) (1 + 2θ) +
τθ(1 + θ)Lyx

2
. (18b)

Proof. For easier readability, we provide the proof in a separate subsection, see appendix C.

The following lemma provides a relation between Gt(xt0, yt0) and Gt(xt+1
0 , yt+1

0 ).
Lemma 3. Under the premise of Lemma 2 and Assumption 4, for all t ≥ 0,(

1− Mτ,σ,θ

Nt

)
E[Gt(xt+1

0 , yt+1
0 )] ≤ Mτ,σ,θ

Nt
E[Gt(xt0, yt0)] + Ξτ,σ,θ.

Proof. It is shown in [39, Lemma 1] that
µx
4
‖xt∗(y)− x′‖2 +

µy
4
‖y∗(x)− y′‖2 ≤ Gt(x, y) + Gt(x′, y′)
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holds for all (x, y), (x′, y′) ∈ dom f × dom g. It is important to note that since dom f and dom g
are compact sets, (17) implies that E[Gt(xt+1

0 , yt+1
0 )] <∞. Furthermore, since Gt(·, ·) ≥ 0, we also

have E[Gt(xt+1
0 , yt+1

0 )] > −∞; hence, −∞ < E[Gt(xt+1
0 , yt+1

0 )] <∞ for all t ≥ 0. Then (17) and
above inequality with the choice of x = xt+1

0 , y = yt+1
0 , x′ = xt0, y′ = yt0 together yield the desired

result –one can subtract Mτ,σ,θ

Nt
E[Gt(xt+1

0 , yt+1
0 )] from both sides E[Gt(xt+1

0 , yt+1
0 )] is finite.

For the sake of completeness, we state [39, Lemma 8] below, which will be used in our analysis.
Lemma 4. [39, Lemma 8]. Under the premise of Lemma 2, for any β1, β2 ∈ (0, 1) and t ≥ 0,

Gt(xt+1
0 , yt+1

0 ) ≥
(

1− γ + µx
γ

( 1

β1
− 1
)
Gt+1(xt+1

0 , yt+1
0 )

)
− γ + µx

2

β1

1− β1
‖xt+1

0 − xt0‖2,

Gt(xt+1
0 , yt+1

0 ) ≥ φ(xt+1
0 )− φ(xt0) +

γ + µx
2
‖xt+1

0 − xt0‖2,

Gt(xt+1
0 , yt+1

0 ) ≥ γβ2

2
‖xt0 − xt∗‖2 −

γβ2

2(1− β2)
‖xt+1

0 − xt0‖2,

(19)
hold w.p. 1, where xt∗ = proxλφ(xt0).

Recall that we aim to control xt0 − proxλφ(xt0) as it directly determines∇φλ(xt0), and we also have
‖xt0−proxλφ(xt0)‖ = ‖xt0−xt∗‖. Thus, in the following result, we bound E[‖xt0−xt∗‖2]. Moreover,
this result will also help us construct a telescoping sum for analyzing the convergence of {xt0}t≥0 to
a stationary point.
Lemma 5. Under the premise of Lemma 2 and Assumption 4, for any β1, β2 ∈ (0, 1), and
p1, p2, p3 > 0 such that p1 + p2 + p3 = 1, it holds for all t ≥ 0 that(

1− Mτ,σ,θ
Nt

) γp3β2

2
E
[
‖xt0 − xt∗‖2

]
≤Mτ,σ,θ

Nt
E
[
Gt(xt0, yt0)

]
−
(

1− Mτ,σ,θ
Nt

)
p1

(
1− γ + µx

γ

( 1

β1
− 1
))

E
[
Gt+1(xt+1

0 , yt+1
0 )

]
+
(

1− Mτ,σ,θ
Nt

)
p2E

[
φ(xt0)− φ(xt+1

0 )
]

+
1

2

(
1− Mτ,σ,θ

Nt

)(
p1(γ + µx)

β1

1− β1
− p2(γ + µx) + p3γ

β2

1− β2

)
E
[
‖xt+1

0 − xt0‖2
]

+ Ξτ,σ,θ.

(20)

Proof. Using Lemma 4 and Gt(xt+1
0 , yt+1

0 ) = (p1 + p2 + p3)Gt(xt+1
0 , yt+1

0 ) leads to

E
[
Gt(xt+1

0 , yt+1
0 )

]
≥−

(
p1
γ + µx

2

β1

1− β1
− p2

γ + µx
2

+ p3
γβ2

2(1− β2)

)
E
[
‖xt+1

0 − xt0‖2
]

+ p1

(
1− γ + µx

γ

( 1

β1
− 1
))

E
[
Gt+1(xt+1

0 , yt+1
0 )

]
+ p2E

[
φ(xt+1

0 )− φ(xt0)
]

+ p3
γβ2

2
E
[
‖xt0 − xt∗‖2

]
.

Then, combining this inequality with Lemma 3 yields the desired result.

Finally, in the following result, we establish a preliminary convergence result for SAPD+ under
compactness assumption stated in Assumption 4.
Theorem 6. Under the premise of Lemma 2, given T ∈ Z+, suppose Nt = N for all t = 0, . . . T
for some N ∈ Z+ such that N ≥ (1 + ζ)Mτ,σ,θ for some ζ > 0, and the inequality system,

Mτ,σ,θ

N −
(

1− Mτ,σ,θ

N

)
p1

(
1− γ + µx

γ

( 1

β1
− 1
))
≤ 0, (21a)

(γ + µx)
(
p1

β1

1− β1
− p2

)
+ p3γ

β2

1− β2
≤ 0, (21b)

has a solution for some β1, β2 ∈ (0, 1) and p1, p2, p3 > 0 such that p1 + p2 + p3 = 1. Then, for
λ = (γ + µx)−1, under Assumption 4, the following bound holds for all T ≥ 1:

1

T + 1

T∑
t=0

E
[
‖∇φλ(xt0)‖2

]
≤2(1 + ζ)(γ + µx)2

ζγp3β2

(
1

T + 1
G(x0

0, y
0
0) + Ξτ,σ,θ

)
. (22)
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Proof. Since dom f and dom g are compact sets, E[Gt(xt0, yt0)] ∈ R exist for t = 0, . . . , T , i.e.,
−∞ < E[Gt(xt0, yt0)] <∞ for all t. Therefore, if we sum up equation (20) from 0 to T, we get

T∑
t=0

(
1− Mτ,σ,θ

Nt

) γp3β2

2
E
[
‖xt0 − xt∗‖2

]
≤ Mτ,σ,θ

N0
G0(x0

0, y
0
0)−

(
1− Mτ,σ,θ

Nt

)
p1

(
1− γ + µx

γ

( 1

β1
− 1
))

E
[
GT+1(xT+1

0 , yT+1
0 )

]
+

T−1∑
t=0

(
Mτ,σ,θ

Nt+1
−
(

1− Mτ,σ,θ

Nt

)
p1

(
1− γ + µx

γ

( 1

β1
− 1
)))

E
[
Gt+1(xt+1

0 , yt+1
0 )

]
+
(

1− Mτ,σ,θ

N0

)
p2φ(x0

0)−
(

1− Mτ,σ,θ

NT

)
p2E

[
φ(xT+1

0 )
]

+ p2

T−1∑
t=0

(
Mτ,σ,θ

Nt
− Mτ,σ,θ

Nt+1

)
︸ ︷︷ ︸

part 1

E
[
φ(xt+1

0 )
]

+

T∑
t=0

(
1− Mτ,σ,θ

Nt

)(
p1
γ + µx

2

β1

1− β1
− p2

γ + µx
2

+ p3γ
β2

2(1− β2)

)
E
[
‖xt+1

0 − xt0‖2
]

+ (T + 1)Ξτ,σ,θ
(23)

Thus, using Nt = N for t = 0, . . . , N , it follows from the conditions in (21) that

1

T + 1

T∑
t=0

(
1− Mτ,σ,θ

N

) γp3β2

2
E
[
‖xt0 − xt∗‖2

]
≤ 1

T + 1
Mτ,σ,θ

N E
[
G0(x0

0, y
0
0)
]

− 1

T + 1

(
1− Mτ,σ,θ

N

)
p1

(
1− γ + µx

γ

( 1

β1
− 1
))

E
[
GT+1(xT+1

0 , yT+1
0 )

]
+
p2

(
1− Mτ,σ,θ

N

)
T + 1

E
[
φ(x0

0)− φ(xT+1
0 )

]
+ Ξτ,σ,θ

≤ 1

T + 1
Mτ,σ,θ

N G0(x0
0, y

0
0) +

p2

(
1− Mτ,σ,θ

N

)
T + 1

G(x0
0, y

0
0) + Ξτ,σ,θ,

(24)

which follows from (i) GT+1(xT+1
0 , yT+1

0 ) ≥ 0, (ii) φ(x0
0) − φ(xT+1

0 ) = L(x0
0, y∗(x

0
0)) −

L(xT+1
0 , y∗(x

T+1
0 )) ≤ L(x0

0, y∗(x
0
0)) − L(xT+1

0 , y0
0) ≤ supy′∈Y L(x0

0, y
′) − infx′∈X L(x′, y0

0) =

G(x0
0, y

0
0), and also from the fact that (21a) implies

(
1− Mτ,σ,θ

N

)
p1

(
1 − γ+µx

γ

(
1
β1
− 1
))
≥ 0.

Then dividing both sides by
(

1− Mτ,σ,θ

N

)
γp3β2

2 gives us

1

T + 1

T∑
t=1

‖xt0 − xt∗‖2 (25)

≤ 2

(1− Mτ,σ,θ
N

)γp3β2

( 1

T + 1

Mτ,σ,θ
N
G0(x0

0, y
0
0) +

p2

(
1− Mτ,σ,θ

N

)
T+1

G(x0
0, y

0
0) + Ξτ,σ,θ

)
,

≤ 2(1 + ζ)

ζγp3β2

(
1

T + 1
G(x0

0, y
0
0) + Ξτ,σ,θ

)
,

where the second inequality follows from G(x0
0, y

0
0) ≥ G0(x0

0, y
0
0), and for p2 ∈ (0, 1), we have

N ≥ (1 + ζ)Mτ,σ,θ. Finally, we get the desired result using Lemma 1.

A.2 A particular parameter choice

We employ the matrix inequality (MI) in eq. (16) to describe the admissible set of algorithm parameters
that guarantee convergence of Algorithm 1, i.e., inner loop of SAPD+ when VR-flag is false. In
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this subsection, we compute a particular solution by exploiting the structure of MI in eq. (16). This
particular solution is for solving the SCSC subproblems in eq. (4).

Lemma 6. For any µx ≥ 0, let L′xx = Lxx + γ + µx. Suppose θ = 1, and τ, σ > 0, satisfy

τ ≤ 1

L′xx + Lyx
, σ ≤ 1

2Lyy + Lyx
. (26)

Then {τ, σ, θ, α} is a solution to (16) for α = Lyx + Lyy.

Proof. It follows from the choice of τ and σ in (26) and θ = 1 that a sufficient condition for (16) is
given by the following smaller matrix inequality for α = Lyx + Lyy ,

0 �


1
τ
− L′xx 0 −Lyx

0 1
σ
− α −Lyy

−Lyx −Lyy α

 =


1
τ
− L′xx 0 −Lyx

0 1
σ
− Lyx − Lyy −Lyy

−Lyx −Lyy Lyx + Lyy

 , M1 +M2,

where M1 ,

 1
τ
− L′xx 0 −Lyx

0 0 0

−Lyx 0 Lyx

 and M2 ,

0 0 0

0 1
σ
− Lyx − Lyy −Lyy

0 −Lyy Lyy

. Therefore, the

Schur complement conditions together with eq. (26) imply M1 � 0 and M2 � 0, respectively. Thus,
M1 +M2 � 0.

A.3 Proof of Theorem 1

Proof. Using the results we derived in the previous two subsections, we are now ready to provide the
proof of Theorem 1.

For the inner loop iterations, Lemma 6 ensures that eq. (16) holds for our {τ, σ, θ} choice in eq. (7).
For the outer loop, if we set N as in eq. (7) and

p1 =
1

16
, p2 =

19

32
, p3 =

11

32
, β1 =

4

5
, β2 =

1

2
, ζ = 32, (27)

all assumptions of Theorem 6 are satisfied, i.e., both the inequality system eq. (21) and N ≥
(1 + ζ)Mτ,σ,θ hold.

Specifically, because µx = γ and θ = 1, we have Mτ,σ,θ = max{ 4
γτ ,

8
µyσ
}. Therefore, we know

that N ≥ (1 + ζ)Mτ,σ,θ is trivially true. Moreover, using Mτ,σ,θ/N ≤ (1 + ζ)−1, it follows that
eq. (21a) holds for µx = γ, p1 = 1

16 and β1 = 4
5 , i.e.,

Mτ,σ,θ

N
−
(

1− Mτ,σ,θ

N

)
p1

(
1− γ + µx

γ

( 1

β1
− 1
))

=
33

32
Mτ,σ,θ

N − 1

32
≤ 33

32

1

1 + ζ
− 1

32
= 0.

Moreover, it is trivial to check that eq. (21b) holds for the parameter values given in eq. (27).

Since all assumptions of Theorem 6 are satisfied for parameters chosen as in eq. (7) and eq. (27), if
we substitute eq. (27) into eq. (22), if follows that

1

T + 1

T∑
t=0

E
[
‖∇φλ(xt0)‖2

]
≤48γ

(
1

T + 1
G(x0

0, y
0
0) + Ξτ,σ,θ

)
.

Thus, for any ε > 0, the right side of the above inequality can be bounded by ε2 when

48γ

T + 1
G(x0

0, y
0
0) ≤ ε2

2
, 48γΞτ,σ,θ ≤

ε2

2
. (28)

Note that because Ξτ,σ,θ = τ
(

Ξxτ,σ,θ + 1
2

)
δ2
x + σ

(
Ξyτ,σ,θ + 3

2

)
δ2
y , a sufficient condition for the

second inequality in eq. (28) is that

24γτ(1 + 2Ξxτ,σ,θ)δ
2
x ≤

ε2

4
, 24γσ(3 + 2Ξyτ,σ,θ)δ

2
y ≤

ε2

4
. (29)
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Moreover, recall that Ξxτ,σ,θ and Ξyτ,σ,θ are defined in Lemma 2; for θ = 1, they can be simplified as
follows:

Ξxτ,σ,θ = 1 + σLyx, Ξyτ,σ,θ = 3 (4 + 2σLyy + 2τσLyxLxy) + τLyx.

Because the choice of {τ, σ} in eq. (7) implies that

τLyx ≤ 1, τLxy ≤ 1, σLyy ≤
1

2
, σLyx ≤ 1,

we can upper bound Ξxτ,σ,θ and Ξyτ,σ,θ as follows:

Ξxτ,σ,θ ≤ 2, Ξyτ,σ,θ ≤ 22.

Therefore, with the choice of {τ, σ} in eq. (7), we have a sufficient condition for eq. (29) as follows:

120γτδ2
x ≤

ε2

4
, 1128γσδ2

y ≤
ε2

4
.

Indeed, the above condition is trivially satisfied by our choice of {τ, σ} given in eq. (7). Therefore,
the second condition in (28), i.e., 48γΞτ,σ,θ ≤ ε2

2 , holds for the choice of {τ, σ} in eq. (7). Thus,
from the first inequality in eq. (28), we get mint=0,...,T E[‖∇φλ(xt0)‖2] ≤ ε2 for

T ≥ 96G(x0
0, y

0
0) · γ

ε2
+ 1. (30)

Note that from Jensen’s inequality, we have (E[‖∇φλ(xt0)‖])2 ≤ E[‖∇φλ(xt0)‖2] for all t =
0, . . . , T ; hence, it follows that mint=0,...,T E[‖∇φλ(xt0)‖] ≤ ε for all T ∈ Z+ satisfying (30).
Finally, to show the complexity result, recall that N = 33 max{ 4

γτ ,
8
µyσ
}. Using the the choice of

{τ, σ} in eq. (7) we derive that

N = O
(max{Lxx, Lyx, Lxy}

γ
+

max{Lyy, Lyx}
µy

+
(δ2

x

γ
+
δ2
y

µy

) γ
ε2

)
. (31)

Moreover, since SAPD+ requires NT oracle calls in total, combining (30) with (31) leads to O(ε−4)
bound on Cε as stated in Theorem 1, which completes the proof.

B Proof of Theorem 2 and preliminary technical results

Suppose Assumptions 1, 2, 3 hold. Given xε, an ε-stationary point for the γ-weakly convex function
φ(·) = maxy∈Y L(·, y), i.e., E

[
‖∇φλ(xε)‖

]
≤ ε

2 for some fixed λ ∈ (0, γ−1). Let φs(·) ,
maxy∈Y Φ(·, y) − g(y) so that φ = f + φs. In this section we show that initialized from xε and
using appropriately selected step size parameters, within Õ( 1

ε2 ) stochastic first-order oracle calls,
SAPD, stated in Algorithm 1, can generate x̃ such that E

[
‖Gλ(x̃)‖ ≤ ε, where generalized gradient

mapping Gλ is defined in (9).
Lemma 7. Suppose Assumptions 1, 2, 3 hold. Given some (x0, y0) ∈ dom f ×dom g, consider the
SCSC problem in (2) for some µx > 0. Let {xk, yk}k≥0 be generated by SAPD, stated in Algorithm 1,
initialized from (x0, y0) and using τ, σ, θ > 0 that satisfy

G ,



1
τ

(1− 1
ρ
) + µx

ρ
0 0 0 0

0 1
σ

(1− 1
ρ
) + µy ( θ

ρ
− 1)Lyx ( θ

ρ
− 1)Lyy 0

0 ( θ
ρ
− 1)Lyx

1
τ
− L′xx 0 − θ

ρ
Lyx

0 ( θ
ρ
− 1)Lyy 0 1

σ
− α − θ

ρ
Lyy

0 0 − θ
ρ
Lyx − θ

ρ
Lyy

α
ρ

 � 0 (32)

for some α ∈ [0, 1
σ ) and ρ ∈ (0, 1), where L′xx , Lxx + µx + γ. Define φ(x) = maxy∈Y L(x, y);

and let x̂ = proxλφ(x0) for λ = (µx + γ)−1 and y∗(x̂) = argmaxy∈Y L(x̂, y). Then for all
N ∈ Z+, it holds that

E
[(1

τ
− µx

)
‖xN − x̂‖2 +

( 1

σ
− α

)
‖yN − y∗(x̂)‖2

]
≤ ρN

(
1

τ
‖x0 − x̂‖2 +

1

σ
‖y0 − y∗(x̂)‖2

)
+

ρ

1− ρ

(
τΞxτ,σ,θδ

2
x + σΞyτ,σ,θδ

2
y

)
,

(33)

where Ξxτ,σ,θ and Ξyτ,σ,θ are defined in (18a) and (18b), respectively.
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Proof. For easier readability, we provide the proof in a separate subsection, see appendix C.

In the following part, we will compute a particular solution by exploiting the structure of MI in eq. (32)
and use this particular solution for the rest of the proof. First, in Lemma 8, we give an intermediate
condition to help us construct the particular solution subsequently provided in Lemma 9 for solving
the generic SCSC subproblems in eq. (2).
Lemma 8. For any µx > 0, let L′xx = Lxx + γ + µx. Suppose ρ = θ, and τ, σ > 0, θ ∈ (0, 1)
satisfy

τ ≥ 1− θ
µx

, σ ≥ 1− θ
µyθ

,
1

τ
≥ L′xx + π1Lyx,

1

σ
≥ θLyx

π1
+
( θ
π2

+ π2

)
Lyy, (34)

for some π1, π2 > 0. Then {τ, σ, θ, α} is a solution to (32) for α =
θLyx
π1

+
θLyy
π2

.

Proof. It follows from the choice of τ and σ in (34) and ρ = θ that a sufficient condition for eq. (32),
i.e., for G � 0, is given by the following smaller matrix inequality for α =

θLyx
π1

+
θLyy
π2

,

0 �


1
τ
− L′xx 0 −Lyx

0 1
σ
− α −Lyy

−Lyx −Lyy α
θ

 =


1
τ
− L′xx 0 −Lyx

0 1
σ
− θLyx

π1
− θLyy

π2
−Lyy

−Lyx −Lyy Lyx
π1

+
Lyy
π2

 , M1 +M2,

where M1 ,

 1
τ
− L′xx 0 −Lyx

0 0 0

−Lyx 0
Lyx
π1

 and M2 ,

0 0 0

0 1
σ
− θLyx

π1
− θLyy

π2
−Lyy

0 −Lyy Lyy
π2

. Therefore,

since π1, π2 > 0, the Schur complement conditions in (34), i.e., the third and the fourth inequalities,
imply M1 � 0 and M2 � 0, respectively. Thus, M1 +M2 � 0.

Lemma 8 shows that every solution to (34) can be converted to a solution to (32). Next, based on
Lemma 8, we will give another explicit parameter choice for Algorithm 1 in addition to the solution
we provided earlier in Lemma 6.
Lemma 9. For any µx > 0, let L′xx =Lxx + γ + µx. For any given β ∈ (0, 1], let τ, σ > 0 and
θ ∈ (0, 1) be chosen satisfying

τ =
1− θ
µx

, σ =
1− θ
µyθ

, θ ≥ θ̄(β), (35)

where θ̄(β) , max{θ̄1(β), θ̄2(β)} ∈ (0, 1) such that

θ̄1(β) , 1− βµyL
′
xx

2L2
yx

(√
1 +

4L2
yxµx

βL′xx
2µy
− 1
)
,

θ̄2(β) ,

1− (1−β)2

8

µ2
y

L2
yy

(√
1 +

16L2
yy

(1−β)2µ2
y
− 1
)

Lyy > 0

0 Lyy = 0.

Then, {τ, σ, θ, α, ρ} with α = 1
σ −
√
θLyy > 0 and ρ = θ is a solution to (32).

Proof. Consider arbitrary τ, σ, π1, π2 > 0 and θ ∈ (0, 1). By a straightforward calculation,
{τ, σ, θ, π1, π2} is a solution to (34) if and only if

τ ≥ 1− θ
µx

, σ ≥ 1− θ
θµy

, π1 ≥
σθLyx

1− σ(π2 + θ
π2

)Lyy
, (36a)

σ(π2 +
θ

π2
)Lyy < 1,

1

τ
− L′xx ≥ π1Lyx. (36b)

In the remainder of the proof, we fix (π1, π2) as follows:

π1 =
σθLyx

1− σ
(
π2 + θ

π2

)
Lyy

, π2 =
√
θ. (37)
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Note the definition of θ̄(β) implies that θ̄(β) ∈ (0, 1). Next, we show that θ ∈ [θ̄(β), 1) implies
π1, π2 > 0; furthermore, we also show that τ, σ > 0 defined as in (35) for θ ∈ [θ̄(β), 1) together
with (π1, π2) as in (37) is a solution to (36).

First, setting τ, σ as in (35) and π1, π2 as in (37) imply that (36a) is trivially satisfied. Next, by
substituting {τ, σ, π1, π2}, chosen as in (35) and (37), into (36b), we conclude that {τ, σ, θ, π1, π2}
satisfies (36) for any θ ∈ (0, 1) such that

2Lyy
µy
· 1− θ√

θ
≤ 1− β, (38)

µx
1− θ − L

′
xx ≥ (1− θ)

L2
yx

µy
·
(

1− 2Lyy
µy
· 1− θ√

θ

)−1

, (39)

for some β ∈ (0, 1]. Clearly, a sufficient condition for (39) is

µx
1− θ − L

′
xx ≥ (1− θ)

L2
yx

µy
· 1

β
. (40)

Note that (38) implies that π1 > 0. We also have π2 =
√
θ > 0 trivially.

When Lyy > 0, given any β ∈ (0, 1), solving eqs. (38) and (40) for θ ∈ (0, 1), we get the third
condition in (35). Indeed, it can be checked that θ ∈ [θ̄2(β), 1) satisfies (38) and θ ∈ [θ̄1(β), 1)
satisfies (40); thus, θ ∈ [θ̄(β), 1) satisfies (38) and (40) simultaneously. Moreover, when Lyy = 0,
one does not need to solve eq. (38) as the first inequality in (36b) holds trivially; thus, the only
condition on θ comes from (39) which is equivalent to (40) with β = 1. The rest follows from
Lemma 8 by setting α =

θLyx
π1

+
θLyy
π2

. Indeed, the particular choice of (π1, π2) in (37) gives us
α = 1

σ −
√
θLyy.

Now that we have provided a particular solution to eq. (32), we will next use this particular solution
within Lemma 7 to derive an error bound customized for this choice of parameters. The following
two technical results, i.e., Lemmas 10 and 11, will be used later within the proof of Theorem 2.

Lemma 10. Consider L defined in (1). Suppose Assumptions 1, 2, 3 hold. Given arbitrary x0, let
x̂ = proxλφ(x0), where φ(·) = maxy∈Y L(·, y) and λ = (2γ)−1. For any given ε̂ > 0, SAPD,
displayed in Algorithm 1, can generate x̃∗ ∈ X such that E [‖x̃∗ − x̂‖] ≤ ε̂ within Õ( 1

ε̂2 ) stochastic
first-order oracle calls.

Proof. Recall that y∗(x) = argmaxy∈Y L(x, y) for x ∈ dom f . Hence, (x̂, y∗(x̂)) is the unique
saddle point to the SCSC problem:

min
x∈X

max
y∈Y
L̄(x, y) , f(x) + Φ(x, y) + γ‖x− x0‖2 − g(y), (41)

which is equivalent to the SCSC problem in eq. (2) with µx = γ. Let {xk, yk} be the iterate sequence
generated by SAPD running on (41), initialized from an arbitrary point (x0, y0), with parameters
{τ, σ, θ} chosen as follows:

τ =
1− θ
γ

, σ =
1− θ
µyθ

, θ= max{θ̄(β), θ̂1, θ̂2}, (42)

for β = min{ 1
2 ,

µy
γ ,

γ
µy
,
Lyx
Lxy
}, where θ̄(β) , max{θ̄1(β), θ̄2(β)} ∈ (0, 1) such that

θ̄1(β) , 1− βµyL
′
xx

2L2
yx

(√
1 +

4L2
yxγ

βL′xx
2µy
− 1
)
,

θ̄2(β) ,

1− (1−β)2

8

µ2
y

L2
yy

(√
1 +

16L2
yy

(1−β)2µ2
y
− 1
)

Lyy > 0

0 Lyy = 0,

with L′xx = Lxx + 2γ and

θ̂1 , max
{

0, 1− 1

8
· γ2 · ε̂

2

δ2
x

}
, θ̂2 ,

(
1 +

1

8
· µyγ

11
· ε̂

2

δ2
y

)−1

. (43)
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In fact, in Lemma 7 we provide a convergence guarantee for solving the above problem in (41) using
Algorithm 1. Since the parameter choice above satisfies the condition (32) in Lemma 7, we can invoke
eq. (33) to complete the rest of the analysis. To be more precise, the problem in eq. (41) is a generic
form of the SCSC subproblems given in eq. (4) with µx = γ; furthermore, by Lemma 9, (τ, σ, θ)

chosen as in (42) satisfies (32) with ρ = θ, µx = γ, α = 1
σ −
√
θLyy > 0, and L′xx = Lxx + 2γ.

Since (x̂, y∗(x̂)) is the saddle point of L̄, then by Lemma 7, we get

E
[( 1

τ
− γ
)
‖xN − x̂‖2

]
≤ θN

(
1

τ
‖x0 − x̂‖2 +

1

σ
‖y0 − y∗(x̂)‖2

)
+

θ

1− θ

(
τΞxτ,σ,θδ

2
x + σΞyτ,σ,θδ

2
y

)
.

If we substitute the choice of {τ, σ} in eq. (42) into the above inequality, it follows that

E
[
‖xN − x̂‖2

]
≤ θN−1 max

{
1,
µy
γ

}(
‖x0 − x̂‖2 + ‖y0 − y∗(x̂)‖2

)
+

1

γ

(
τΞxτ,σ,θδ

2
x + σΞyτ,σ,θδ

2
y

)
.

Then, by Jensen’s inequality, it follows that(
E [‖xN − x̂‖]

)2

≤ E
[
‖xN − x̂‖2

]
≤ θN−1 max

{
1,
µy
γ

}
D2

0 +
1

γ

(
τΞxτ,σ,θδ

2
x + σΞyτ,σ,θδ

2
y

)
,

where D0 ,
(
‖x̂ − x0‖2 + ‖y∗(x̂) − y0‖2

)1/2
. Thus, for any given ε̂ > 0, E [‖xN − x̂‖] can be

bounded by ε̂ when

1

γ

(
τΞxτ,σ,θδ

2
x + σΞyτ,σ,θδ

2
y

)
≤ ε̂2

2
, (44a)

θN−1 max
{

1,
µy
γ

}
D2

0 ≤
ε̂2

2
. (44b)

Recall that Ξxτ,σ,θ, Ξyτ,σ,θ are defined in Lemma 7. Thus, the choice of τ and σ in (42) further implies
that

Ξxτ,σ,θ = 1 + (1− θ2)
Lyx
2µy

,

Ξyτ,σ,θ =
(

1 + 3θ + (1− θ2)
Lyy
µy

+ (1 + θ)(1− θ)2LyxLxy
γµy

)
(1 + 2θ) + θ(1− θ2)

Lyx
2γ

.

Since 0 < θ < 1 and 1− θ2 ≤ 2(1− θ), we have

Ξxτ,σ,θ ≤ 1 + (1− θ)Lyx
µy

, (45a)

Ξyτ,σ,θ ≤ 3
(

4 + 2(1− θ)Lyy
µy

+ 2(1− θ)2LyxLxy
γµy

)
+ (1− θ)Lyx

γ
. (45b)

On the other hand, since θ ≥ θ̄(β) = max{θ̄1(β), θ̄2(β)}, the inequality
√
a+ b ≤

√
a+
√
b for all

a, b ≥ 0, and the definition of θ̄(β) together imply that

1− θ ≤ min
{√βγµy

Lyx
,

1− β
2

µy
Lyy

}
. (46)

Therefore, by eq. (46), we can derive that

(1− θ)Lyx
µy
≤

√
βγ

µy
, (1− θ)Lyy

µy
≤ 1− β

2
, (1− θ)2LyxLxy

γµy
≤ βLxy

Lyx
, (1− θ)Lyx

γ
≤

√
βµy
γ

;

thus, using those inequalities within eq. (45a) and eq. (45b), we get

Ξxτ,σ,θ ≤ 1 +

√
βγ

µy
, (47a)

Ξyτ,σ,θ ≤ 15− 3β + 6β
Lxy
Lyx

+

√
βµy
γ
. (47b)
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Note that β = min{ 1
2 ,

µy
γ ,

γ
µy
,
Lyx
Lxy
} ∈ (0, 1) implies that

Ξxτ,σ,θ ≤ 2, Ξyτ,σ,θ ≤ 22.

Therefore, using the choice of {τ, σ} in eq. (42), we obtain a sufficient condition for eq. (44a) as
given below:

1− θ
γ

2

γ
δ2
x +

1− θ
µyθ

22

γ
δ2
y ≤

ε̂2

2
. (48)

Our choice of θ ∈ (0, 1) in (42) implies that θ ≥ max{θ̂1, θ̂2}, where θ̂1 and θ̂2 are defined in
eq. (43). Note θ ≥ max{θ̂1, θ̂2} immediately implies that the above sufficient condition in (48) holds.
Therefore, with the choice of {τ, σ, θ} in eq. (42) we obtain that eq. (44a) holds, i.e.,

1

γ

(
τΞxτ,σ,θδ

2
x + σΞyτ,σ,θδ

2
y

)
≤ ε̂2

2
.

Furthermore, (44b) holds when N ≥ ln
(

2 max{1, µy/γ}D2
0

ε̂2

)
/ ln

(
1
θ

)
+ 1. Thus, we conclude that

for any ε̂ > 0, SAPD, stated in Algorithm 1, can generate xN such that E [‖xN − x̂‖] ≤ ε̂ within Nε̂
iterations for θ= max{θ̄(β), θ̂1, θ̂2}, where

Nε̂ = O
(

ln
(max{1, µy/γ}

ε̂

)
/ ln

(1

θ

)
+ 1
)
. (49)

Note 1
ln( 1

θ )
≤ (1− θ)−1 for θ ∈ (0, 1) implies that

1

ln( 1
θ )
≤ O

(
max{(1− θ1(β))−1, (1− θ2(β))−1, (1− θ̂1)−1, (1− θ̂2)−1}

)
.

First, we equivalently rewrite (1− θ1(β))−1 and (1− θ2(β))−1 as follows:

(1− θ1(β))−1 =
1

2

L′xx
γ

+

√
1

4

L′xx
2

γ2
+

L2
yx

βγµy
, (1− θ2(β))−1 =

1

2
+

√
1

4
+

4L2
yy

(1− β)
2
µ2
y

;

thus,

(1− θ1)−1 ≤ L′xx
γ

+
Lyx√
βγµy

, (1− θ2)−1 ≤ 1 +
2

1− β
· Lyy
µy

.

Finally,

(1− θ̂1)−1 = O
( 1

γ2
· δ

2
x

ε̂2

)
, (1− θ̂2)−1 = O

( 1

γµy
·
δ2
y

ε̂2
+ 1
)
.

Recall that L′xx = 2γ + Lxx, using the above four identities that and our choice of β =

min{ 1
2 ,

µy
γ ,

γ
µy
,
Lyx
Lxy
} we derive that

1

ln( 1
θ )

= O
(max{Lxx, Lyx}

γ
+

max{Lyx, Lxy}√
γµy

+
max{Lyy, Lyx}

µy
+
(δ2

x

γ
+
δ2
y

µy

) 1

γε̂2

)
,

From (49), we conclude that

Nε̂ = O
(

max{Lxx, Lyx}
γ

+
max{Lyx, Lxy}√

γµy
+

max{Lyy, Lyx}
µy

+
(δ2

x

γ
+
δ2
y

µy

) 1

γε̂2

)
·ln
(max{1, µy/γ}

ε̂

)
,

which completes the proof.

Lemma 11. Suppose f : X → R ∪ {+∞} is closed convex, and V is a strictly convex function on
dom f and differentiable on an open set containing dom f . Let x∗ = argminx∈X f(x) + V (x).
Then, for any α > 0, it holds that x∗ = proxαf (x∗ − α∇V (x∗)).

Proof. From the first-order optimality condition, we have
0 ∈ ∂f(x∗) +∇V (x∗). (50)

Moreover, from the definition of proxαf (·) operator, it follows that

proxαf (x∗ − α∇V (x∗)) = argmin
x∈X

f(x) +∇V (x∗)
>(x− x∗) +

1

2α
‖x− x∗‖2. (51)

Finally, (50) implies that x∗ is the unique minimizer of the problem on the rhs of (51). Therefore, we
get that x∗ = proxαf (x∗ − α∇V (x∗)), which completes the proof.
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B.1 Proof of Theorem 2

We are now ready to prove Theorem 2.

Proof. Let x̂ = proxλφ(xε), and φs be the smooth part of φ, i.e., φ = f + φs. Moreover, since
Φ(x, ·) − g(·) is strongly concave and Φ(·, y) is differentiable, we have that φs is differentiable;
hence, for any x ∈ dom f ,

∇φs(x) = ∇xΦ(x, y∗(x)), where y∗(x) = argmax
y∈Y

Φ(x, y)− g(y).

Then we can explicitly write x̂ as

x̂ = argmin
x∈X

f(x) + φs(x) +
1

2λ
‖x− xε‖2.

Since φs(·) + 1
2λ‖ · −xε‖

2 is smooth and strongly convex, for any α > 0, Lemma 11 implies that

x̂ = proxαf

(
x̂− α

(
∇φs(x̂)+

1

λ
(x̂− xε)

))
.

If we let α = λ, it follows that

x̂ = proxλf
(
xε − λ∇xφs(x̂)

)
.

Moreover, since f is closed convex, proxf (·) is nonexpansive; hence,

E
[
‖x̂− proxλf

(
x̂− λ∇xφs(x̂)

)
‖
]
≤ E [‖xε − x̂‖] ≤

λε

2
, (52)

where we used Lemma 1 for the last inequality, i.e., ‖xε − x̂‖ = λ‖∇φλ(xε)‖. On the other hand,
for any x̃ ∈ dom f ,

E
[
‖x̃− proxλf

(
x̃− λ∇xφs(x̃)

)
‖
]

≤E
[
‖x̃− proxλf

(
x̃− λ∇xφs(x̃)

)
− x̂+ proxλf

(
x̂− λ∇xφs(x̂)

)
‖
]

+
λε

2

≤2E [‖x̃− x̂‖] + λE [‖∇xΦ(x̃, y∗(x̃))−∇xΦ(x̂, y∗(x̂))‖] +
λε

2
.

(53)

According to [7, Proposition 1], y∗(·) is Lipschitz with constant κyx =
Lyx
µy

. Therefore, we get

‖∇xΦ(x̃, y∗(x̃))−∇xΦ(x̂, y∗(x̂))‖ ≤ Lxx‖x̃−x̂‖+Lxy‖y∗(x̃)−y∗(x̂)‖ ≤
(
Lxx+Lxyκyx

)
‖x̃−x̂‖,

which together with eq. (53) implies that

1

λ
E
[
‖x̃− proxλf

(
x̃− λ∇xφs(x̃)

)
‖
]
≤
( 2

λ
+ Lxx + Lxyκyx

)
E [‖x̃− x̂‖] +

ε

2
. (54)

Let λ−1 = 2γ, and C , (4γ + Lxx + Lxyκyx)−1/2. Thus, for any x̃ ∈ dom f such that
E [‖x̃− x̂‖] ≤ Cε, we have

E
[

1

λ
‖x̃− proxλf

(
x̃− λ∇xφs(x̃)

)
‖
]
≤ ε.

Indeed, when f(x) = 0 for all x ∈ X , we get φ(x) = φs(x) and the above inequality implies that

E [‖∇φ(x̃)‖] ≤ ε.

The rest directly follows from invoking Lemma 10 with ε̂ = Cε, and x0 = xε.
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C Proofs of Lemma 2 and Lemma 7

We first discuss the proof of Lemma 7 and later establish Lemma 2 through specializing some parts
of this proof. Indeed recall that Lemma 7 is stated for a generic SAPD+ subproblem of the form (2).
In Lemma 12 below, we restate Lemma 7 and rather than using a generic subproblem, we state it for
the specific subproblems as in (4), which arise while implementing SAPD+. It is crucial to remind that
the matrix inequality (MI) we establish in Lemma 7, i.e., eq. (32), helps us describe the admissible
set of algorithm parameters that guarantee the linear convergence of inner loop iterates generated by
SAPD, i.e.,

{
E
[
‖xtk − xt∗‖2 + ‖ytk − yt∗‖2

]}
k≥0

, for any t ≥ 0.

Lemma 12. Suppose Assumptions 1, 2, 3 hold. For any given µx > 0 and t ∈ Z+, consider
solving the SCSC subproblem in (4) using SAPD, displayed in Algorithm 1. Let (xt∗, y

t
∗) denote

the unique saddle point of (4), and let {xtk, ytk}k≥0 be the iterate sequence when initialized from
(xt0, y

t
0) ∈ dom f × dom g and using τ, σ, θ that satisfy (32) for some α ∈ [0, 1

σ ) and ρ ∈ (0, 1),
where L′xx , Lxx + µx + γ. Then for all N ≥ Z+, it holds that

E
[(1

τ
− µx

)
‖xtN − xt∗‖2 +

( 1

σ
− α

)
‖ytN − yt∗‖2

]
≤ ρNE

[
1

τ
‖xt0 − xt∗‖2 +

1

σ
‖yt0 − yt∗‖2

]
+

ρ

1− ρ

(
τΞxτ,σ,θδ

2
x + σΞyτ,σ,θδ

2
y

)
,

(55)

where Ξxτ,σ,θ and Ξyτ,σ,θ are defined in (18a) and (18b), respectively.

Proof. The proof is provided in appendix C.2.

Clearly, it is sufficient to prove Lemma 12 in order to establish Lemma 7. Moreover, as stated earlier,
we will exploit the techniques used in the proof of Lemma 12 when showing Lemma 2 –this is why
we restated Lemma 7.

C.1 Preliminary technical results

Recall that given some xt0 ∈ dom f and µx > 0, we define

Lt(x, y) , f(x) + Φt(x, y)− g(y), (56a)

Φt(x, y) , Φ(x, y) +
µx + γ

2
‖x− xt0‖2, (56b)

where γ > 0 is the weak-convexity constant of Φ(·, y) for any y ∈ dom g. It follows from
Assumption 2 that∇yΦt and∇xΦt are Lipschitz such that

‖∇yΦt(x, y)−∇yΦt(x′, y′)‖ ≤ Lyx‖x− x′‖+ Lyy‖y − y′‖, (57)

‖∇xΦt(x, y)−∇xΦt(x′, y′)‖ ≤ L′xx‖x− x′‖+ Lxy‖y − y′‖ (58)

such that L′xx , Lxx + µx + γ. Furthermore, (56b) implies that for any y ∈ dom g, Φt(·, y) is
strongly convex with modulus µx > 0.

We will derive some key inequalities below for SAPD iterates {xtk, ytk}k≥0 generated by Algorithm 1
to solve minx maxy Lt(x, y). Let xt−1 = xt0, yt−1 = yt0, and for k ≥ 0, define

qtk , ∇yΦt(xtk, y
t
k)−∇yΦt(xtk−1, y

t
k−1), stk , ∇yΦt(xtk, y

t
k) + θqtk. (59)

Thus qt0 = 0; and for k ≥ 0, Assumption 2 implies that

‖qtk+1‖ ≤ Lyx‖xtk+1 − xtk‖+ Lyy‖ytk+1 − ytk‖. (60)

Lemma 13. Suppose Assumptions 1, 2, 3 hold. Let {xtk, ytk}k≥0 be SAPD iterates generated according
to Algorithm 1 for solving minx maxy Lt(x, y). Then for all x ∈ dom f ⊂ X , y ∈ dom g ⊂ Y ,
and k ≥ 0,

Lt(xtk+1, y)− Lt(x, ytk+1)

≤− 〈qtk+1, y
t
k+1 − y〉+ θ〈qtk, ytk − y〉+ Λtk(x, y)− Σtk+1(x, y) + Γtk+1 + εt,xk (x) + εt,yk (y),

(61)
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where

εt,xk (x) , 〈∇̃xΦt(xtk, y
t
k+1;ωxk)−∇xΦt(xtk, y

t
k+1), x− xtk+1〉, εt,yk (y) , 〈s̃tk − stk, ytk+1 − y〉,

qtk and stk are defined as in (59), and

Λtk(x, y) , (
1

2τ
− µx

2
)‖x− xtk‖2 +

1

2σ
‖y − ytk‖2,

Σtk+1(x, y) ,
1

2τ
‖x− xtk+1‖2 + (

1

2σ
+
µy
2

)‖y − ytk+1‖2,

Γtk+1 , (
L′xx

2
− 1

2τ
)‖xtk+1 − xtk‖2 −

1

2σ
‖ytk+1 − ytk‖2

+ θLyx‖xtk − xtk−1‖‖ytk+1 − ytk‖+ θLyy‖ytk − ytk−1‖‖ytk+1 − ytk‖.

Proof. Fix x ∈ dom f and y ∈ dom g. Using Lemma 7.1 from [15] for the y− and x−subproblems
in Algorithm 1, we get

f(xtk+1) + 〈∇̃xΦt(xtk, y
t
k+1;ωxk), xtk+1 − x〉 ≤ f(x) +

1

2τ

[
‖x− xtk‖2 − ‖x− xtk+1‖2 − ‖xtk+1 − xtk‖2

]
,

g(ytk+1)− 〈s̃tk, ytk+1 − y〉 ≤ g(y) +
1

2σ

[
‖y − ytk‖2 − ‖y − ytk+1‖2 − ‖ytk+1 − ytk‖2

]
.

Thus, by adding and subtracting we further get

f(xtk+1) + 〈∇xΦt(xtk, y
t
k+1), xtk+1 − x〉

≤f(x) + 1
2τ (‖x− xtk‖2 − ‖x− xtk+1‖2 − ‖xtk+1 − xtk‖2) + εt,xk (x),

(62a)

g(ytk+1)− 〈stk, ytk+1 − y〉
≤g(y) + 1

2σ (‖y − ytk‖2 − ‖y − ytk+1‖2 − ‖ytk+1 − ytk‖2) + εt,yk (y).
(62b)

Rearranging the terms in (62b), we get

−g(y) + g(ytk+1)

≤〈stk, ytk+1 − y〉+ 1
2σ

[
‖y − ytk‖2 − ‖y − ytk+1‖2 − ‖ytk+1 − ytk‖2

]
+ εt,yk (y).

(63)

Since ytk+1 ∈ dom g, the inner product in (62a) can be lower bounded using convexity of Φt(·, ytk+1)
as follows (see Assumption 2):

〈∇xΦt(xtk, y
t
k+1), xtk+1 − x〉 = 〈∇xΦt(xtk, y

t
k+1), xtk − x〉+ 〈∇xΦt(xtk, y

t
k+1), xtk+1 − xtk〉

≥ Φt(xtk, y
t
k+1)− Φt(x, ytk+1) +

µx
2
‖x− xtk‖2 + 〈∇xΦt(xtk, y

t
k+1), xtk+1 − xtk〉.

Using this inequality after adding Φt(xtk+1, y
t
k+1) to both sides of (62a), we get

Φt(xtk+1, y
t
k+1) + f(xtk+1)

≤Φt(x, ytk+1) + f(x) + Φt(xtk+1, y
t
k+1)− Φt(xtk, y

t
k+1)− 〈∇xΦt(xtk, y

t
k+1), xtk+1 − xtk〉

+ 1
2τ

[
‖x− xtk‖2 − ‖x− xtk+1‖2 − ‖xtk+1 − xtk‖2

]
− µx

2 ‖x− x
t
k‖2 + εt,xk (x)

≤Φt(x, ytk+1) + f(x) +
L′xx

2
‖xtk+1 − xtk‖2

+ 1
2τ

[
‖x− xtk‖2 − ‖x− xtk+1‖2 − ‖xtk+1 − xtk‖2

]
− µx

2 ‖x− x
t
k‖2 + εt,xk (x),

(64)
where the last step uses Assumption 2. Rearranging the terms gives us

f(xtk+1)− f(x)− Φt(x, ytk+1) ≤ −Φt(xtk+1, y
t
k+1) +

L′xx
2
‖xtk+1 − xtk‖2

+
1

2τ

[
‖x− xtk‖2 − ‖x− xtk+1‖2 − ‖xtk+1 − xtk‖2

]
− µx

2
‖x− xtk‖2 + εt,xk (x).

(65)
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Then, for k ≥ 0, by summing (63) and (65), we obtain

L(xtk+1, y)− L(x, ytk+1) = f(xtk+1) + Φt(xtk+1, y)− g(y)− f(x)− Φt(x, ytk+1) + g(ytk+1)

≤Φt(xtk+1, y)− Φt(xtk+1, yk+1) + 〈stk, ytk+1 − y〉+
L′xx

2
‖xtk+1 − xtk‖2

+
1

2σ

[
‖y − ytk‖2 − ‖y − ytk+1‖2 − ‖ytk+1 − ytk‖2

]
+ εt,yk (y)

+
1

2τ

[
‖x− xtk‖2 − ‖x− xtk+1‖2 − ‖xtk+1 − xtk‖2

]
− µx

2
‖x− xtk‖2 + εt,xk (x).

(66)
From Assumption 2, the µy-strongly concavity of Φt(x, ·) for fixed x ∈ dom f ⊂ X implies

Φt(xtk+1, y)− Φt(xtk+1, y
t
k+1) + 〈stk, ytk+1 − y〉

≤〈∇yΦt(xtk+1, y
t
k+1), y − ytk+1〉 −

µy
2
‖y − ytk+1‖2 + 〈∇yΦt(xtk, y

t
k) + θqtk, y

t
k+1 − y〉

=− 〈qtk+1, y
t
k+1 − y〉 −

µy
2
‖y − ytk+1‖2 + θ〈qtk, ytk − y〉+ θ〈qtk, ytk+1 − ytk〉.

Thus, using the above inequality within (66), we get

Lt(xtk+1, y)− Lt(x, ytk+1) ≤ −〈qtk+1, y
t
k+1 − y〉+ θ〈qtk, ytk − y〉+ θ〈qtk, ytk+1 − ytk〉

+
L′xx

2
‖xtk+1 − xtk‖2 +

1

2σ

[
‖y − ytk‖2 − ‖y − ytk+1‖2 − ‖ytk+1 − ytk‖2

]
− µy

2
‖y − ytk+1‖2

+
1

2τ

[
‖x− xtk‖2 − ‖x− xtk+1‖2 − ‖xtk+1 − xtk‖2

]
− µx

2
‖x− xtk‖2 + εt,xk (x) + εt,yk (y).

Finally, (61) follows from using Cauchy-Schwarz for
〈
qtk, y

t
k+1 − ytk

〉
and (60).

Lemma 14. [3, Theorem 6.42] Let f be proper, closed and convex function. Then for any x, x′ ∈ X ,
we get ‖proxf (x)− proxf (x′)‖ ≤ ‖x− x′‖.

Next, based on the above inequality, we prove an intermediate result, which we use later to bound the
variance of the SAPD iterate sequence.

Lemma 15. Suppose Assumptions 1, 2, 3 hold. Let {xtk, ytk}k≥0 be SAPD iterates generated as in
Algorithm 1 for solving minx maxy Lt(x, y). For k ≥ 0, let qtk and stk be defined as in (59), and let

x̂tk+1 , proxτf
(
xtk − τ∇xΦt(xtk, y

t
k+1)

)
, ˆ̂xtk+1 , proxτf

(
xtk − τ∇xΦt(xtk, ŷ

t
k+1)

)
,

ŷtk+1 , proxσg
(
ytk + σstk

)
, ˆ̂ytk+1 , proxσg

(
ŷtk + σ(1 + θ)∇yΦt(ˆ̂xtk, ŷ

t
k)− σθ∇yΦt(xtk−1, y

t
k−1)

)
,

then the following inequalities hold for k ≥ 0:

‖xtk+1 − x̂tk+1‖ ≤ τ‖∆
t,x
k ‖, ‖ytk+1 − ŷtk+1‖ ≤ σ

(
(1 + θ)‖∆t,y

k ‖+ θ‖∆t,y
k−1‖

)
, (67a)

‖ytk+1 − ˆ̂ytk+1‖ ≤ σ
(
(1 + θ)‖∆t,y

k ‖+ θ‖∆t,y
k−1‖+ τ(1 + θ)Lyx‖∆t,x

k−1‖
)

(67b)

+ σ (1 + σ(1 + θ)Lyy + τσ(1 + θ)LyxLxy)
(
(1 + θ)‖∆t,y

k−1‖+ θ‖∆t,y
k−2‖

)
,

where ∆t,x
k ,∇̃xΦt(xtk, y

t
k+1;ωxk)−∇xΦt(xtk, y

t
k+1), and ∆t,y

k ,∇̃yΦt(xtk, y
t
k;ωyk)−∇yΦt(xtk, y

t
k).

Proof. The first inequality in eq. (67a) is from Lemma 14; for the second, we have

‖ytk+1 − ŷtk+1‖ ≤ σ‖s̃tk − stk‖ ≤ σ
(
(1 + θ)‖∆t,y

k ‖+ θ‖∆t,y
k−1‖

)
,

which follows from Lemma 14 and the triangle inequality. To show eq. (67b), we bound
‖ytk+1 − ŷtk+1‖ and ‖ŷtk+1 − ˆ̂ytk+1‖ separately. It follows from Lemma 14 that ‖xtk+1 − ˆ̂xtk+1‖ ≤
τ‖∇̃xΦt(xtk, y

t
k+1;ωxk) − ∇xΦt(xtk, ŷ

t
k+1)‖. After adding and subtracting ∇xΦt(xtk, y

t
k+1), As-

sumption 2 implies that

‖xtk+1 − ˆ̂xtk+1‖ ≤ τ
(
‖∆t,x

k ‖+ Lxy‖ytk+1 − ŷtk+1‖
)
. (68)
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We will use this relation to bound ‖ŷtk+1 − ˆ̂ytk+1‖. Indeed, using Lemma 14, we have

‖ŷtk+1 − ˆ̂ytk+1‖ ≤‖ytk − ŷtk + σ(1 + θ)
(
∇yΦt(xtk, y

t
k)−∇yΦt(ˆ̂xtk, ŷ

t
k)
)
‖

≤(1 + σ(1 + θ)Lyy)‖ytk − ŷtk‖+ σ(1 + θ)Lyx‖xtk − ˆ̂xtk‖

≤
(

1 + σ(1 + θ)Lyy + τσ(1 + θ)LyxLxy

)
‖ytk − ŷtk‖+ τσ(1 + θ)Lyx‖∆t,x

k−1‖

≤σ (1 + σ(1 + θ)Lyy + τσ(1 + θ)LyxLxy) ·
(
(1 + θ)‖∆t,y

k−1‖+ θ‖∆t,y
k−2‖

)
+ στ(1 + θ)Lyx‖∆t,x

k−1‖,
where the second, third and fourth inequalities follow from Assumption 2, eq. (68) and the second
inequality in eq. (67a), respectively. Combining this with ‖ytk+1 − ˆ̂ytk+1‖ ≤ ‖ytk+1 − ŷtk+1‖ +

‖ŷtk+1 − ˆ̂ytk+1‖, and the second inequality in eq. (67a) give us the desired bound.

Next, we provide some inequalities to bound the SAPD variance term later in our analysis.
Lemma 16. Suppose Assumptions 1, 2, 3 hold. Let {xtk, ytk}k≥0 be SAPD iterates generated according
to Algorithm 1 for solving minx maxy Lt(x, y). The following inequality holds for all k ≥ 0:

E
[
〈∆t,x

k , x̂tk+1 − xtk+1〉
]
≤ τδ2

x, E
[
〈∆t,y

k , ytk+1 − ŷtk+1〉
]
≤ σ(1 + 2θ)δ2

y,

E
[
〈∆t,y

k−1,
ˆ̂ytk+1 − ytk+1〉

]
≤ σ

[(
(2 + σ(1 + θ)Lyy + τσ(1 + θ)LyxLxy) · (1 + 2θ) +

τ(1 + θ)Lyx
2

)
δ2
y +

τ(1 + θ)Lyx
2

δ2
x

]
,

where ∆t,x
k and ∆t,y

k are defined in Lemma 15.

Proof. With the convention that yt−2 = yt−1 = yt0, and xt−2 = xt−1 = xt0, Lemma 15 and Cauchy-
Schwarz inequality imply for all k ≥ 0 that

〈∆t,x
k , xtk+1 − x̂tk+1〉 ≤ τ‖∆

t,x
k ‖

2,

〈∆t,y
k , ytk+1 − ŷtk+1〉 ≤ σ

(
(1 + θ)‖∆t,y

k ‖
2 + θ‖∆t,y

k−1‖‖∆
t,y
k ‖
)
,

〈∆t,y
k−1, y

t
k+1 − ˆ̂ytk+1〉 ≤ σ

(
(1 + θ)‖∆t,y

k ‖‖∆
t,y
k−1‖+ θ‖∆t,y

k−1‖
2 + τ(1 + θ)Lyx‖∆t,x

k−1‖‖∆
t,y
k−1‖

+
(

1 + σ(1 + θ)Lyy + τσ(1 + θ)LyxLxy

)
·
(

(1 + θ)‖∆t,y
k−1‖

2 + θ‖∆t,y
k−2‖‖∆

t,y
k−1‖

))
.

Next, using Assumption 3 and ‖a‖‖b‖ ≤ 1
2‖a‖

2 + 1
2‖b‖

2, which holds for a, b ∈ Rn, and taking the
expectation leads to the desired result.

Before we move on to prove our intermediate result in Lemma 12, we give two technical lemmas that
help us simplify the SAPD parameter selection rule and lead to the matrix inequality in eq. (32).
Lemma 17. Given τ, σ > 0, θ, α ≥ 0, and ρ ∈ (0, 1), let

G′ ,



1
τ

(1− 1
ρ
) + µx

ρ
0 0 0 0

0 1
σ

(1− 1
ρ
) + µy −|1− θ

ρ
| Lyx −|1− θ

ρ
| Lyy 0

0 −|1− θ
ρ
| Lyx 1

τ
− L′xx 0 − θ

ρ
Lyx

0 −|1− θ
ρ
| Lyy 0 1

σ
− α − θ

ρ
Lyy

0 0 − θ
ρ
Lyx − θ

ρ
Lyy

α
ρ

 , (69)

then G � 0 if and only if G′ � 0, where G is defined in eq. (32).

Proof. ∀ y = (y1, y2, y3, y4, y5)> ∈ R5, letting ỹ = (y1,−y2, y3, y4, y5)>, we have

y>G′y =

{
y>Gy if θ ≤ ρ,
ỹ>Gỹ else;

y>Gy =

{
y>G′y if θ ≤ ρ,
ỹ>G′ỹ else.

Thus, G � 0 is equivalent to G′ � 0.
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Lemma 18. Given τ, σ > 0, θ, α ≥ 0, and ρ ∈ (0, 1), consider G defined in eq. (32). If G � 0, then
G′′ � 0, where

G′′ ,


1
σ

(1− 1
ρ
) + µy + α

ρ
(−|1− θ

ρ
| − θ

ρ
)Lyx (−|1− θ

ρ
| − θ

ρ
)Lyy

(−|1− θ
ρ
| − θ

ρ
)Lyx

1
τ
− L′xx 0

(−|1− θ
ρ
| − θ

ρ
)Lyy 0 1

σ
− α

� 0. (70)

Proof. Note that x>G′′x = x′
>
G′x′ ≥ 0 for all x = [x1 x2 x3]> ∈ R3, where x′ =

[0 x1 x2 x3 x1]> and G′ is defined in (69). Then the desired result follows from Lemma 17.

Finally, with the following observation, we will be ready to proceed to the proof of Lemma 12.
Let {F t,xk } and {F t,yk } be the filtrations such that F t,xk , F({xti}ki=0, {yti}

k+1
i=0 ) and F t,yk ,

F({xti}ki=0, {yti}ki=0) denote the σ-algebras generated by the random variables in their arguments.
A consequence of Assumption 3 is that for F t,xk -measurable random variable v, i.e., v ∈ F t,xk , we

have that E
[
〈∇̃Φx(xtk, y

t
k+1;ωxk)−∇Φx(xtk, y

t
k+1), v〉

]
= 0; similarly, for v ∈ F t,yk , it holds that

E
[
〈∇̃Φy(xtk, y

t
k;ωyk)−∇Φy(xtk, y

t
k), v〉

]
= 0.

C.2 Proof of Lemma 12

Proof. Fix arbitrary (x, y) ∈ dom f × dom g. Since (xtk+1, y
t
k+1) ∈ dom f × dom g, using the

concavity of Lt(xtk+1, ·) and the convexity of Lt(·, ytk+1), Jensen’s lemma immediately implies that

KN (ρ)
(
Lt(x̄tN , y)− Lt(x, ȳtN )

)
≤
N−1∑
k=0

ρ−k
(
Lt(xtk+1, y)− Lt(x, ytk+1)

)
, ∀ρ ∈ (0, 1], (71)

where x̄tN = 1
KN (ρ)

∑N−1
k=0 ρ−kxtk+1, ȳ

t
N = 1

KN (ρ)

∑N−1
k=0 ρ−kytk+1, KN (ρ) =

∑N−1
k=0 ρ−k+1.

Thus, if we multiply both sides of (61) by ρ−k and sum the resulting inequality from k = 0 to N − 1,
then using (71) we get

KN (ρ)
(
Lt(x̄tN , y)− L(x, ȳtN )

)
≤
N−1∑
k=0

ρ−k
(
−〈qtk+1, y

t
k+1 − y〉+ θ〈qtk, ytk − y〉︸ ︷︷ ︸

part 1

+Λtk(x, y)− Σtk+1(x, y) + Γtk+1

−〈∇̃xΦt(xtk, y
t
k+1;ωxk)−∇xΦt(xtk, y

t
k+1), xtk+1 − x〉︸ ︷︷ ︸

part 2

+ 〈s̃tk − stk, ytk+1 − y〉︸ ︷︷ ︸
part 3

)
.

(72)

Using Cauchy–Schwarz inequality and (60) leads to

|〈qtk+1, y
t
k+1−y〉| ≤ Stk+1(x, y) , Lyx‖xtk+1−xtk‖‖ytk+1−y‖+Lyy‖ytk+1−ytk‖‖ytk+1−y‖ (73)

for k ≥ −1. Recall xt−1 = xt0, y
t
−1 = yt0, thus q0 = 0; therefore, for part 1,

N−1∑
k=0

ρ−k(θ〈qtk, ytk − y〉 − 〈qtk+1, y
t
k+1 − y〉) =

N−2∑
k=0

ρ−k
(θ
ρ
− 1
)
〈qtk+1, y

t
k+1 − y〉 − ρ−N+1〈qtN , ytN − y〉

(74)

≤
N−2∑
k=0

ρ−k|1− θ

ρ
| Stk+1(x, y) + ρ−N+1StN (x, y) =

N−1∑
k=0

ρ−k|1− θ

ρ
| Stk+1(x, y) + ρ−N+1 θ

ρ
StN (x, y),

where the first inequality follows from eq. (73).

Next, letting ∆t,x
k and x̂k+1 be defined as in Lemma 15, we equivalently write part 2 as

N−1∑
k=0

−ρ−k〈∆t,x
k , xtk+1 − x〉 =

N−1∑
k=0

ρ−k
(
〈∆t,x

k , x̂tk+1 − xtk+1〉 − 〈∆t,x
k , x̂tk+1 − x〉

)
. (75)
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Moreover, for ∆t,y
k , ŷtk+1 and ˆ̂ytk+1 defined as in Lemma 15, we also equivalently write part 3 as

N−1∑
k=0

ρ−k〈s̃tk − sk, ytk+1 − y〉

=

N−1∑
k=0

ρ−k
[
(1 + θ)〈∆t,y

k , ytk+1 − ŷtk+1 + ŷtk+1 − y〉 − θ〈∆t,y
k−1, y

t
k+1 − ˆ̂ytk+1 + ˆ̂ytk+1 − y〉

]
.

(76)

Adding ρ−N+1Dt
N (x, y) to both sides of (72), then using (74), (75) and (76), for any fixed (x, y) ∈

X × Y , we get

KN (ρ)
(
Lt(x̄tN , y)− Lt(x, ȳtN )

)
+ ρ−N+1Dt

N (x, y) ≤ U tN (x, y) +

N−1∑
k=0

ρ−k(P tk(x, y) +Qtk),

(77)
where U tN (x, y), Dt

N (x, y) are defined as

U tN (x, y) ,
N−1∑
k=0

ρ−k
(

Γtk+1 + Λtk(x, y)− Σk+1(x, y) + |1− θ

ρ
| Stk+1(x, y)

)
− ρ−N+1

(
−Dt

N (x, y)− θ

ρ
StN (x, y)

)
,

(78a)

Dt
N (x, y) ,

1

2ρ

(1

τ
− µx

)
‖xtN − x‖2 +

1

2ρ

(
1

σ
− α

)
‖ytN − y‖2, (78b)

and P tk(x, y), Qtk for k = 0, · · · , N − 1 are defined as

P tk(x, y) ,− 〈∆t,x
k , x̂tk+1 − x〉+ (1 + θ)〈∆t,y

k , ŷtk+1 − y〉 − θ〈∆
t,y
k−1,

ˆ̂ytk+1 − y〉, (79a)

Qtk ,〈∆t,x
k , x̂tk+1 − xtk+1〉+ (1 + θ)〈∆t,y

k , ytk+1 − ŷtk+1〉 − θ〈∆
t,y
k−1, y

t
k+1 − ˆ̂ytk+1〉. (79b)

For any fixed (x, y) ∈ X×Y , we first analyzeU tN (x, y). After adding and subtracting α
2 ‖y

t
k+1−ytk‖2,

and rearranging the terms, we get

U tN (x, y) =
1

2

N−1∑
k=0

ρ−k
(
ξ>k Aξk − ξ>k+1Bξk+1

)
− ρ−N+1(−Dt

N (x, y)− θ

ρ
StN (x, y))

=
1

2
ξ>0 Aξ0 −

1

2

N−1∑
k=1

ρ−k+1[ξ>k (B − 1
ρ
A)ξk]− ρ−N+1

(1

2
ξ>NBξN −Dt

N (x, y)− θ

ρ
StN (x, y)

)
,

(80)

where A,B ∈ R5×5 and ξk ∈ R5 are defined for k ≥ 0 as follows: ξk ,


‖xtk − x‖
‖ytk − y‖
‖xtk − xtk−1‖
‖ytk − ytk−1‖
‖ytk+1 − ytk‖

 such

that xt−1 = xt0, yt−1 = yt0, and

A ,



1
τ
− µx 0 0 0 0

0 1
σ

0 0 0

0 0 0 0 θLyx

0 0 0 0 θLyy

0 0 θLyx θLyy −α

 , B ,



1
τ

0 0 0 0

0 1
σ

+ µy −|1− θ
ρ
| Lyx −|1− θ

ρ
| Lyy 0

0 −|1− θ
ρ
| Lyx 1

τ
− L′xx 0 0

0 −|1− θ
ρ
| Lyy 0 1

σ
− α 0

0 0 0 0 0

 .

In Lemma 17 we show that eq. (32) is equivalent to B − 1
ρA � 0; therefore, it follows from (80) that

for any given (x, y) ∈ X × Y ,

U tN (x, y) ≤ 1

2
ξ>0 Aξ0 − ρ−N+1( 1

2ξ
>
NBξN −Dt

N (x, y)− θ

ρ
StN (x, y)), holds w.p. 1.
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Furthermore, we have

1

2
ξ>NBξN −Dt

N (x, y)− θ

ρ
StN (x, y) =

1

2
ξ>N


1
τ (1− 1

ρ ) + µx
ρ 01×3 0

03×1 G′′ 03×1

0 01×3 0

 ξN ≥ 0,

which follows from eq. (32) and Lemma 18, where G′′ is defined in eq. (70). Finally,

1

2
ξ>0 Aξ0≤

1

2τ
‖x− xt0‖2 +

1

2σ
‖y − yt0‖2.

Thus, for any (x, y) ∈ X × Y ,

U tN (x, y) ≤ 1

2τ
‖x− xt0‖2 +

1

2σ
‖y − yt0‖2, w.p. 1. (81)

Now, we are ready to show eq. (55). It follows from eq. (77) and eq. (81) that, for any (x, y) ∈ X ×Y ,

KN (ρ)
(
Lt(x̄tN , y)− Lt(x, ȳtN )

)
+ ρ−N+1Dt

N (x, y)

≤ 1

2τ
‖x− xt0‖2 +

1

2σ
‖y − yt0‖2 +

N−1∑
k=0

ρ−k(P tk(x, y) +Qtk).
(82)

Let (xt∗, y
t
∗) be the unique saddle point of Lt. If we substitute (x, y) = (xt∗, y

t
∗) into eq. (82) and use

the fact Lt(x̄tN , yt∗)− Lt(xt∗, ȳtN ) ≥ 0, we obtain that

ρ−N+1Dt
N (xt∗, y

t
∗) ≤

1

2τ
‖xt∗ − xt0‖2 +

1

2σ
‖yt∗ − yt0‖2 +

N−1∑
k=0

ρ−k(P tk(xt∗, y
t
∗) +Qtk). (83)

From Assumption 3, for k ≥ −1, we have

E
[
〈∆t,x

k , x̂tk+1 − xt∗〉
]

= E
[
〈∆t,y

k , ŷtk+1 − yt∗〉
]

= E
[
〈∆t,y

k−1,
ˆ̂ytk+1 − yt∗〉

]
= 0.

Thus,
E[P tk(xt∗, y

t
∗)] = 0.

Moreover, from Assumption 3, for k ≥ −1, we have

E
[
‖∆t,x

k ‖
2
]
≤ δ2

x, E
[
‖∆t,y

k ‖
2
]
≤ δ2

y.

Therefore, we uniformly upper bound E [Qtk] for k ≥ 0 using Lemma 16, i.e.,

E[

N−1∑
k=0

ρ−kQtk] ≤
(
τΞxτ,σ,θδ

2
x + σΞyτ,σ,θδ

2
y

)N−1∑
k=0

ρ−k,

where Ξxτ,σ,θ and Ξyτ,σ,θ are defined in (18a) and (18b). Therefore, combining this result with
E[P tk(xt∗, y

t
∗)] = 0 for any k ∈ {0, . . . , N − 1}, we get

E[

N−1∑
k=0

ρ−k(P tk(xt∗, y
t
∗) +Qtk)] ≤

N−1∑
k=0

ρ−k
(
τΞxτ,σ,θδ

2
x + σΞyτ,σ,θδ

2
y

)
. (84)

Then, using the definition of Dt
N (xt∗, y

t
∗) in eq. (78b) and the fact

N−1∑
k=0

ρ−k = ρ−N+1 1− ρN

1− ρ
≤ ρ−N+1 1

1− ρ
,

for any ρ ∈ (0, 1), the desired inequality in (55) follows from (83) and (84).
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C.3 Proof of Lemma 2

Throughout this proof, our analysis is based on the proof of Lemma 12. To analyze the expected
gap in Lemma 2, we consider the setting with ρ = 1, which implies that KN (ρ) = N and x̄tN =
1
N

∑N−1
k=0 xtk+1, ȳ

t
N = 1

N

∑N−1
k=0 ytk+1. The proof of Lemma 2 is different than that of Lemma 12 in

the way we analyze the variance terms. To be precise, we construct the auxiliary sequences –see x̃k,
ỹ+
k , ỹ−k defined in eq. (88) and eq. (91) –for the analysis of part 2 and part 3 in eq. (72) to provide

guarantees on the expected gap function.

Proof. Fix arbitrary (x, y) ∈ dom f × dom g. Since (xtk+1, y
t
k+1) ∈ dom f × dom g, using the

concavity of Lt(xtk+1, ·) and the convexity of Lt(·, ytk+1), Jensen’s lemma immediately implies that

N
(
Lt(x̄tN , y)− Lt(x, ȳtN )

)
≤
N−1∑
k=0

(
Lt(xtk+1, y)− Lt(x, ytk+1)

)
, (85)

where x̄tN = 1
N

∑N−1
k=0 xtk+1, ȳ

t
N = 1

N

∑N−1
k=0 ytk+1. Summing eq. (61) from k = 0 to N − 1 and

using (85), we get
N
(
Lt(x̄tN , y)− L(x, ȳtN )

)
≤
N−1∑
k=0

−〈qtk+1, y
t
k+1 − y〉+ θ〈qtk, ytk − y〉︸ ︷︷ ︸

part 1

+Λtk(x, y)− Σtk+1(x, y) + Γtk+1

−〈∇̃xΦt(xtk, y
t
k+1;ωxk)−∇xΦt(xtk, y

t
k+1), xtk+1 − x〉︸ ︷︷ ︸

part 2

+ 〈s̃tk − stk, ytk+1 − y〉︸ ︷︷ ︸
part 3

.

(86)

The bound on Part 1 immediately follows from eq. (74) with ρ = 1, i.e.,
N−1∑
k=0

θ〈qtk, ytk − y〉 − 〈qtk+1, y
t
k+1 − y〉 ≤

N−1∑
k=0

|1− θ| Stk+1(x, y) + θStN (x, y). (87)

Recall that xt−1 = xt0 and yt−1 = yt0; thus, qt0 = 0.

Next we consider part 2, let ∆t,x
k be defined as in Lemma 15. For some arbitrary ηx > 0, define

{x̃k} sequence as follows:

x̃0 , xt0, x̃k+1 , argmin
x′∈X

−〈∆t,x
k , x′〉+

ηx
2
‖x′ − x̃k‖2, ∀ k ≥ 0. (88)

Then by [29, Lemma 2.1], for all k ≥ 0 and x ∈ X , we have that

〈∆t,x
k , x− x̃k〉 ≤

ηx
2
‖x− x̃k‖2 −

ηx
2
‖x− x̃k+1‖2 +

1

2ηx
‖∆t,x

k ‖
2.

Thus, using x̃0 = xt0 we get
N−1∑
k=0

〈∆t,x
k , x− x̃k〉 ≤

N−1∑
k=0

(ηx
2
‖x− x̃k‖2 −

ηx
2
‖x− x̃k+1‖2 +

1

2ηx
‖∆t,x

k ‖
2
)

=
ηx
2

(‖x− xt0‖2 − ‖x− x̃N‖2) +

N−1∑
k=0

1

2ηx
‖∆t,x

k ‖
2 ≤ ηx

2
‖x− xt0‖2 +

1

2ηx

N−1∑
k=0

‖∆t,x
k ‖

2;

(89)

hence, part 2 becomes
N−1∑
k=0

〈∆t,x
k , x− xtk+1〉

=

N−1∑
k=0

〈∆t,x
k , x̂k+1

t − xtk+1〉 − 〈∆t,x
k , x̂tk+1 − x̃k〉+ 〈∆t,x

k , x− x̃k〉

≤ηx
2
‖x− xt0‖2 +

N−1∑
k=0

〈∆t,x
k , x̂tk+1 − xtk+1〉 − 〈∆t,x

k , x̂tk+1 − x̃k〉+
1

2ηx
‖∆t,x

k ‖
2,

(90)

which follows from eq. (89), and x̂k+1 is defined in Lemma 15.6

6When δx = 0, clearly ∆t,x
k = 0; thus, part 2 is equal to 0 and we can set ηx = 0 for which (90) becomes

0 ≤ 0.
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Next, we consider part 3, let ∆t,y
k be defined as in Lemma 15. For some arbitrary ηy > 0, we

construct two auxiliary sequences: let ỹ+
0 = ỹ−0 = yt0, and for k ≥ 0, we define

ỹ+
k+1 , argmin

y′∈Y
〈∆t,y

k , y′〉+ ηy
2
‖y′− ỹ+

k ‖
2, ỹ−k+1 , argmin

y′∈Y
−〈∆t,y

k , y′〉+ ηy
2
‖y′− ỹ−k ‖

2. (91)

Thus, it follows from [29, Lemma 2.1] that for y ∈ Y ,

〈∆t,y
k , ỹ+

k − y〉 ≤
ηy
2
‖y − ỹ+

k ‖
2 − ηy

2
‖y − ỹ+

k+1‖
2 +

1

2ηy
‖∆t,y

k ‖
2,

〈∆t,y
k , y − ỹ−k 〉 ≤

ηy
2
‖y − ỹ−k ‖

2 − ηy
2
‖y − ỹ−k+1‖

2 +
1

2ηy
‖∆t,y

k ‖
2.

Therefore, as in (89), we get7

N−1∑
k=0

(1 + θ)〈∆t,y
k , ỹ+

k − y〉+ θ〈∆t,y
k−1, y − ỹ

−
k−1〉

≤ηy
2

(1 + 2θ)‖y − yt0‖2 +
1

2ηy

N−1∑
k=0

(
(1 + θ)‖∆t,y

k ‖
2 + θ‖∆t,y

k−1‖
2
)
.

(92)

Next, using eq. (92), we can bound part 3 as follows:

N−1∑
k=0

〈s̃tk − stk, ytk+1 − y〉

=

N−1∑
k=0

(1 + θ)〈∆t,y
k , ytk+1 − ŷtk+1 + ŷtk+1 − ỹ+

k + ỹ+
k − y〉 − θ〈∆

t,y
k−1, y

t
k+1 − ˆ̂ytk+1 + ˆ̂ytk+1 − ỹ−k−1 + ỹ−k−1 − y〉

≤
N−1∑
k=0

(1 + θ)〈∆t,y
k , ytk+1 − ŷtk+1 + ŷtk+1 − ỹ+

k 〉 − θ〈∆
t,y
k−1, y

t
k+1 − ˆ̂ytk+1 + ˆ̂ytk+1 − ỹ−k−1〉

+
1

2ηy

N−1∑
k=0

(
(1 + θ)‖∆t,y

k ‖
2 + θ‖∆t,y

k−1‖
2
)

+
ηy
2

(1 + 2θ)‖y − yt0‖2,

(93)
where ŷtk+1 and ˆ̂ytk+1 are defined in Lemma 15.

For any fixed (x, y) ∈ dom f × dom g, we use (87), (90) and (93) to get

N
(
Lt(x̄tN , y)− Lt(x, ȳtN )

)
≤ Ũ tN (x, y) +

ηx
2
‖x− xt0‖2 +

ηy
2

(1 + 2θ)‖y − yt0‖2 +

N−1∑
k=0

(P̃ tk + Q̃tk),
(94)

where Ũ tN (x, y) and P̃ tk, Q̃tk for k = 0, . . . , N − 1 are defined as follows:

Ũ tN (x, y) ,
N−1∑
k=0

(
Γtk+1 + Λtk(x, y)− Σtk+1(x, y) + |1− θ| Stk+1(x, y)

)
+ θStN (x, y), (95a)

P̃ tk , −〈∆t,x
k , x̂tk+1 − x̃k〉+ (1 + θ)〈∆t,y

k , ŷtk+1 − ỹ+
k 〉 − θ〈∆

t,y
k−1,

ˆ̂ytk+1 − ỹ−k−1〉, (95b)

Q̃tk , 〈∆t,x
k , x̂tk+1 − xtk+1〉+ (1 + θ)〈∆t,y

k , ytk+1 − ŷtk+1〉 − θ〈∆
t,y
k−1, y

t
k+1 − ˆ̂ytk+1〉

+
1

2ηx
‖∆t,x

k ‖
2 +

1 + θ

2ηy
‖∆t,y

k ‖
2 +

θ

2ηy
‖∆t,y

k−1‖
2. (95c)

The remaining part of the analysis directly follows from the arguments we used in the proof of
Lemma 12. For any fixed (x, y) ∈ X × Y , we first analyze Ũ tN (x, y). For some given α > 0, after

7As in part 2, when δy = 0, we can set ηy = 0.
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adding and subtracting α
2 ‖y

t
k+1 − ytk‖2, and rearranging the terms, we get

Ũ tN (x, y) =
1

2

N−1∑
k=0

(
ξ>k Ãξk − ξ>k+1B̃ξk+1

)
+ θStN (x, y)

=
1

2
ξ>0 Ãξ0 −

1

2

N−1∑
k=1

[ξ>k (B̃ − Ã)ξk]−
(1

2
ξ>N B̃ξN − θStN (x, y)

)
,

(96)

where A,B ∈ R5×5 and ξk ∈ R5 are defined for k ≥ 0 as follows:

ξk ,


‖xtk − x‖
‖ytk − y‖
‖xtk − xtk−1‖
‖ytk − ytk−1‖
‖ytk+1 − ytk‖

 , Ã ,



1
τ − µx 0 0 0 0

0 1
σ 0 0 0

0 0 0 0 θLyx

0 0 0 0 θLyy

0 0 θLyx θLyy −α

 ,

and

B̃ ,



1
τ 0 0 0 0

0 1
σ + µy −|1− θ| Lyx −|1− θ| Lyy 0

0 −|1− θ| Lyx 1
τ − L

′
xx 0 0

0 −|1− θ| Lyy 0 1
σ − α 0

0 0 0 0 0


such that xt−1 = xt0, yt−1 = yt0. Lemma 17 together with ρ = 1 implies that eq. (16) is equivalent to
B̃ − Ã � 0; therefore, it follows from (96) that, for any given (x, y) ∈ X × Y , we have

U tN (x, y) ≤ 1

2
ξ>0 Ãξ0 − ( 1

2ξ
>
N B̃ξN − θStN (x, y)), w.p. 1.

Furthermore, we also have

1

2
ξ>N B̃ξN − θStN (x, y)≥1

2
ξ>N

 µx 01×3 0

03×1 G′′ 03×1

0 01×3 0

 ξN ≥ 0,

which follows from eq. (16) and Lemma 18 with ρ = 1, where G′′ is defined in eq. (70). Finally,

1

2
ξ>0 Ãξ0≤

1

2τ
‖x− xt0‖2 +

1

2σ
‖y − yt0‖2.

Thus, the above three inequalities imply that, for any (x, y) ∈ X × Y ,

Ũ tN (x, y) ≤ 1

2τ
‖x− xt0‖2 +

1

2σ
‖y − yt0‖2, w.p. 1. (97)

Now, we are ready to show eq. (17). It follows from eq. (94) and eq. (97) that

N sup
(x,y)∈X×Y

{
Lt(x̄tN , y)− Lt(x, ȳtN )

}
≤
(

1

2τ
+
ηx
2

)
‖xt∗(ȳtN )− xt0‖2 +

(
1

2σ
+
ηy(1 + 2θ)

2

)
‖y∗(x̄tN )− yt0‖2 +

N−1∑
k=0

(P̃ tk + Q̃tk),

(98)
where (xt∗(ȳ

t
N ), y∗(x̄

t
N )) is the point achieving the supremum on the left hand side. Indeed, to derive

the above inequality, we substitute (x, y) = (xt∗(ȳ
t
N ), y∗(x̄

t
N )) into the eq. (94) and use the fact that

sup
(x,y)∈X×Y

{
Lt(x̄tN , y)− Lt(x, ȳtN )

}
= Lt(x̄tN , y∗(x̄tN ))− Lt(xt∗(ȳtN ), ȳtN ).

From Assumption 3, for k ≥ −1, we have

E
[
〈∆t,x

k , x̂tk+1 − x̃k〉
]

= E
[
〈∆t,y

k , ŷtk+1 − ỹ±k 〉
]

= E
[
〈∆t,y

k−1,
ˆ̂ytk+1 − ỹ−k−1〉

]
= 0.
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Thus, E[P̃ tk] = 0. Moreover, for k ≥ −1, from Assumption 3 we also have

E
[
‖∆t,x

k ‖
2
]
≤ δ2

x, E
[
‖∆t,y

k ‖
2
]
≤ δ2

y.

Next, we uniformly upper bound E
[
Q̃tk

]
for k ≥ 0 using Lemma 16, i.e.,

E[

N−1∑
k=0

Q̃tk] ≤ N
[(
τΞxτ,σ,θ +

1

2ηx

)
δ2
x +

(
σΞyτ,σ,θ +

1 + 2θ

2ηy

)
δ2
y

]
.

Therefore, combining this result with E[P̃ tk] = 0 for any k ∈ {0, . . . , N − 1}, we get

E[

N−1∑
k=0

(P̃ tk + Q̃tk)] ≤ N Ξτ,σ,θ. (99)

Finally, setting ηx = 1
τ , ηy = 1

σ , xt+1
0 = x̄tN , and yt+1

0 = ȳtN , the desired result in (17) follows from
(98) and (99).

D Computation of ε-stationary point in practice

In this section, we discuss how to compute a point xε such that E[‖∇φλ(xε)‖] ≤ ε –as the t∗ in
remark 5 can not be computed in practice. This result is shown in Theorem 7, which directly follows
from Theorem 1 and Lemma 10. Below, for the sake of completeness, we state a known technical
result that we need for the proof of Theorem 7.

Lemma 19. Suppose Assumptions 1 and 2 hold. Then φλ(·) is 1
λ -smooth for λ ∈ (0, γ−1), where

φλ(·) is defined in definition 3 for φ(·) = maxy∈Y L(·, y).

Proof. Let R(x) , x− proxλφ(x) for λ ∈ (0, γ−1) and x ∈ dom f . Indeed, by definition 3, we
know R(x) = λ∇φλ(x). Then by the optimality condition of proxλφ(x), we obtain that

R(x) ∈ ∂f(proxλφ(x))

holds for x ∈ dom f . Hence, for x1, x2 ∈ dom f , we have that

〈R(x1)−R(x2),proxλφ(x1)− proxλφ(x2)〉 ≥ 0,

which further implies that

‖x1 − x2‖2 = ‖R(x1)− proxλφ(x1)−R(x2) + proxλφ(x2)‖2

≥ ‖R(x1)−R(x2)‖2 + ‖proxλφ(x1)− proxλφ(x2)‖2

≥ ‖R(x1)−R(x2)‖2.

Then using the fact R(x) = λ∇φλ(x) completes the proof.

Theorem 7. Consider L defined in (1). Suppose Assumptions 1, 2, 3 hold. Under the premise of
Theorem 1, for any ε > 0, SAPD+ can generate an point xε such that E[‖∇φλ(xε)‖] ≤ ε within

O
(
LκyG(x0

0,y
0
0)

ε2 ln(1/ε) +
Lκyδ

2G(x0
0,y

0
0)

ε4 ln(1/ε)
)

stochastic first-order oracle calls.

Proof. Under the premise of Theorem 1, given ε > 0, SAPD+ generates {xt0}Tt=0 such that
mint=0,...,T E [‖∇φλ(xt0)‖] ≤ ε/4, for T ≥ 96G(x0

0, y
0
0) · 16γ

ε2 + 1. Therefore, for each xt0, if
we let x̂t0 = proxλφ(xt0), then Lemma 10 ensures that we can generate a point x̃t∗ such that

E[‖x̃t∗ − x̂t0‖] ≤ ε̂

within Nε̂ many iterations, where

Nε̂ = O
(

max{Lxx, Lyx}
γ

+
max{Lyx, Lxy}√

γµy
+

max{Lyy, Lyx}
µy

+
(δ2

x

γ
+
δ2
y

µy

) 1

γε̂2

)
·ln
(max{1, µy/γ}

ε̂

)
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Moreover, if we compute the GNME of φ(·) at x̃t∗, it follows that

‖∇φλ(x̃t∗)‖ ≤‖∇φλ(x̃t∗)−∇φλ(x̂t0)‖+ ‖∇φλ(x̂t∗)−∇φλ(xt0)‖+ ‖∇φλ(xt0)‖

≤ 2

λ
‖x̃t∗ − x̂t0‖+

1

λ
‖x̂t∗ − xt0‖+ ‖∇φλ(xt0)‖

=
2

λ
‖x̃t∗ − x̂t0‖+ 2‖∇φλ(xt0)‖

≤ 2

λ
ε̂+ 2‖∇φλ(xt0)‖.

where the second inequality is by Lemma 19; the first equality is by definition 3 and the fact
x̂t0 = proxλφ(xt0). Furthermore, because mint=0,...,T E [‖∇φλ(xt0)‖] ≤ ε/4, then we have

min
t=0,...,T

E[‖∇φλ(x̃t∗)‖] ≤
2

λ
ε̂+

ε

2

and we let xε = x̃t̃∗, where t̃∗ , argmin{t=0,..,T} E[‖∇φλ(x̃t∗)‖]. Therefore, setting λ = 1
2γ and

ε̂ = 1
8γ , Lemma 10 implies that calling SAPD T times, each with Ñ iterations, one can generate xε

such that
E
[
‖∇φλ(xε)‖

]
≤ ε,

where T is given in Theorem 1 and

Ñ = O
(

max{Lxx, Lyx}
γ

+
max{Lyx, Lxy}√

γµy
+

max{Lyy, Lyx}
µy

+
(δ2

x

γ
+
δ2
y

µy

) γ
ε2

)
· ln
(max{γ, µy}

ε

)
Thus, considering the setting in (8), one can compute xε in practice requiring TÑ =

O
(
LκyG(x0

0,y
0
0)

ε2 ln(1/ε) +
Lκyδ

2G(x0
0,y

0
0)

ε4 ln(1/ε)
)

oracle calls; furthermore, ln(1/ε) can be removed
by employing a restarting strategy as in [43].

E Proof of Theorem 3

For completeness, we provide a technical lemma below establishing Lipschitz continuity of the best
response functions (see also [43, Lemma 2.5] and [24, Lemma B.2(a)]).
Lemma 20. [7, Proposition 1] Suppose Assumptions 1 and 2 hold. For any given y ∈ dom g, let
xt∗(y) , argminx∈X Lt(x, y); and for any given x ∈ dom f , let y∗(x) , argmaxy∈Y Lt(x, y) =

argmaxy∈Y L(x, y). Then xt∗(·) and y∗(·) are Lipschitz maps on dom g and dom f , with constants
κxy and κyx, respectively, where κxy , Lxy/µx and κyx , Lyx/µy .

Lemma 21. For any t ≥ 0, let zt∗ , (xt∗, y
t
∗) be the unique saddle point of Lt defined in eq. (4), and

let {ztk}
Nt
k=0 be generated by running SAPD on minx∈X maxy∈Y Lt(x, y) for Nt ∈ Z+ iterations,

where ztk , (xtk, y
t
k); and define zt+1

0 , 1
Nt

∑Nt−1
i=0 zti+1. Under the setting of Lemma 2,

max
{
E
[
Gt(zt+1

0 )
]
, E
[
‖zt+1

0 − zt∗‖2
] }
≤ 1

Nt
Cτ,σ,θE[‖zt0 − zt∗‖2] + C ′τ,σ,θ (100)

holds for all t ≥ 0 and Nt ≥ 1, for some positive constants Cτ,σ,θ and C ′τ,σ,θ.

Proof. For simplicity we assume Nt = N for all t ≥ 0 –the proof still holds for arbitrary {Nt}t≥0 ⊂
Z+. The proof mainly follows the proof of Lemma 2. We first show a bound for E

[
‖zt+1

0 − zt∗‖2
]

that is in the form of the rhs of eq. (100); then, we show it for E
[
Gt(zt+1

0 )
]
. In addition, given

{ztk}
Nt
k=0, we let z̄tNt = (x̄tNt , ȳ

t
Nt

), and z̄tNt = zt+1
0 = 1

Nt

∑Nt−1
i=0 zti+1 for all t ≥ 0 and Nt ≥ 1.

Now, we start with analyzing E
[
‖zt+1

0 − zt∗‖2
]
. The analysis below mainly relies on the proof of

Lemma 2. Indeed, given zt0 = (xt0, y
t
0) for t ≥ 0, substituting x = xt∗ and y = yt∗ within (94) and

then using eq. (97), we obtain that
NE
[
Lt(x̄tN , yt∗)− Lt(xt∗, ȳtN )

]
≤ E

[(
1

2τ
+
ηx
2

)
‖xt∗ − xt0‖2 +

(
1

2σ
+
ηy(1 + 2θ)

2

)
‖yt∗ − yt0‖2 +

N−1∑
k=0

ρ−k(P̃ tk + Q̃tk)

]
.

(101)
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Moreover, since Lt(·, yt∗) is µx-strongly convex and Lt(xt∗, ·) is µy-strongly concave, and (xt∗, y
t
∗) is

the unique saddle point of Lt, we have that
µx
2
‖x̄tN − xt∗‖2 +

µy
2
‖ȳtN − yt∗‖2 ≤ Lt(x̄tN , yt∗)− Lt(xt∗, ȳtN ). (102)

If we let ηx = 1
τ and ηy = 1

σ , then it follows from eqs. (101, 102,99) and the fact that z̄tN = zt+1
0

that
NE

[µx
2
‖xt+1

0 − xt∗‖2 +
µy
2
‖yt+1

0 − yt∗‖2
]
≤ E

[
U
t
(xt∗, y

t
∗)
]

+NΞτ,σ,θ, (103)

where Ξτ,σ,θ is defined in Lemma 2 and for any (x, y) ∈ X × Y , we define

U
t
(x, y) ,

1

τ
‖x− xt0‖2 +

1 + θ

σ
‖y − yt0‖2. (104)

Therefore, we conclude that

E
[
‖zt+1

0 − zt∗‖2
]
≤ 1

N
Cτ,σ,θE

[
‖zt0 − zt∗‖2

]
+ C

′
τ,σ,θ, (105)

where

Cτ,σ,θ ,
2 max{ 1

τ ,
1+θ
σ }

min{µx, µy}
, C

′
τ,σ,θ ,

2

min{µx, µy}
Ξτ,σ,θ.

This completes the first part of the proof. Next, we will bound E[Gt(zt+1
0 )] using the bound on

E[‖zt+1
0 − zt∗‖2] we derived in the first part.

Given zt0, using eq. (98) and eq. (99) in the proof Lemma 2 for ηx = 1
τ and ηy = 1

σ as above, we
obtain that

E
[
Gt(zt+1

0 )
]
≤ 1

N
E
[
U
t
(
xt∗(y

t+1
0 ), y∗(x

t+1
0 )

)]
+ Ξτ,σ,θ, (106)

where U
t
(x, y) is defined in (104) and Ξτ,σ,θ is defined in Lemma 2; furhermore, xt∗(·) and y∗(·) are

defined in eq. (6). Next, we will use eq. (105) to derive an upper bound for the right hand side of
eq. (106).

Since zt∗ is the unique saddle point for Lt, we have xt∗(y
t
∗) = xt∗ and y∗(xt∗) = yt∗. Moreover, accord-

ing to Lemma 20, xt∗(·), y∗(·) is Lipschitz with constants κxy =
Lxy
µx

and κyx =
Lyx
µy

, respectively.
Therefore, Lemma 20 and

U
t
(xt∗(y

t+1
0 ), y∗(x

t+1
0 )) ≤ 2

τ
‖xt∗−xt∗(yt+1

0 )‖2 +
2 + 2θ

σ
‖yt∗−y∗(xt+1

0 )‖2 +2U
t
(xt∗, y

t
∗), w.p. 1,

together imply that

E
[
U
t
(xt∗(y

t+1
0 ), y∗(x

t+1
0 ))

]
≤E

[
2κ2

xy

τ
‖yt∗ − yt+1

0 ‖2 +
(2 + 2θ)κ2

yx

σ
‖xt∗ − xt+1

0 ‖2 + 2U
t
(xt∗, y

t
∗)

]

≤E
[
max

{2

τ
,

(2 + 2θ)

σ

}(
max{κ2

xy, κ
2
yx}‖zt+1

0 − zt∗‖2 + ‖zt0 − zt∗‖2
)]

≤E
[
max

{2

τ
,

(2 + 2θ)

σ

}
max{1, κ2

xy, κ
2
yx}

(( 1

N
+ 1
)
Cτ,σ,θ‖zt0 − zt∗‖2 + C

′
τ,σ,θ

)]
,

where we use eq. (105) for the last inequality. Then, if we use the above inequality within eq. (106),
it follows that

E
[
Gt(zt+1

0 )
]
≤ 1

N
Cτ,σ,θE

[
‖zt0 − zt∗‖2

]
+

1

N
C
′
τ,σ,θ + Ξτ,σ,θ,

where

Cτ,σ,θ , 4 max
{1

τ
,

1 + θ

σ

}
max{1, κ2

xy, κ
2
yx}Cτ,σ,θ,

C
′
τ,σ,θ , 2 max

{1

τ
,

1 + θ

σ

}
max{1, κ2

xy, κ
2
yx}C

′
τ,σ,θ.

Thus, for Cτ,σ,θ , max{Cτ,σ,θ, Cτ,σ,θ} and C ′τ,σ,θ , max{C ′τ,σ,θ, 1
NC

′
τ,σ,θ + Ξτ,σ,θ}, we get the

desired result in (100).
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Lemma 22. Under the premise of Lemma 2, E[‖zt0 − zt∗‖2], E [Gt(zt0)] and E
[
Gt(zt+1

0 )
]

are finite
for any t ≥ 0 when either Assumption 4 or Assumption 5 holds.

Proof. In Lemma 21, we show that

max
{
E
[
Gt(zt+1

0 )
]
, E
[
‖zt+1

0 − zt∗‖2
] }
≤ 1

Nt
Cτ,σ,θE[‖zt0 − zt∗‖2] + C ′τ,σ,θ, (107)

for some Cτ,σ,θ, C ′τ,σ,θ ∈ R+ constants, dependent on the SAPD parameters. Next, we show
that {E

[
‖zt0 − zt∗‖2

]
} < ∞ for all t ≥ 0 by induction. This is trivially true for t = 0, i.e.,

E
[
‖z0

0 − z0
∗‖2
]

= ‖z0
0 − z0

∗‖2 < ∞. Next, for some t ≥ 0, suppose E
[
‖zt0 − zt∗‖2

]
< ∞, (107)

implies that

E
[
‖zt+1

0 − zt∗‖2
]
<∞. (108)

The inductive assumption E
[
‖zt0 − zt∗‖2

]
<∞ and (108) imply that

E
[
‖zt+1

0 − zt0‖2
]
≤ 2E

[
‖zt+1

0 − zt∗‖2
]

+ 2E
[
‖zt0 − zt∗‖2

]
<∞. (109)

For any µx > 0, fix λ = (µx+γ)−1; since we have x`∗ = proxλφ(x`0) for ` = t, t+1 and proxλφ(·)
is non-expansive, we have E[‖xt+1

∗ − xt∗‖2] ≤ E[‖xt+1
0 − xt0‖2]. Moreover, Lemma 20 implies that

E[‖yt+1
∗ − yt∗‖2] ≤ κ2

yxE[‖xt+1
∗ − xt∗‖2] for κyx =

Lyx
µy

; thus, using (109), we get

E[‖zt+1
∗ − zt∗‖2] ≤ (κ2

yx + 1)E[‖xt+1
0 − xt0‖2]≤ (κ2

yx + 1)E[‖zt+1
0 − zt0‖2] <∞. (110)

Therefore, we can conclude that E[‖zt+1
0 − zt+1

∗ ‖2] ≤ 2E[‖zt+1
0 − zt∗‖2] + 2E[‖zt+1

∗ − zt∗‖2] <∞,
which follows from (108) and (110). This completes induction, providing us with E[‖zt0−zt∗‖2] <∞
for all t ≥ 0. Note that using this result together with the definition of Gt and (107) implies that
0 ≤ E[Gt(zt+1

0 )] <∞ for t ≥ 0.

Next, we will argue that E[Gt(zt0)] < ∞ for all t ≥ 0 as well. Recall that Gt(zt0) =
supy∈Y Lt(xt0, y) − infx∈X Lt(x, yt0); furthermore, note that Lt(xt0, y) = L(xt0, y) for all y ∈ Y ,
and given zt0, we have Lt(·, yt0) strongly convex with modulus µx and L(xt0, ·) strongly concave with
modulus µy . Therefore, we have

L(xt0, y) ≤ L(xt0, y
t
0) +

〈
∇yΦ(xt0, y

t
0)− sg(yt0), y − yt0

〉
− µy

2
‖y − yt0‖2

≤ L(xt0, y
t
0) +

1

2µy
‖∇yΦ(xt0, y

t
0)− sg(yt0)‖2, (111)

Lt(x, yt0) ≥ L(xt0, y
t
0) +

〈
∇xΦ(xt0, y

t
0) + sf (xt0), x− xt0

〉
+
µx
2
‖x− xt0‖2

≥ L(xt0, y
t
0)− 1

2µx
‖∇xΦ(xt0, y

t
0) + sf (xt0)‖2, (112)

where sf (xt0) ∈ ∂f(xt0) and sg(yt0) ∈ ∂g(yt0) such that ‖sf (xt0)‖ ≤ Bf and ‖sg(yt0)‖ ≤ Bg –see
Assumption 5; moreover, we have used the fact that Lt(xt0, yt0) = L(xt0, y

t
0) and ∂xLt(xt0, yt0) =

∇xΦ(xt0, y
t
0) + ∂f(xt0). Thus, (111) and (112) imply that

Gt(zt0) = sup
x∈X ,y∈Y

{L(xt0, y)− Lt(x, yt0)} ≤
(
‖∇Φ(zt0)‖2 + ‖sf (xt0)‖2 + ‖sg(yt0)‖2

)
/min{µx, µy}

≤ 1

µ

(
‖∇Φ(zt0)−∇Φ(z0

0)‖2 + ‖∇Φ(z0
0)‖2 +B2

f +B2
g

)
≤ L

µ
‖zt0 − z0

0‖2 +
1

µ

(
‖∇Φ(z0

0)‖2 +B2
f +B2

g

)
,

where L = max{Lxx, Lyy, Lyx, Lxy} and µ = min{µx, µy}. Finally, (109) implies that E[‖zt0 −
z0

0‖2] <∞; therefore, we can conclude that E[Gt(zt0)] <∞ for all t ≥ 0.

Thus, Lemma 22 implies that the analysis given in appendix A.1 directly goes through if we replace
Assumption 4 with Assumption 5, which does not require compactness of the problem domain.
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F Proof of Theorem 4 and preliminary technical results

The general proof structure of Theorem 4 is the same with Theorem 1’s. The main difference is the
way we bound the variance, which is given in Lemma 24.

F.1 Construction for the iteration complexity result

Lemma 23. Suppose Assumptions 1, 3, 6 and 7 hold. Given {Nt}t≥0 ⊂ Z+, let {xt0, yt0}t≥0

be generated by SAPD+, stated in Algorithm 2, when VR-flag=true, initialized from (x0
0, y

0
0) ∈

dom f × dom g and using τ, σ, θ, µx > 0 that satisfy

G− diag(g) � 0, (113)

for some α ∈ [0, 1
σ ), ρ ∈ (0, 1] and πx, πy > 0, where G is defined in (32), g , [πx, πy, L

′
x, L

′
y, 0]>

and

L′x , c(ρ)
(L′xx2

πxb′x
+

2(1 + 2θ + 2θ2)ρ−1L2
yx

πyb′y

)
, L′y , c(ρ)

(ρL2
xy

πxb′x
+

2(1 + 2θ + 2θ2)ρ−1L2
yy

πyb′y

)
,

such that c(ρ) = 2
1−ρ (ρ−q+1 − 1) for ρ ∈ (0, 1) and c(ρ) = 2(q − 1) for ρ = 1, where L′xx ,

Lxx + µx + γ. Then for all t ≥ 0, it holds that

E
[
Gt(xt+1

0 , yt+1
0 )

]
≤ MVR

KNt(ρ)

(µx
4
E
[
‖xt∗(yt+1

0 )− xt0‖2
]

+
µy
4
E
[
‖y∗(xt+1

0 )− yt0‖2
])

+ ΞVR,

(114)

whereKNt(ρ) =
∑Nt−1
k=0 ρ−k, ΞVR , δ2x

2πxb
+(1+2θ+2θ2)

δ2y
πyb

andMVR , max{ 2
µx

( 1
τ −µx), 2

µyσ
}.

Proof. For easier readability, we provide the proof in a separate subsection, see appendix F.2.

Theorem 8. Under the premise of Lemma 23, given an arbitrary ζ > 0 and T ∈ Z+, suppose
Nt = N for all t = 0, . . . T for some N ∈ Z+ such that N ≥ (1 + ζ)MVR, and (21) has a solution
for some β1, β2 ∈ (0, 1) and p1, p2, p3 > 0 such that p1 + p2 + p3 = 1. If either Assumption 4 or
Assumption 5 holds, then (22) holds with Ξτ,σ,θ = ΞVR for λ = (γ + µx)−1 and for all T ≥ 1.

Proof. The proof is omitted as it is essentially the same with the proof of Theorem 6.

F.2 Proof of Lemma 23 and preliminary technical results

In this section we prove Lemma 23. We first state a technical lemma that will be used in our analysis.
Lemma 24. Suppose Assumptions 1, 3, 6 and 7 hold. Let {xtk, ytk}k≥0 be VR-SAPD iterates generated
according to Algorithm 3 for solving minx maxy Lt(x, y). Then,

E
[
‖vtk −∇xΦt(xtk, y

t
k+1)‖2

]
≤ δ2

x

b
+

k∑
i=(nk−1)q+1

2L′xx
2

b′x
E
[
‖xti − xti−1‖2

]
+

2L2
xy

b′x
E
[
‖yti+1 − yti‖2

]
,

(115a)

E
[
‖wtk −∇yΦt(xtk, y

t
k)‖2

]
≤
δ2
y

b
+

k∑
i=(nk−1)q+1

2L2
yx

b′y
E
[
‖xti − xti−1‖2

]
+

2L2
yy

b′y
E
[
‖yti − yti−1‖2

]
,

(115b)

for all k ≥ 0 such that mod(k, q) 6= 0, where nk , dk/qe. Moreover, if mod(k, q) = 0, then

E
[
‖vtk −∇xΦt(xtk, y

t
k+1)‖2

]
≤ δ2

x

b
, E

[
‖wtk −∇yΦt(xtk, y

t
k)‖2

]
≤
δ2
y

b
. (116)

Proof. Recall that ∇̃xΦtIxk
(xtk, y

t
k+1), 1

|Ixk |
∑
ωx,ik ∈I

x
k
∇̃xΦt(xtk, y

t
k+1;ωx,ik ), where Ixk = {ωx,ik }

b′x
i=1

is a randomly generated batch with |Ixk | = b′x independent elements which are also independent of
(xtk−1, y

t
k) and (xtk, y

t
k+1). According to the definition of vk in Algorithm 3, for mod(k, q) > 0,

vtk = vtk−1 + ∇̃xΦtIxk (xtk, y
t
k+1)− ∇̃xΦtIxk (xtk−1, y

t
k). (117)
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Therefore,

E
[
‖vtk −∇xΦt(xtk, y

t
k+1)‖2

]
= E

[
‖vtk−1 + ∇̃xΦtIx

k
(xtk, y

t
k+1)− ∇̃xΦtIx

k
(xtk−1, y

t
k)−∇xΦt(xtk, y

t
k+1)‖2

]
= E

[
‖vtk−1 −∇xΦt(xtk−1, y

t
k) +∇xΦt(xtk−1, y

t
k)− ∇̃xΦtIx

k
(xtk−1, y

t
k) + ∇̃xΦtIx

k
(xtk, y

t
k+1)−∇xΦt(xtk, y

t
k+1)‖2

]
= E

[
‖vtk−1 −∇xΦt(xtk−1, y

t
k)‖2

]
+ E

[
‖∇xΦt(xtk−1, y

t
k)− ∇̃xΦtIx

k
(xtk−1, y

t
k) + ∇̃xΦtIx

k
(xtk, y

t
k+1)−∇xΦt(xtk, y

t
k+1)‖2

]
,

(118)
where for the last equality we used

E
[
∇xΦt(xtk−1, y

t
k)− ∇̃xΦtIx

k
(xtk−1, y

t
k) + ∇̃xΦtIx

k
(xtk, y

t
k+1)−∇xΦt(xtk, y

t
k+1)

]
= 0.

Next, we bound the second expectation on the rhs of (118). It follows that

E
[
‖∇xΦt(xtk−1, y

t
k)− ∇̃xΦtIx

k
(xtk−1, y

t
k) + ∇̃xΦtIx

k
(xtk, y

t
k+1)−∇xΦt(xtk, y

t
k+1)‖2

]
=

1

b′x
2 E

‖ b′x∑
i=1

(
∇̃xΦt(xtk, y

t
k+1;ωx,ik )− ∇̃xΦt(xtk−1, y

t
k;ωx,ik )−∇xΦt(xtk, y

t
k+1) +∇xΦt(xtk−1, y

t
k)
)
‖2


=
1

b′x
2

b′x∑
i=1

E
[
‖∇̃xΦt(xtk, y

t
k+1;ωx,ik )− ∇̃xΦt(xtk−1, y

t
k;ωx,ik )−∇xΦt(xtk, y

t
k+1) +∇xΦt(xtk−1, y

t
k)‖2

]

≤ 1

b′x
2

b′x∑
i=1

(
E
[
‖∇̃xΦt(xtk, y

t
k+1;ωx,ik )− ∇̃xΦt(xtk−1, y

t
k;ωx,ik )‖2

] )
≤2L′xx

2

b′x
E
[
‖xtk − xtk−1‖2

]
+

2L2
xy

b′x
E
[
‖ytk+1 − ytk‖2

]
,

(119)
where the second equality follows from the stochastic oracle being unbiased –see Assumption 3,
which implies

E
[
∇xΦt(xtk−1, y

t
k)− ∇̃xΦt(xtk−1, y

t
k;ωx,ik ) + ∇̃xΦt(xtk, y

t
k+1;ωx,ik )−∇xΦt(xtk, y

t
k+1)

]
= 0,

for all i = 1, . . . , b′x and {ωki }
b′x
i=1 being independent; the first inequality is because

E
[
‖ζ − E[ζ]‖2

]
≤ E

[
‖ζ‖2

]
for any given random variable ζ with finite second order moment

–we invoke this inequality for ζ = ∇̃xΦt(xtk, y
t
k+1;ωx,ik ) − ∇̃xΦt(xtk−1, y

t
k;ωx,ik ); and finally, the

last inequality follows from Assumption 6 and the inequality (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R.
Next, if we combine eq. (118) and eq. (119), we get

E
[
‖vtk −∇xΦt(xtk, y

t
k+1)‖2

]
≤E

[
‖vtk−1 −∇xΦt(xtk−1, y

t
k)‖2

]
+

2L′xx
2

b′x
E
[
‖xtk − xtk−1‖2

]
+

2L2
xy

b′x
E
[
‖ytk+1 − ytk‖2

]
.

Hence, if we sum the above inequality from (nk − 1)q + 1 to k, we get a telescoping sum:

E
[
‖vtk −∇xΦt(xtk, y

t
k+1)‖2

]
≤

k∑
i=(nk−1)q+1

2L′xx
2

b′x
E
[
‖xti − xti−1‖2

]
+

k∑
i=(nk−1)q+1

2L2
xy

b′x
E
[
‖yti+1 − yti‖2

]
+ E

[
‖v(nk−1)q −∇xΦt(xt(nk−1)q, y

t
(nk−1)q+1)‖2

]
≤

k∑
i=(nk−1)q+1

2L′xx
2

b′x
E
[
‖xti − xti−1‖2

]
+

k∑
i=(nk−1)q+1

2L2
xy

b′x
E
[
‖yti+1 − yti‖2

]
+
δ2
x

b
,

(120)

where the last inequality follows from Assumption 3 since mod((nk − 1)q, q) = 0 and for ` ∈ Z+

such that mod(`, q) = 0, we have v` = ∇̃xΦtBx`
(xt`, y

t
`+1) = 1

|Bx` |
∑
ωx,i` ∈B

x
`
∇̃xΦt(xt`, y

t
`+1;ωx,i` ),
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where Bx` = {ωx,i` } is a randomly generated batch with |Bx` | = b independent elements which are
also independent of (xt`, y

t
`+1). This completes the proof of the case for k such that mod(k, q) > 0.

When mod(k, q) = 0, it follows from Algorithm 3 that vk = ∇̃xΦtBk(xtk, y
t
k+1). Hence, above

discussion yields

E
[
‖vtk −∇xΦt(xtk, y

t
k+1)‖2

]
≤ δ2

x

b
. (121)

Finally, the second inequality in (115b) can be shown similarly.

Next, we will modify Lemma 13 for VR-SAPD, stated in Algorithm 3. Specifically, instead of using
the stochastic oracles ∇̃xΦt(xtk, y

t
k+1;ωxk) and ∇̃yΦt(xtk, y

t
k;ωyk) as in Lemma 13, we adopt vtk and

wtk to estimate∇xΦt(xtk, y
t
k+1) and ∇yΦt(xtk, y

t
k), respectively.

Lemma 25. Suppose Assumptions 1, 3, and 6 hold. Let {xtk, ytk}k≥0 be VR-SAPD iterates generated
according to Algorithm 3 for solving minx maxy Lt(x, y). Then for all x ∈ dom f ⊂ X , y ∈
dom g ⊂ Y , and k ≥ 0,
Lt(xtk+1, y)− Lt(x, ytk+1)

≤− 〈qtk+1, y
t
k+1 − y〉+ θ〈qtk, ytk − y〉+ Λtk(x, y)− Σtk+1(x, y) + Γtk+1 + εt,xk (x) + εt,yk (y),

(122)

where εt,xk (x) , 〈vtk − ∇xΦt(xtk, y
t
k+1), x − xtk+1〉 and εt,yk (y) , 〈s̃tk − stk, ytk+1 − y〉 for s̃tk =

(1 + θ)wtk − θwtk−1 as defined in Algorithm 3, qtk and stk are defined as in (59), and Λtk(x, y),
Σtk+1(x, y), Γtk+1 are the same with those in Lemma 13.

Proof. The proof uses the same arguments as the proof of Lemma 13. One only needs to replace
∇̃xΦt(xtk, y

t
k+1) and ∇̃yΦt(xtk, y

t
k) in the proof of Lemma 13 with vtk, w

t
k, respectively.

F.3 Proof of Lemma 23

Proof. For simplifying the notation, let Nt = N for some N ∈ Z+. For arbitrary (x, y) ∈
dom f × dom g, since (xtk+1, y

t
k+1) ∈ dom f × dom g, using the concavity of Lt(xtk+1, ·) and

the convexity of Lt(·, ytk+1), Lemma 25 and Jensen’s lemma immediately implies that

KN (ρ)
(
Lt(x̄tN , y)− Lt(x, ȳtN )

)
≤
N−1∑
k=0

ρ−k
(
Lt(xtk+1, y)− Lt(x, ytk+1)

)
, ∀ρ ∈ (0, 1], (123)

where x̄tN = 1
KN (ρ)

∑N−1
k=0 ρ−kxtk+1, ȳ

t
N = 1

KN (ρ)

∑N−1
k=0 ρ−kytk+1, and KN (ρ) =

∑N−1
i=0 ρ−k.

Thus, if we multiply both sides of (122) by ρ−k and sum the resulting inequality from k = 0 to
N − 1, then using (123) we get
KN (ρ)

(
Lt(x̄tN , x)− L(x, ȳtN )

)
≤
N−1∑
k=0

ρ−k
(
− 〈qtk+1, y

t
k+1 − x〉+ θ〈qtk, ytk − x〉+ Λtk(x, y)− Σtk+1(x, y) + Γtk+1

− 〈vtk −∇xΦt(xtk, y
t
k+1), xtk+1 − x〉+ 〈s̃tk − stk, ytk+1 − x〉

)
≤
N−1∑
k=0

ρ−k
(
−〈qtk+1, y

t
k+1 − x〉+ θ〈qtk, ytk − x〉︸ ︷︷ ︸

part 1

+Λtk(x, y)− Σtk+1(x, y) + Γtk+1

+
πx
2
‖xtk+1 − x‖2 +

πy
2
‖ytk+1 − x‖2 +

1

2πx
‖vtk −∇xΦt(xtk, y

t
k+1)‖2 +

1

2πy
‖s̃tk − stk‖2︸ ︷︷ ︸

part 2

)
.

(124)
The second inequality follows from Young’s inequality for some constants πx, πy > 0.

The following bound for part1 can be obtained from (74). Indeed, for any k ≥ −1, we get
N−1∑
k=0

ρ−k(θ〈qtk, ytk − yt∗〉 − 〈qtk+1, y
t
k+1 − yt∗〉) ≤

N−1∑
k=0

ρ−k|1− θ

ρ
| Stk+1(x, y) + ρ−N+1 θ

ρ
StN (x, y).

(125)

41



where Stk+1(x, y) is defined in (73).

Next we consider part 2, recall that nk = dk/qe such that (nk − 1)q+ 1 ≤ k ≤ nkq, it follows from
Lemma 24 that

N−1∑
k=0

ρ−kE
[
‖vtk −∇xΦt(xtk, y

t
k+1)‖2

]
≤

∑
k∈{1,...,N−1}
s.t. mod(k,q)6=0

ρ−k
k∑

i=(nk−1)q+1

(2L′xx
2

b′x
E
[
‖xti − xti−1‖2

]
+

2L2
xy

b′x
E
[
‖yti+1 − yti‖2

] )
+
δ2
x

b

N−1∑
k=0

ρ−k

=

N−1∑
k=1

ρ−k
(2L′xx

2

b′x
E
[
‖xtk − xtk−1‖2

]
+

2L2
xy

b′x
E
[
‖ytk+1 − ytk‖2

] )nkq−k−1∑
i=0

ρ−i +
δ2
x

b

N−1∑
k=0

ρ−k

=

N−1∑
k=0

ρ−k · ρ

1− ρ
(ρ−nkq+k − 1)

(2L′xx
2

b′x
E
[
‖xtk − xtk−1‖2

]
+

2L2
xy

b′x
E
[
‖ytk+1 − ytk‖2

] )
+
δ2
x

b

N−1∑
k=0

ρ−k

≤
N−1∑
k=0

ρ−k · ρ

1− ρ
(ρ−q+1 − 1)

(2L′xx
2

b′x
E
[
‖xtk − xtk−1‖2

]
+

2L2
xy

b′x
E
[
‖ytk+1 − ytk‖2

] )
+
δ2
x

b

N−1∑
k=0

ρ−k

(126)
where the first inequality follows from Lemma 24, the following equality is by rearranging terms,
and for the last inequality we used the following bound: nk = dk/qe ≤ k/q + (q − 1)/q; hence,
−nkq + k ≥ −q + 1. To bound part 2 in eq. (124), we next consider ‖s̃tk − stk‖2. For k > 0,

‖s̃tk − stk‖2 = ‖(1 + θ)wtk − (1 + θ)∇yΦt(xtk, y
t
k)− θwtk−1 + θ∇yΦt(xtk−1, y

t
k−1)‖2

≤ 2(1 + θ)2‖wtk −∇yΦt(xtk, y
t
k)‖2 + 2θ2‖wtk−1 −∇yΦt(xtk−1, y

t
k−1)‖2.

(127)

First, xt−1 = xt0, yt−1 = yt0 and (59) imply that st0 = ∇yΦt(xt0, y
t
0), and recall that in Algorithm 3,

we set s̃t0 = wt0; hence,

‖s̃t0 − st0‖2 = ‖wt0 −∇yΦt(xt0, y
t
0)‖2,

and eq. (127) holds for k ≥ 0 with wt−1 , ∇yΦt(xt0, y
t
0). Then, Lemma 24 implies that

N−1∑
k=0

ρ−kE
[
‖s̃tk − stk‖2

]
≤ 2(1 + θ)2

∑
k∈{1,...,N−1}
s.t. mod(k,q)6=0

ρ−k
k∑

i=(nk−1)q+1

(2L2
yx

b′y
E
[
‖xti − xti−1‖2

]
+

2L2
yy

b′y
E
[
‖yti − yti−1‖2

] )

+
2θ2

ρ

∑
k∈{1,...,N−2}
s.t. mod(k,q)6=0

ρ−k
k∑

i=(nk−1)q+1

(2L2
yx

b′y
E
[
‖xti − xti−1‖2

]
+

2L2
yy

b′y
E
[
‖yti − yti−1‖2

] )

+ 2(1 + 2θ + 2θ2)
δ2
y

b

N−1∑
k=0

ρ−k

≤ 2

ρ
(1 + 2θ + 2θ2)

∑
k∈{1,...,N−1}
s.t. mod(k,q) 6=0

ρ−k
k∑

i=(nk−1)q+1

(2L2
yx

b′y
E
[
‖xti − xti−1‖2

]
+

2L2
yy

b′y
E
[
‖yti − yti−1‖2

] )

+ 2(1 + 2θ + 2θ2)
δ2
y

b

N−1∑
k=0

ρ−k,

(128)
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where the first inequality follows from Lemma 24; in the last inequality we used ρ ≤ 1 and combined
the two sums. Next, as in eq. (126), we can further obtain that
N−1∑
k=0

ρ−kE
[
‖s̃tk − stk‖2

]
≤ 2(1 + 2θ + 2θ2)

N−1∑
k=0

ρ−k · 1

1− ρ
(ρ−q+1 − 1)

(2L2
yx

b′y
E
[
‖xtk − xtk−1‖2

]
+

2L2
yy

b′y
E
[
‖ytk − ytk−1‖2

] )
+ 2(1 + 2θ + 2θ2)

δ2
y

b

N−1∑
k=0

ρ−k.

(129)
Now we can bound part 2 in eq. (124) using eq. (126) and eq. (129). In addition, Given (x̄tN , ȳ

t
N ),

the point (xt∗(ȳ
t
N ), y∗(x̄

t
N )) , argmax(x,y)∈X×Y Lt(x̄tN , y)− Lt(x, ȳtN ) uniquely exists. We will

use the fact that

Gt(x̄tN , ȳtN ) = sup
(x,y)∈X×Y

Lt(x̄tN , y)− Lt(x, ȳtN ) = Lt(x̄tN , y∗(x̄tN ))− Lt(xt∗(ȳtN ), ȳtN )

to complete the proof.

Recall that we definedDt
N (x, y)= 1

2ρ ( 1
τ −µx)‖xtN−x‖2+ 1

2

(
1
ρσ − α

)
‖ytN−y‖2; first, we substitute

(x, y) = (xt∗(ȳ
t
N ), y∗(x̄

t
N )) into (124), and then add ρ−N+1Dt

N (xt∗(ȳ
t
N ), y∗(x̄

t
N )) to both sides of

(124). Finally, taking the expectation of the new inequality, and then using eq. (125), eq. (126) and
eq. (129) to bound part 1 and part 2, we obtain

E
[
KN (ρ)Gt(x̄tN , ȳtN ) + ρ−N+1Dt

N (xt∗(ȳ
t
N ), y∗(x̄

t
N ))
]

≤ E
[
Û tN (xt∗(ȳ

t
N ), y∗(x̄

t
N ))
]

+
( δ2

x

2πxb
+ (1 + 2θ + 2θ2)

δ2
y

πyb

)N−1∑
k=0

ρ−k, (130)

where Û tN (x, y) is defined as

Û tN (x, y) ,
N−1∑
k=0

ρ−k
(

Γtk+1 + Λtk(x, y)− Σtk+1(x, y)

+ |1− θ

ρ
| Stk+1(x, y) +

πx
2
‖xtk+1 − x‖2 +

πy
2
‖ytk+1 − y‖2

)
+

N−1∑
k=0

ρ−k+1

1− ρ (ρ−q+1 − 1)

((
L′xx

2

πxb′x
+

2(1 + 2θ + 2θ2)ρ−1L2
yx

πyb′y

)
‖xtk − xtk−1‖2 +

L2
xy

πxb′x
‖ytk+1 − ytk‖2

)

+

N−1∑
k=0

ρ−k+1

1− ρ (ρ−q+1 − 1)
2(1 + 2θ + 2θ2)ρ−1L2

yy

πyb′y
‖ytk − ytk−1‖2 − ρ−N+1(−Dt

N (x, y)− θ

ρ
StN (x, y)).

(131)
The remaining part of the analysis directly follows from the arguments we used in the proof of
Lemma 12. We can analyze Û tN (xt∗(ȳ

t
N ), y∗(x̄

t
N )) through writing it as a telescoping sum. After

adding and subtracting α
2 ‖y

t
k+1 − ytk‖2, and rearranging the terms, we get

Û tN (xt∗(ȳ
t
N ), y∗(x̄

t
N )) =

1

2

N−1∑
k=0

ρ−k
(
ξ∗k
>Âξ∗k − ξ∗k+1

>B̂ξ∗k+1

)
− ρ−N+1(−Dt

N (xt∗(ȳ
t
N ), y∗(x̄

t
N ))− θ

ρ
StN (xt∗(ȳ

t
N ), y∗(x̄

t
N )))

=
1

2
ξ∗0
>Âξ∗0 −

1

2

N−1∑
k=1

ρ−k+1[ξ∗k
>(B̂ − 1

ρ Â)ξ∗k]

− ρ−N+1(
1

2
ξ∗N
>B̂ξ∗N −Dt

N (xt∗(ȳ
t
N ), y∗(x̄

t
N ))− θ

ρ
StN (xt∗(ȳ

t
N ), y∗(x̄

t
N ))),

(132)
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where ξ∗k ∈ R5 is defined for k ≥ 0 as follows: ξ∗k ,


‖xtk − xt∗(ȳtN )‖
‖ytk − y∗(ȳtN )‖
‖xtk − xtk−1‖
‖ytk − ytk−1‖
‖ytk+1 − ytk‖

 such that xt−1 = xt0,

yt−1 = yt0; and Â, B̂ ∈ R5×5 are defined as:

Â ,



1
τ − µx 0 0 0 0

0 1
σ 0 0 0

0 0 ρL′x 0 θLyx

0 0 0 ρL+
y θLyy

0 0 θLyx θLyy −α

 ,

B̂ ,



1
τ − πx 0 0 0 0

0 1
σ + µy − πy −|1− θ

ρ | Lyx −|1− θ
ρ | Lyy 0

0 −|1− θ
ρ | Lyx

1
τ − L

′
xx 0 0

0 −|1− θ
ρ | Lyy 0 1

σ − α− L
−
y 0

0 0 0 0 0

 ,

with

L′x ,
2

1− ρ
(ρ−q+1 − 1)

(L′xx2

πxb′x
+

2(1 + 2θ + 2θ2)ρ−1L2
yx

πyb′y

)
,

L+
y ,

2

1− ρ
(ρ−q+1 − 1)

2(1 + 2θ + 2θ2)ρ−1L2
yy

πyb′y
,

L−y ,
2ρ

1− ρ
(ρ−q+1 − 1)

L2
xy

πxb′x
.

Using the same argument as in the proof of Lemma 17, and noticing that L′y in eq. (113) can be
written as L′y = L+

y + L−y , one can show that eq. (113) holds if and only if B̂ − 1
ρ Â � 0. Therefore,

it follows from (132) that

Û tN (xt∗(ȳ
t
N ), y∗(x̄

t
N )) ≤1

2
ξ∗0
>Âξ∗0

− ρ−N+1
(

1
2ξ
∗
N
>B̂ξ∗N −Dt

N (xt∗(ȳ
t
N ), y∗(x̄

t
N ))− θ

ρ
StN (xt∗(ȳ

t
N ), y∗(x̄

t
N ))
)
,

holds w.p. 1. Furthermore, define

G′′′ ,


1
σ (1− 1

ρ ) + µy − πy + α
(
−|1− θ

ρ | −
θ
ρ

)
Lyx

(
−|1− θ

ρ | −
θ
ρ

)
Lyy(

−|1− θ
ρ | −

θ
ρ

)
Lyx

1
τ − L

′
xx 0(

−|1− θ
ρ | −

θ
ρ

)
Lyy 0 1

σ − α− L
−
y

 ,

and recall that Dt
N (x, y) = 1

2ρ ( 1
τ − µx)‖xtN − x‖2 + 1

2

(
1
ρσ − α

)
‖ytN − y‖2. Using a similar

argument as in the proof of Lemma 18, we can show that eq. (113) implies
1

2
ξ∗N
>B̂ξ∗N −Dt

N

(
xt∗(ȳ

t
N ), y∗(x̄

t
N )
)
− θ

ρ
StN

(
xt∗(ȳ

t
N ), y∗(x̄

t
N )
)

=
1

2
ξ∗N
>


1
τ (1− 1

ρ ) + µx
ρ − πx 01×3 0

03×1 G′′′ 03×1

0 01×3 0

 ξ∗N ≥ 0.

Finally, since xt−1 = xt0, yt−1 = yt0, we have

1

2
ξ∗0
>Âξ∗0≤

( 1

2τ
− µx

2

)
‖xt∗(ȳtN )− xt0‖2 +

1

2σ
‖y∗(x̄tN )− yt0‖2.
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Therefore, we obtain that

Û tN (xt∗(ȳ
t
N ), y∗(x̄

t
N )) ≤

( 1

2τ
− µx

2

)
‖xt∗(ȳtN )− xt0‖2 +

1

2σ
‖y∗(x̄tN )− yt0‖2, holds w.p. 1.

Now, we are ready to show the desired result of Lemma 23. Since Dt
N (xt∗(ȳ

t
N ), y∗(x̄

t
N )) ≥ 0, it

follows from (130) that

KN (ρ)E
[
Gt(x̄tN , ȳtN )

]
≤E
[( 1

2τ
− µx

2

)
‖xt∗(ȳtN )− xt0‖2 +

1

2σ
‖y∗(x̄tN )− yt0‖2

]
+KN (ρ)

( δ2
x

2πxb
+ (1 + 2θ + 2θ2)

δ2
y

πyb

)
.

Then dividing both side by KN (ρ) completes the proof.

F.4 A particular parameter choice

We employ the matrix inequality (MI) in eq. (113) to describe the admissible set of VR-SAPD
parameters that guarantee convergence. Next, in Lemma 26, we compute a particular solution to it by
exploiting its structure.
Lemma 26. For any µx > 0, let L′xx =Lxx + γ + µx. Let θ ∈ (0, 1] and τ, σ > 0 be chosen as

θ = 1, τ =
1

Lyx + L′xx + L′x
, σ =

1

2Lyy + Lyx + L′y
, (133)

where L′x and L′y are defined in Lemma 23. Then {τ, σ, θ, α, ρ, πx, πy} is a solution to (113) for
ρ = 1, πx = µx, πy = µy and α = Lyx + Lyy .

Proof. Define M1 ,

 1
τ−L

′
xx−L

′
x 0 −Lyx

0 0 0

−Lyx 0 Lyx

 and M2 ,

0 0 0

0 1
σ−α−L

′
y −Lyy

0 −Lyy Lyy

. Our choice of

{ρ, πx, πy, α} implies that (113) holds whenever

M1 +M2 =


1
τ
− L′xx − L′x 0 −Lyx

0 1
σ
− α− L′y −Lyy

−Lyx −Lyy Lyx + Lyy

 � 0.

Our choice of α = Lyx + Lyy, and τ, σ > 0 as in (133) implies that M1 � 0 and M2 � 0. Thus,
M1 +M2 � 0.

Next, based on this lemma, we will give an explicit parameter choice for Algorithm 3.

F.5 Proof of Theorem 4

Proof. Lemma 26 implies that our choice of {τ, σ, θ, α, ρ, πx, πy} ensures that eq. (113) holds. For
the outer loop, if we set N as in (11) and

p1 =
1

16
, p2 =

19

32
, p3 =

11

32
, β1 =

4

5
, β2 =

1

2
, ζ = 32, (134)

all assumptions of Theorem 8 are satisfied, i.e., both the inequality system in (21) and N ≥ (1 +
ζ)MVR hold. Specifically, MVR = 2 max{ 1

γτ − 1, 1
µyσ
}; thus, N ≥ (1 + ζ)MVR trivially holds by

our choice of N in (11). The proof of eq. (21) holding for parameters in (134) follows directly from
the proof of Theorem 1.

Since all assumptions of Theorem 8 are satisfied for µx = γ, {τ, σ, θ} as in (133), N and b as
in eq. (11) and other parameters chosen as in eq. (134), if we substitute µx = γ and the specific

parameter values given in eq. (134) into eq. (22) with Ξτ,σ,θ = ΞVR =
δ2x
2γb + 5

δ2y
µyb

, it follows that

1

T + 1

T∑
t=0

E
[
‖∇φλ(xt0)‖2

]
≤48γ

(
1

T + 1
G(x0

0, y
0
0) +

δ2
x

2γb
+

5δ2
y

µyb

)
. (135)
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Thus, for any ε > 0, the right side of the above inequality can be bounded by ε2 when

48γ

T + 1
G(x0

0, y
0
0) ≤ ε2

6
,

24δ2
x

b
≤ ε2

6
,

240γδ2
y

µyb
≤ 2ε2

3
. (136)

Our choice of b in (11) and T ≥ 288G(x0
0, y

0
0) γε2 ensures that all the inequalities in (136) hold.

Moreover, our choice of N and {τ, σ, θ}in (11) and ρ = 1 together with the definitions of L′x and L′y
in Lemma 23 implies (12). Furthermore, it follows from the statement of Algorithm 3 that the total
computation complexity is T (Nb/q +N(b′x + b′y)), which completes the proof.

G Proof of Theorem 5 and preliminary technical results

Recall the definition of L̂ given in eq. (13). For any x ∈ X , define φ(x) , maxy∈Y L(x, y) and
φ̂(x) , maxy∈Y L̂(x, y); moreover, let φλ(·) and φ̂λ(·) be respective Moreau envelopes for some
λ ∈ (0, γ−1).

We first show that one can obtain an ε-stationary point for the WCMC problem in the form of (1)
such that f(·) = 0, µy = 0 and Dy < ∞ by computing an ε-stationary point for eq. (13) with
µ̂y = Θ(ε2/(γD2

y)). Indeed, in Lemma 27 below, we extend [24, Corollary A.8] from g being an
indicator function of a closed convex set to a closed convex function.
Lemma 27. Under the premise of Theorem 5, for some fixed µ̂y = Θ(ε2/(γD2

y)), let xε ∈ X be
such that ‖∇φ̂(xε)‖ ≤ ε/(2

√
6), where φ̂(x) , maxy∈Y L̂(x, y). Then, xε is an ε-stationary point

of φ(·), i.e., ‖∇φλ(xε)‖ ≤ ε for λ ∈ (0, γ−1), where φ(x) , maxy∈Y L(x, y).

Proof. Below We state some useful relations that will be used later in the proof. Since f(·) = 0,
eq. (13) implies that for all (x, y) ∈ X × dom g,

∇xL(x, y) = ∇xL̂(x, y), ‖∇yΦ(x, y)−∇yΦ̂(x, y)‖ ≤ µ̂yDy. (137)

We define ŷ∗(·) , argmaxy∈Y L̂(·, y). It follows that from Lemma 11 that

ŷ∗(xε) = proxαg
(
ŷ∗(xε) + α∇yΦ̂(xε, ŷ∗(xε))

)
. (138)

for any α > 0. We are now ready for the proof of Lemma 27.

Let y+ , proxαg
(
ŷ∗(xε) + α∇yΦ(xε, ŷ∗(xε))

)
, then we have

‖y+ − ŷ∗(xε)‖
=‖proxαg

(
ŷ∗(xε) + α∇yΦ(xε, ŷ∗(xε))

)
− proxαg

(
ŷ∗(xε) + α∇yΦ̂(xε, ŷ∗(xε))

)
‖

≤α‖∇yΦ(xε, ŷ∗(xε))−∇yΦ̂(xε, ŷ∗(xε))‖ ≤ αµ̂yDy

(139)

where the first equality is by eq. (138); the second inequality is by ‖proxαg(y1)− proxαg(y2)‖ ≤
‖y1− y2‖ for all y1, y2 ∈ Y and eq. (137). Moreover, using Assumption 2 and the above inequalities,
we have

‖∇xL(xε, y
+)‖ ≤ ‖∇xL(xε, y

+)−∇φ̂(xε)‖+ ‖∇φ̂(xε)‖

≤‖∇xL(xε, y
+)−∇xL(xε, ŷ∗(xε))‖+

ε

2
√

6
≤ Lxyαµ̂yDy +

ε

2
√

6
,

where the second inequality follows from Danskin’s theorem and the fact that ‖∇φ̂(xε)‖ ≤ ε/(2
√

6);
finally, the last inequality use Assumption 2 and (139). Thus, using (a+ b)2 ≤ 2(a2 + b2) for any
a, b ∈ R, we get

‖∇xL(xε, y
+)‖2 ≤ ε2

12
+ 2L2

xyα
2µ̂2
yD

2
y. (140)

Later in the proof, eq. (139) and eq. (140) will be useful when we further analyze y+.

Recall that our ultimate goal is to show that ‖∇φλ(xε)‖ ≤ ε. Now, for some arbitrary µx > 0,
consider proxλφ(xε) = argminv∈X φ(v) + 1

2λ‖v − xε‖
2, where λ = (µx + γ)−1. It follows from

Lemma 1 that
‖∇φλ(xε)‖2 =

1

λ2
‖xε − proxλφ(xε)‖2.
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Since λ = (µx + γ)−1, φ(·) + 1
2λ‖ · −xε‖

2 is µx-strongly convex with the unique minimizer
proxλφ(xε); therefore,

max
y∈Y
L(xε, y)−max

y∈Y
L(proxλφ(xε), y)− 1

2λ
‖proxλφ(xε)− xε‖2

= φ(xε)− φ(proxλφ(xε))−
1

2λ
‖proxλφ(xε)− xε‖2

≥ µx
2
‖xε − proxλφ(xε)‖2 = λ2µx

2
‖∇φλ(xε)‖2.

(141)

In the following analysis, we will continue to polish the upper bound on ‖∇φλ(xε)‖2 on the left hand
side of eq. (141). Indeed,

max
y∈Y
L(xε, y)−max

y∈Y
L(proxλφ(xε), y)− 1

2λ
‖proxλφ(xε)− xε‖2

= max
y∈Y
L(xε, y)− L(xε, y

+) + L(xε, y
+)−max

y∈Y
L(proxλφ(xε), y)− 1

2λ
‖proxλφ(xε)− xε‖2

≤ max
y∈Y
L(xε, y)− L(xε, y

+) + L(xε, y
+)− L(proxλφ(xε), y

+)− 1

2λ
‖proxλφ(xε)− xε‖2

≤ max
y∈Y
L(xε, y)− L(xε, y

+) + ‖xε − proxλφ(xε)‖‖∇xL(xε, y
+)‖ − µx

2
‖xε − proxλφ(xε)‖2

≤ max
y∈Y
L(xε, y)− L(xε, y

+) +
‖∇xL(xε, y

+)‖2

2µx
,

(142)
where the second inequality follows from the µx-strongly convexity of L(·, y+) + 1

2λ‖ · −xε‖
2

and Cauchy-Schwarz inequality. Next, we continue to derive an appropriate upper bound on
maxy∈Y L(xε, y) − L(xε, y

+). Recall that y+ = proxαg
(
ŷ∗(xε) + α∇yΦ(xε, ŷ∗(xε))

)
; hence,

the first-order optimality condition yields that

− 1

α

(
y+ − ŷ∗(xε)− α∇yΦ(xε, ŷ∗(xε))

)
∈ ∂g(y+).

Therefore, for any y ∈ Y , we have that

g(y)− g(y+) ≥ 〈y − y+,− 1

α

(
y+ − ŷ∗(xε)− α∇yΦ(xε, ŷ∗(xε))

)
〉,

which is equivalent to

g(y+)− g(y) ≤ 1

α
〈y − y+, y+ − ŷ∗(xε)〉 − 〈∇yΦ(xε, ŷ∗(xε)), y − y+〉. (143)

Now, we ready to provide a useful upper bound on maxy∈Y L(xε, y)−L(xε, y
+). Indeed, given any

ỹ ∈ argmaxy∈Y L(xε, y), we have

max
y∈Y
L(xε, y)− L(xε, y

+) = L(xε, ỹ)− L(xε, ŷ∗(xε)) + L(xε, ŷ∗(xε))− L(xε, y
+)

= Φ(xε, ỹ)− Φ(xε, ŷ∗(xε))︸ ︷︷ ︸
part 1

−g(ỹ) + g(ŷ∗(xε)) + Φ(xε, ŷ∗(xε))− Φ(xε, y
+)︸ ︷︷ ︸

part 2

−g(ŷ∗(xε)) + g(y+)

≤ 〈∇yΦ(xε, ŷ∗(xε)), ỹ − ŷ∗(xε)〉−g(ỹ) + g(y+)

+ 〈∇yΦ(xε, ŷ∗(xε)), ŷ∗(xε)− y+〉+
Lyy
2
‖ŷ∗(xε)− y+‖2

= 〈∇yΦ(xε, ŷ∗(xε)), ỹ − y+〉 − g(ỹ) + g(y+) +
Lyy
2
‖ŷ∗(xε)− y+‖2

≤ 1

α
〈ỹ − y+, y+ − ŷ∗(xε)〉+

Lyy
2
‖ŷ∗(xε)− y+‖2

= −Lyy
2
‖ŷ∗(xε)− y+‖2 + Lyy〈ỹ − ŷ∗(xε), y+ − ŷ∗(xε)〉

≤ LyyDY‖y+ − ŷ∗(xε)‖,
(144)
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where in the first inequality, we use concavity and smoothness of Φ(xε, ·) for part 1 and part 2,
respectively; in the second inequality, we use eq. (143); in the last equality, we set α = L−1

yy ; and in the
last inequality, we use Cauchy-Schwarz inequality and the fact that supy1,y2∈dom g ‖y1 − y2‖ ≤ DY .
Next, if we use eq. (144) within eq. (142), it follows that

max
y∈Y
L(xε, y)−max

y∈Y
L(proxλφ(xε), y)− 1

2λ
‖proxλφ(xε)− xε‖2

≤ LyyDY‖y+ − ŷ∗(xε)‖+
‖∇xL(xε, y

+)‖2

2µx

≤ µ̂yD2
y +

ε2

24µx
+
L2
xy

L2
yy

·
µ̂2
y

µx
·D2

y,

(145)

where the last inequality follows from eq. (139) and eq. (140) with α = L−1
yy .

Finally, if we use eq. (145) within eq. (141) and substitute λ = (γ + µx)−1, it follows that

µx
2(γ + µx)2

‖∇φλ(xε)‖2 ≤ µ̂yD2
y +

ε2

24µx
+
L2
xy

L2
yy

·
µ̂2
y

µx
·D2

y. (146)

Thus, choosing the free parameter µx = γ implies that

‖∇φλ(xε)‖2 ≤ 8γµ̂yD2
y +

ε2

3
+ 8

L2
xy

L2
yy

· µ̂2
y ·D2

y. (147)

Thus, we get ‖∇φλ(xε)‖ ≤ ε for µ̂y = min
{

ε2

24γD2
y
,
Lyy
Lxy
· ε

2
√

6Dy

}
.

G.1 Proof of Theorem 5

Proof. To get a worst-case complexity, as in the previous sections, let

L , max{Lxy, Lyx, Lxx, Lyy}, δ , max{δx, δy}, γ = L.

Assumption 2 implies that∇yΦ̂ and∇xΦ̂ are Lipschitz such that for all x, x′ ∈ X and y, y′ ∈ dom g,

‖∇yΦ̂(x, y)−∇yΦ̂(x′, y′)‖ ≤ Lyx‖x− x′‖+ L̂yy‖y − y′‖,
‖∇xΦ̂(x, y)−∇xΦ̂(x′, y′)‖ ≤ Lxx‖x− x′‖+ Lxy‖y − y′‖,

where L̂yy = Lyy + µ̂y . Therefore, the proof immediately follows from Lemma 27 and Theorem 1,

considering SAPD+ with VR-flag = false is applied on (13) with µ̂y = min
{

ε2

24γD2
y
,
Lyy
Lxy
· ε

2
√

6Dy

}
.

H Details of fair classification example

In the experiment of fair classification, {(ai, bi)}ni=1 denotes the (data,label) pairs of the labeled
image data set. ai ∈ Rd1×d2×c, and bi is a label associated with one of the K-classes, i.e., bi ∈ C ,
{ Cj}Kj=1 with K ≤ n. We employ the classifier

h(· ;x) : ai ∈ Rd1×d2×c → pi ∈ RK ,

where pi = (pij)
K
j=1 s.t.

∑K
j=1 pij = 1 and pij ≥ 0 for j = 1, 2, ..,K, and x is the parameters of

the classifier. Specifically, h(·;x) is a CNN with the structure as follows:

[input]→ [conv − elu−maxpool]× 3→ [fc− elu]× 2→ [softmax]

where exponential linear unit (elu) [8] is the smoothed variant of rectified linear units (relu) activation
function. Furthermore, given the input {(ai, bi)}ni=1 and the output {pi}ni=1, the loss functions
{lj}Kj=1 used in eq. (15) are

`j({(ai, bi)}ni=1;x) = − 1

Nj

n∑
i=1

log(pij)1Cj (bi)
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where Nj is the number of data with label Cj , i.e., Nj =
∑n
i=1 1Cj (bi) and

1Cj (bi) =

{
1 if bi = Cj
0 o.w.

and pij is the j-th element of pi, and pi = h(ai;x).

I Additional analyses on the related work

In some of the existing work on WCSC problems, particularly [17, 16, 26, 37], except for κy = L/µy ,
the individual effects of L or µy are not explicitly stated in the final complexity bounds. To better
compare existing bounds with ours, it is necessary to state the complexity bound dependence on L and
µy . For example, Huang et al. [17, 16] assume that 1

µy
≤ L, that is equivalent to L ≥ √κy; however,

a constant factor depending on L was ignored in their oracle complexity result. Moreover, Huang
et al.[17] employ a different convergence metric and claim that they obtain a competitive result. It
turns out that their convergence metric is scaled by an algorithmic constant and when their results are
converted into GNP metric, i.e., ‖∇φ(·)‖, this constant adversely affects their complexity bounds. A
similar issue with the claimed complexity bounds also exists in [16], where the complexity bound are
computed after the objective function is rescaled. In this section, to provide a fair comparison,

• we give an explicit oracle complexity bound for the related works in [17, 16, 26, 37];
• we discuss those parts in their analysis that are not convincing, and try our best to provide

the corrected and optimized complexity bounds based on their analysis.

Without loss of generality, for the sake of easier comparison, we consider the smooth minimax
problems, i.e., minx∈X maxy∈Y L(x, y) = Φ(x, y). We first fix the notation to unify the discussion
for the WCSC setting, i.e., L(x, y) is weakly convex in x and strongly concave in y.

Recall that φ(x) , maxy∈Y L(x, y); thus, φ(·) is differentiable and we use ‖∇φ(·)‖ as the con-
vergence metric. In addition, we let φ∗ , infx∈X φ(x) and recall that y∗(·) = argmaxy∈Y L(·, y).
Moreover, for simplicity of the notation, we consider the worst-case complexity bounds using L, i.e.,

L = max{Lxy, Lyx, Lxx, Lyy}, κy =
L

µy
, δ = max{δx, δy}, γ = L. (148)

I.1 Revisit of [17, Theorem 1]

In this section, we provide the oracle complexity of Huang et al.[17, Theorem 1] using the metric
‖∇φ(·)‖ for the Stochastic Mirror Descent Algorithm (SMDA), stated in [17, algorithm 1]. Let τ, σ be
the primal and dual stepsizes, respectively, η be the momentum parameter, b be the large batchsize,
and u be convexity modulus of the Bregman distance generating function. We also list our notational
convention in table 2 for reader’s convenience.

Below, we restate the convergence result of SMDA for the class of Bregman distance functions such
that Dt(x, x

′),(x− x′)>Ht(x− x′)/2 for some Ht � 0 –this class of Bregman functions are used
for all the numerical experiments reported in [17].
Theorem 9. [17, Thoerem 1] Suppose Assumptions 1, 2, 3 hold with f(·) = g(·) = 0. Let
{xt, yt}Tt=1 be generated by SMDA, stated in [17, Algorithm 1], employing a stochastic first-
order oracle to sample stochastic partial derivatives. For parameters chosen as η ∈ (0, 1],

τ ∈ (0,min{ 3u
4L(1+κy) ,

9ηuµyσ
800κ2

y
,

2ηµyuσ
25L2 }

]
and σ ∈ (0, 1

6L ], let ηt = η, τt = τ and σt = σ for

t ≥ 0. Then, for any given initial point (x0, y0), it holds that

1

T

T∑
t=1

E[‖Gt‖] ≤
4
√

2(φ(x0)− φ∗)√
3Tτu

+
4
√

2∆0√
3Tτu

+
10δ√
3bu

+
20δ
√
ησ

3
√
τuµyb

, (149)

where φ(x) = maxy L(x, y), φ∗ = infx∈X φ(x), ∆0 = ‖y0 − y∗(x0)‖, y∗(x0) =

argmaxy∈Y L(x0, y), Gt = H−1
t ∇φ(xt), and Ht is a diagonal matrix such that Ht � uI for

all t ≥ 1 and u > 0.
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Notation in [17] Notation in our paper Meaning
γ τ primal stepsize
λ σ dual stepsize
Lf L Lipschitz constant as in (148)
µ µy concavity modulus of L(x, ·)
κ κy condition number
σ δ variance bound for the SFO
b1 b′ small batch size for VR methods

ρ u
convexity modulus of

Bregman distance generating function

Table 2: Important notation for [17] and this paper.
Table notes. (1) SFO: stochastic first-order oracle. (2) u is only used in the analysis provided in this
section.

Remark 11. When f(·) = g(·) = 0, it follows from the update rules and the definition of Bregman
distance function in [17, eq.(12-13), eq.(22-23)] that

Gt = H−1
t ∇φ(xt),

where Ht is a diagonal matrix such that Ht � uI. Note that

Gt = ∇φ(xt) ⇐⇒ Ht = I.

We noticed that the authors chose the value of u to improve their bounds; but, without addressing
its effect on Gt. More precisely, they still use ‖Gt‖ as the convergence metric and compare their
complexity results with those papers using ‖∇φ(xt)‖ as the convergence metric.

In the following corollary, we will provide the optimal complexity for SMDA based the result
in eq. (149), i.e., [17, Thoerem 1].
Corollary 1. Suppose Assumptions 1, 2, 3 hold with f(·) = g(·) = 0, and 1

µy
≤ L hold8. Consider

the setting of Theorem 9, then SMDA [17, Algorithm 1] can generate xε such that E [‖∇φ(xε)‖] ≤ ε
by requiring at most O(

κ5
yδ

2

µ2
yε

4 ) stochastic first-order oracle calls.

Proof. Recall that Ht � uI, Gt = H−1
t ∇φ(xt) and Ht is a diagonal matrix; therefore, we can

obtain a tight upper bound on E[‖∇φ(xt)‖] using eq. (149) as follows:

1

T

T∑
t=1

E[‖∇φ(xt)‖] ≤
4
√

2(φ(x0)− φ∗)√
3T

√
u

τ
+

4
√

2∆0√
3T

√
u

τ
+

10δ√
3b

+
20δ
√
ησ

3
√
µyb

√
u

τ
. (150)

If we use their parameter choices, i.e., η ∈ (0, 1],

σ = O
( 1

L

)
, τ = u min

{ 3

4L(1 + κy)
,

9ηµyσ

800κ2
y

,
2ηµyσ

25L2

}
, u = O(Lν), (151)

for some free parameter ν ≥ 0, then we get

u

τ
= max

{4L(1 + κy)

3
,

800κ2
y

9ηµyσ
,

25L2

2ηµyσ

}
= Ω(κ3

y), (152)

where the second term leads to κ3
y. It is essential to note that τ choice in (151) implies that u/τ

ratio is independent of u; hence, the parameter u indeed does not affect the bound on the right-hand-
side of eq. (150). Therefore, contrary to what is suggested in [17], choosing different values for u
through picking different ν ≥ 0 values indeed is not useful for proving tighter bounds in GNP metric
‖∇φ(xk)‖ in this simple scenario using their parameter choices.

8The assumption 1
µy
≤ L is also made in [17].
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Note eq. (150) can be simplified as

1

T

T∑
t=1

E[‖∇φ(xt)‖] ≤ O
(√κ3

y(φ(x0)− φ∗)
T

+
δ√
b

+
δκ2

y√
bL

)
.

Thus, for any ε > 0, to find point xt such that E[‖∇φ(xt)‖] ≤ ε, one should choose t ≥ T for

T = O
(κ3

y

ε2
(φ(x0)− φ∗)

)
, b = O

(κ4
yδ

2

L2ε2

)
,

which leads to the oracles complexity of

2bT = O
(κ7

yδ
2

L2ε4

)
= O

(κ5
yδ

2

µ2
yε

4

)
.

I.2 Revisit of [17, Theorem 3]

In this section, we provide the oracle complexity of Huang et al. [17, Theorem 3] using the metric
‖∇φ(·)‖ for the Stochastic Mirror Descent Algorithm with variance reduction (SMDA-VR), stated
in [17, algorithm 2]. Let τ, σ be the primal and dual stepsizes, respectively, η be the momentum
parameter, b be the large batchsize, b′ be the small batchsize, q be the period for sampling large batch
size (i.e., once every q batches is large), and u be the strongly-convex constant of the Bregman distance
generating function. We also list our notational convention in table 2 for reader’s convenience.

Below, as we did in the previous section for SMDA, we restate the convergence result of SMDA-VR for
the class of Bregman distance functions such that Dt(x, x

′) = (x − x′)>Ht(x − x′)/2 for some
Ht � 0 –this class of Bregman functions are used for all the numerical experiments reported in [17].
Theorem 10. [17, Thoerem 3] Suppose Assumptions 1, 2, 3 hold with f(·) = g(·) = 0. Let
{xt, yt}Tt=1 be generated by SMDA-VR, stated in [17, Algorithm 2], employing a stochastic first-
order oracle to sample stochastic partial derivatives. For parameters chosen as η ∈ (0, 1], τ =

(0, min
{

3u
4L(1+κy) ,

ηµyσu
38L2 ,

3u
19L2η ,

uη
8 ,

9uηµyσ
400κ2

y
,
}]

and σ ∈ (0, min
{

1
6L ,

9µy
100η2L2

}]
, let ηt = η,

τt = τ and σt = σ for t ≥ 0 and b′ = q. Then, for any given initial point (x0, y0), we have

1

T

T∑
t=1

E[‖Gt‖] ≤
4
√

2(φ(x0)− φ∗)√
3Tτu

+
4
√

2∆0√
3Tτu

+
2
√

2δ√
τuηbL

. (153)

where φ(x) = maxy L(x, y), φ∗ = infx∈X φ(x), ∆0 = ‖y0 − y∗(x0)‖, y∗(x0) =

argmaxy∈Y L(x0, y), Gt = H−1
t ∇φ(xt), and Ht is a diagonal matrix such that Ht � uI for

some u > 0.

In the following corollary, we will provide the optimal complexity for SMDA-VR based the result
in eq. (153), i.e., [17, Thoerem 3].
Corollary 2. Suppose Assumptions 1, 2, 3 hold with f(·) = g(·) = 0, and 1

µy
≤ L hold9. Consider

the setting of Theorem 10, then SMDA-VR [17, Algorithm 2] can generate xε such that E [‖∇φ(xε)‖] ≤
ε by requiring at most O(

κ5
yδ

2

µyε3
) stochastic first-order oracle calls.

Proof. Recall that Ht � uI, Gt = H−1
t ∇φ(xt) and Ht is a diagonal matrix; therefore, we can

obtain a tight upper bound on E[‖∇φ(xt)‖] using eq. (153) as follows:

1

T

T∑
t=1

E[‖∇φ(xt)‖] ≤
4
√

2(φ(x0)− φ∗)√
3T

√
u

τ
+

4
√

2∆0√
3T

√
u

τ
+

2
√

2δ√
ηbL

√
u

τ
. (154)

If we use their parameter choices, i.e., η ∈ (0, 1],

σ = O
( 1

κyL

)
, τ = u min

{ 3

4L(1 + κy)
,
ηµyσ

38L2
,

3

19L2η
,
η

8
,

9ηµyσ

400κ2
y

}
, u = O(L1+ν), (155)

9The assumption 1
µy
≤ L is also made in [17].
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for some free design parameter ν ≥ 0, then we get

u

τ
= max

{4L(1 + κy)

3
,

38L2

ηµyσ
,

19L2η

3
,

8

η
,

400κ2
y

9ηµyσ

}
= Ω(κ4

y),

where the last term leads to κ4
y. It is essential to note that τ choice in (155) implies that u/τ ratio is

independent of u; hence, the parameter u indeed does not affect the bound on the right-hand-side
of eq. (154). Therefore, contrary to what is suggested in [17], for the simple scenarios considered
here choosing different values for u through picking different ν ≥ 0 values indeed is not useful for
proving tighter bounds in GNP metric ‖∇φ(xk)‖ with their parameter choices.

Note that eq. (154) can be simplified as

1

T

T∑
t=1

E[‖∇φ(xt)‖] ≤ O
(√κ4

y(φ(x0)− φ∗)
T

+ δ
κ2
y√
bL

)
.

Thus, for any ε > 0, to find point xt such that E[‖∇φ(xt)‖] ≤ ε, one should choose t ≥ T for

T = O
(κ4

y(φ(x0)− φ∗)
ε2

)
, b = O

(κ4
yδ

2

L2ε2

)
,

which leads to the oracle complexity of

4b′T + 2bT/q = O
(b′κ4

y

ε2
+
κ8
yδ

2

L2ε4
/q
)
.

Since their parameter choice requires b′ = q, to optimize the above bound, we let b′ = q = O
(
κ2
y

Lε

)
,

which leads to

O

(
κ6
yδ

2

Lε3

)
= O

(
κ5
yδ

2

µyε3

)
.

I.3 Revisit of [26, Theorem 1]

Recall that φ(x) = maxy L(x, y) and φ∗ = infx∈X φ(x). In this paper, the total oracle complexity
to find point xε such that E[‖∇φ(xε)‖] ≤ ε is given by

O(κ2
yε
−2 log(κy/ε)) +O(T/q · b) +O(T · b′ ·m) (156)

where10

T =
⌈100κyL∆f

9ε2

⌉
, q = dε−1e, b = d2250

19
δ2κ2

yε
−2e, b′ =

⌈3687

76
κyq
⌉
, m = d1024κye. (157)

Given an arbitrary initial point x0, let y0 be obtained by inexactly solving maxy L(x0, y), and they
define ∆f = L(x0, y0)− 134ε2

κyL
− φ∗. In (157), the other parameters are defined as follows: b is the

large batchsize, b′ is the small batchsize, q is the period such that once every q outer iterations, SREDA
calls for a large batchsize, T is the number of the outer iterations and m is the number of the inner
iterations –each outer iteration requires m inner iterations and each inner iteration calls for a small

batchsize. Then eq. (156) becomes O(
Lκ3

y

ε3 ).

I.4 Revisit of [37, Theorem 1]

Recall that φ(x) = maxy L(x, y) and φ∗ = infx∈X φ(x). In this paper, the precise parameter selec-
tion for [37, Theorem 1] is provided in [37, Theorem 3] of the supplementary material. Using these
parameter choice implies that the total oracle complexity to find point xε such that E[‖∇φ(xε)‖] ≤ ε
is given by

T · b′ ·m+
⌈T
q

⌉
· b+ T0, (158)

10In [26], there is a typo in the choice of b = d 2250
19

δ2κ−2
y ε2e. Here, we provide the correct one.
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for an arbitrary initial point x0, where the number of outer iterations, T , the number of the inner
iterations per each outer iteration, m, are set as follows:

T = max
{3345κy

ε2
, 6600(1 + κy)L

(φ(x0)− φ∗)
ε2

}
, b =

9366δ2κ2
y

ε2
,

b′ =
κy
ε
, m = 52κy − 1, q =

2

13(1 + κy)

κy
ε
, T0 = O(κy log(κy)).

Above b is the large batchsize, b′ is the small batchsize, q is the period such that once every q outer
iterations, a large batch size is sampled rather than a small batch size. Then eq. (158) becomes

O(
Lκ3

y

ε3 ).

I.5 Revisit of [16, Theorem 12]

In this section, we provide the oracle complexity of [16, Theorem 12] using the metric ‖∇φ(·)‖ for
the Accelerated first-order Momentum Descent Ascent (ACC-MDA) algorithm, stated in [16, algorithm
3]. Let τ, σ be the primal and dual stepsizes, respectively, {ηt} be the momentum parameter sequence,
and b be the batchsize. We also list our notational convention in table 3 for reader’s convenience.

Notations in [16] Notations in our paper Meaning
γ τ primal stepsize
λ σ dual stepsize
Lf L Lipschitz constant as in (148)
Lg L(1 + κy) L-smooth constant of φ(x)

τ µy concavity modulus of L(x, ·)
Table 3: Important notations for [16] and this paper.

Below, we restate the convergence result of ACC-MDA reported in [16].
Theorem 11. [16, Thoerem 12] Suppose Assumptions 1, 2, 3 hold with f(·) = g(·) = 0. Let
{xt, yt}Tt=1 be generated by ACC-MDA algorithm, stated in [16, Algorithm 3], when applied to the
smooth minimax problem minx∈X maxy∈Y L(x, y) = Φ(x, y). For some given p > 0, let ηt =

p
(ψ+t)1/3

for all t ≥ 0, τ ∈ (0, min{σµy2L

√
2b

8σ2+75κ2
yb
, ψ1/3

2L(1+κy)p}] and σ ∈ (0,min{ 1
6L ,

27bµy
16 }]

such that ψ ≥ max{2, p3, (c1p)
3, (c2p)

3} for some c1 ≥ 2
3p3 +

9µ2
y

4 and c2 ≥ 2
3p3 + 75L2

2 . Then for
any given x0, we have

1

T

T∑
t=1

E[‖∇φ(xt)‖] ≤
√

2M ′′ψ1/6

T 1/2
+

√
2M ′′

T 1/3
, (159)

where φ(x) = maxy L(x, y), ∆0 = ‖y0 − y∗(x0)‖2, y∗(x0) = argmaxy∈Y L(x0, y), M ′′ =
φ(x0)−φ∗

τp + 9L2∆0

pσµy
+ 2ψ1/3δ2

bµ2
yp

2 +
2(c21+c22)δ2p2

bµ2
y

ln(ψ + T ), and φ∗ = infx∈X φ(x).

Remark 12. [16, Remarks 13 and 14] When b = O
(
κνy
)

for ν > 0 and κνy ≤ 8
81Lµy

, they claim that

they can obtain the gradient complexity of Õ(κ3
yε
−3) if ν = 3, and Õ(κ2.5

y ε−3) if ν = 4. However,
for the assumption κνy ≤ 8

81Lµy
to hold in general, one needs to rescale the original objective function

L(x, y) with some s ∈ (0, 1] to define

Ls(x, y) , s · L(x, y). (160)

Then the Lipschitz constant of ∇Ls, strongly concavity modulus of L(x, ·) for any x ∈ X and the
variance bound of the stochastic oracle for ∇xLs and ∇yLs can be written as sL, sµy, and s2δ2,
respectively. We notice that the effect of scaling L on the problem parameters is not discussed in
[16] and eq. (159) is directly used to derive the convergence result assuming κνy ≤ 8

81Lµy
. As a

consequence, the complexity results of Õ(κ3
yε
−3), Õ(κ2.5

y ε−3) do not hold without loss of generality
unless the original function L satisfies the restrictive assumption of κνy ≤ 8

81Lµy
.
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In the following discussion, we analyze the effect of scaling L on the complexity bounds whenever
κνy ≤ 8

81Lµy
is not satisfied for the original objective function L, and we provide complexity bounds

holding without loss of generality that are optimized by choosing ν > 0 properly. Now, consider
implementing ACC-MDA on an appropriately scaled problem minx maxy Ls(x, y) where Ls is defined
in (160). Let

Ls , sL, µs , sµy, δs , sδ. (161)

Note that the condition numbers of Ls and L are the same, and are equal to κy , i.e., κy = L
µy

= Ls
µs

.
In the upcoming discussion, suppose that s ∈ (0, 1] is chosen such that κνy ≤ 8

81Lsµs
.

To facilitate the complexity analysis and make the upcoming discussion easier, first we restate
Theorem 11 for the function Ls, where we used the relation∇φ and the derivative of maxy Ls(·, y);
indeed, the derivative of maxy Ls(·, y) is equal to s∇φ(·), where φ(x) = maxy L(x, y).
Theorem 12. [16, Thoerem 12] Suppose Assumptions 1, 2, 3 hold with f(·) = g(·) = 0. Let
{xt, yt}Tt=1 be generated by ACC-MDA algorithm, stated in [16, Algorithm 3], when applied to the
smooth minimax problem minx∈X maxy∈Y Ls(x, y) = s · L(x, y). For some given p ≥ 0, let ηt =

p
(ψ+t)1/3

for all t ≥ 0, τ ∈ (0,min{σµs2Ls

√
2b

8σ2+75κ2
yb
, ψ1/3

2Ls(1+κy)p}] and σ ∈ (0,min{ 1
6Ls

, 27bµs
16 }]

such that ψ ≥ max{2, p3, (c′1p)
3, (c′2p)

3} for some c′1 ≥ 2
3p3 +

9µ2
s

4 and c′2 ≥ 2
3p3 +

75L2
s

2 . Then for
any given x0, we have

1

T

T∑
t=1

E[‖∇φ(xt)‖] ≤
1

s

(√
2M ′′s ψ

1/6

T 1/2
+

√
2M ′′s
T 1/3

)
, (162)

where φ(x) = maxy L(x, y), ∆0 = ‖y0 − y∗(x0)‖2, y∗(x0) = argmaxy∈Y L(x0, y), M ′′s =
s(φ(x0)−φ∗)

τp +
9L2

s∆0

pσµs
+

2ψ1/3δ2s
bµ2
sp

2 +
2(c′1

2+c′2
2)δ2sp

2

bµ2
s

ln(ψ + T ), and φ∗ = infx∈X φ(x).

Next, following the analysis in [16, Remarks 10 and 13], we provide a particular parameter choice
for ACC-MDA so that it is applicable to the setting of Theorem 12.
Lemma 28. Under the premise of Theorem 12. Suppose κνy ≤ 8

81Lsµs
, b = κνy for some ν > 0, and

σµs
2Ls

√
2b

8σ2 + 75κ2
yb
≤ ψ1/3

2Ls(1 + κy)p
. (163)

If σ = min{ 1
6Ls

, 27bµs
16 } and τ = min{σµs2Ls

√
2b

8σ2+75κ2
yb
, ψ1/3

2Ls(1+κy)p}, then ψ = Θ(max{1, L6
s})

satisfies the condition in Theorem 12 and

σ = Θ(bµs), τ−1 = Θ
( κ3

y

bLs

)
. (164)

Remark 13. The conditions κνy ≤ 8
81Lsµs

and eq. (163), and the choice b = κνy are as suggested in
[16].

Proof. Since κνy ≤ 8
81Lsµs

, we have σ = 27bµs
16 = Θ(bµs). Furthermore, eq. (163) implies that we

can simplify τ as

τ =
σµs
2Ls

√
2b

8σ2 + 75κ2
yb
.

Then it follows that,

τ−1 = Θ
( κy
bµs

√
bµ2
s + κ2

y

)
= Θ

( κ2
y

bLs
(κν/2y µy + κy)

)
= Θ

(κ2
y

b

(
κν/2−1
y +

κy
Ls

))
= Θ

( κ3
y

bLs

)
,

where we use the relation κνy ≤ 8
81Lsµs

⇒ L2
s ≤ 8

81κ
1−ν
y for the last equality. Next, from eq. (163)

and the requirement on ψ in Theorem 12, a sufficient condition ψ is

ψ ≥ max

2, p3, (c′1p)
3, (c′2p)

3,

(
σµs(1 + κy)p

√
2b

8σ2 + 75κ2
yb

)3
 , (165)
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Now we consider the components of max operator in (165). Note positive constant p can be chosen
independent of other problem parameters, e.g., p = 1. Furthermore, the requirement on c′1, c

′
2 can be

satisfied for
c′1 = Θ

(
µ2
s

)
, c′2 = Θ(L2

s). (166)

Finally, using σ = 27bµs
16 together with b = κνy yields that

σµs(1 + κy)p

√
2b

8σ2 + 75κ2
yb

= Θ
(
κybµ

2
s

√
1

bµ2
s + κ2

y

)
= Θ

(
L2
sκ
ν−1
y

√
1

κν−2
y L2

s + κ2
y

)
= Θ

(
L2
sκ
ν−1
y

√
1

κ2
y

)
≤ Θ(1),

where we use the relation κνy ≤ 8
81Lsµs

⇒ L2
s ≤ 8

81κ
1−ν
y for the last equality and the last inequality.

Therefore, using the above relations within eq. (165), we observe that one can set

ψ1/3 = Θ(max{1, L2
s}), (167)

which completes the proof.

Next, we will use the parameters in Lemma 28 to provide an optimized complexity for ACC-MDA [16,
Algorithm 12] to generate xε such that E [‖∇φ(xε)‖] ≤ ε.
Corollary 3. Suppose Assumptions 1, 2, 3 hold with f(·) = g(·) = 0, and κνy >

8
81Lµy

for the
original function L. Running ACC-MDA on minx maxy Ls(x, y) for

s =
2
√

2

9

1

L
κ(1−ν)/2
y , (168)

and b = κνy , one can generate xε such that E [‖∇φ(xε)‖] ≤ ε requiring at most Õ(
L1.5κ3.5

y

ε3 )
stochastic first-order oracle calls.

Proof. It follows from Theorem 12 that that

1

T

T∑
t=1

E[‖∇φ(xt)‖] ≤
√

2M ′′s
s

(ψ1/6

T 1/2
+

1

T 1/3

)
. (169)

Based on Lemma 28, let ψ = Θ(max{1, L6
s}); thus, ψ

1/6

T 1/2 ≤ 1
T 1/3 when T is large enough. Therefore,

for all sufficiently small ε > 0, 1
T 1/3 ≤ s√

2M ′′s
· ε2 implies that ψ

1/6

T 1/2 ≤ s√
2M ′′s

· ε2 , and we get

1

s

√
2M ′′s
T 1/3

≤ ε

2
=⇒ min

t∈{0,...,T}
E[‖∇φ(xt)‖] = ε. (170)

Moreover, note that eq. (168) implies κy ≤ 8
81Lsµs

; thus, we can choose τ, σ, b as in Lemma 28
which satisfy

σ = Θ(bµs), τ−1 = Θ
( κ3

y

bLs

)
, b = κνy .

Recall that c′1, c′2 chosen as in (166) and ψ chosen as in (167) satisfy all the required conditions in

Theorem 12; hence, M ′′s = s(φ(x0)−φ∗)
τp +

9L2
s∆0

pσµs
+

2ψ1/3δ2s
bµ2
sp

2 +
2(c′1

2+c′2
2)δ2sp

2

bµ2
s

ln(ψ+T ) implies that

1

s2
M ′′s = Θ

( κ3
y

sbLs
+
κ2
y

s2b
+

δ2
s

s2bµ2
s

max{1, L2
s}+

κ2
yL

2
sδ

2
s

s2b
ln(ψ + T )

)
= Θ̃

( κ3
y

s2bL
+
κ2
y

s2b
+

δ2

s2bµ2
y

max{1, s2L2}+
s2κ2

yL
2δ2

b

)
.

(171)

55



Moreover, to satisfy eq. (170), one needs to choose T ≥ Θ(
(

1
s2M

′′
s

)3/2 1
ε3 ). Since the total oracle

complexity is bT , we obtain that

bT ≥ Θ̃

(
1

ε3
(κ9/2−ν/2

y

s3L3/2
+
κ

3−ν/2
y

s3
+
δ3κ−ν/2

s3µ3
y

max{1, s3L3}+ s3κ3−ν/2
y L3δ3

))
. (172)

From eq. (168), i.e., s2 = 8
81

1
L2κ

1−ν
y , it follows that

bT ≥ Θ̃

(
1

ε3
(
L3/2κν+3

y + L3κν+3/2
y + δ3κν+3/2 max{1, κ

3−3ν
2

y }+ κ9/2−2ν
y δ3

))
. (173)

When ν ≥ 1, we have

bT ≥ Θ̃
(
L3/2κν+3

y + L3κν+3/2
y + δ3κ3−ν/2

y + κ9/2−2ν
y δ3

)
,

the optimal value is achieved at ν = 1 and bT ≥ Θ(
L1.5κ4

y

ε3 ); when ν < 1, we have

bT ≥ Θ̃
(
L3/2κν+3

y + L3κν+3/2
y + δ3κν+3/2

y + κ9/2−2ν
y δ3

)
,

the optimal value is achieved at ν = 1
2 and bT ≥ Θ̃(

L1.5κ3.5
y

ε3 ), which completes the proof.

Remark 14. In [16], Huang et al. claims the oracle complexity of Õ(κ3
yε
−3) for ν = 3, and

Õ(κ2.5
y ε−3) for ν = 4. However, our analysis leading to eq. (173) demonstrates that the complexities

would be Õ(
L1.5κ6

y

ε3 ) for ν = 3 and Õ(
L1.5κ7

y

ε3 ) for ν = 4.
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