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A Additional related work

Approximate Bayesian computation (ABC) is a related class of methods to pseudo-marginal MCMC
for implicit likelihoods. We note that the asymptotic target for ABC is an approximation to the target
density of interest. Prescott and Baker (2020) propose a multi-fidelity approach to ABC. A number
of multilevel ABC approaches (Guha and Tan, 2017; Lester, 2018; Warne et al., 2021) have also been
proposed in recent work.

In our work, the Russian roulette estimator is used to construct an unbiased, low-fidelity likelihood.
The Russian roulette estimator has been used recently in a number of applications for optimization
and inference (Beatson and Adams, 2019; Luo et al., 2020; Potapczynski et al., 2021). In particular,
Potapczynski et al. (2021) apply similar techniques to get an unbiased estimate of the gradient of the
marginal likelihood for Gaussian process regression; this can viewed as an optimization analog to our
approach.

B Derivation of the sign-corrected estimator

In this section, we provide details for the derivation in Equation (6), and show that the estimator in
Equation (5) is asymptotically correct. Recall the definitions of the augmented densities

π(θ,K) = µ(K)π̂K(θ)

π̃(θ,K) =
µ(K)|π̂K(θ)|∫ ∑∞
k=1 µ(k)|π̂k(θ)|dθ

.

Note that these functions are densities that integrate to 1.

The goal is to derive an unbiased estimator of the functional Equation (1) by rewriting this quantity
in terms of the joint target π̃(θ,K) and then to perform a Monte Carlo estimate with respect to this
distribution.

Expanding the functional into the joint distribution, we have∫
h(θ)π∞(θ)dθ =

∫
h(θ)

∞∑
k=1

π(θ, k)dθ (B.1)

=

∫ ∞∑
k=1

h(θ)π̂k(θ)µ(k)dθ (B.2)

=

∫ ∑∞
k=1 h(θ)π̂k(θ)µ(k)dθ∫ ∑∞
k=1 π̂k(θ)µ(k)dθ

, (B.3)

where we applied the equation
∫ ∑∞

k=1 µ(k)π̂k(θ)dθ = 1.

Finally, substituting π̂k(θ) = σ(θ, k)|π̂k(θ)| in the line above and then multiplying and dividing by
the normalizing constant of π̃(θ,K), we get∫

h(θ)π∞(θ)dθ =

∫ ∑∞
k=1 h(θ)σ(k, θ)|π̂k(θ)|µ(k)dθ∫ ∑∞
k=1 σ(k, θ)|π̂k(θ)|µ(k)dθ

(B.4)

=

∫ ∑∞
k=1 h(θ)σ(k, θ)|π̂k(θ)|µ(k)dθ/

∫ ∑∞
k=1 µ(k)|π̂k(θ)|dθ∫ ∑∞

k=1 σ(k, θ)|π̂k(θ)|µ(k)dθ/
∫ ∑∞

k=1 µ(k)|π̂k(θ)|dθ
(B.5)

=

∫ ∑∞
k=1 h(θ)σ(θ, k)π̃(θ, k)dθ∫ ∑∞
k=1 σ(θ, k)π̃(θ, k)dθ

. (B.6)

Now construct a Markov chain with the limiting distribution π̃(θ,K) and let {(θ(t),K(t))}Tt=1 ∼
π̃(θ,K). A Monte Carlo estimate of the previous line then gives the final estimate of the posterior
functional:∫

h(θ)π∞(θ)dθ =

∫ ∑∞
k=1 h(θ)σ(θ, k)π̃(θ, k)dθ∫ ∑∞
k=1 σ(θ, k)π̃(θ, k)dθ

≈
∑T
t=1 h(θ(t))σ(θ(t),K(t))∑T

t=1σ(θ(t),K(t))
. (B.7)
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C Review of MCMC algorithms

In this section, we review the MCMC algorithms used in the main paper.

C.1 Random-walk Metropolis-Hastings

Draw proposal θ′ ∼ q(· | θ). Accept or reject the proposed value according to:

R = min

(
1,
π(θ′,D)q(θ|θ′)
π(θ,D)q(θ′|θ)

)
In our experiments, we use a proposal distribution of the form q(θ′|θ) = N (θ′|θ, τ), where the
parameter τ needs to be tuned.

C.2 Slice sampling

Slice sampling (Neal, 2003) is auxillary-variable algorithm that automatically generates proposals
without the need for an explicit accept/reject step.

Let P (θ) denote the joint distribution of interest. Given current state θ, sample a uniform random
variable u ∼ Unif(0, p(θ)). This random variable induces a height at the current state given by
u′ = uP (θ). A horizontal bracket (θl, θr) is defined around θ and a proposal θ′ is generated. If
P (θ′) > u′, the proposal is accepted; otherwise the bracket is decreased. We use the “stepping out”
and shrinking procedures for generating and shrinking the proposal bracket, as defined in MacKay
(2003, Chapter 29.7).

C.3 Elliptical slice sampling

Elliptical slice sampling (Murray et al., 2010) is used for inference in latent Gaussian models. Let
f ∼ N(0,Σ) denote the latent D-dimesional Gaussian variable of interest, and consider a likelihood
L(f) = p(D | f). The target distribution of interest is the joint distribution

π∗(f) =
1

Z
N (f ; 0,Σ)L(f), (C.1)

where Z is the marginal likelihood of the model. The algorithm is summarized in Algorithm C.1.

C.4 Two-stage Metropolis-Hastings

The two-stage MH algorithm assumes a single high fidelity likelihood LHF and low fidelity likelihood
LLF. In each iteration t, a proposal θ′ is generated from the proposal distribution q(·|θ(t−1)).

Stage 1: The proposal is accepted for the second stage or rejected according to the acceptance
probability

RLF(θ; θ′) = min

(
1,
π(θ′)LLF(θ′)q(θ|θ′)
π(θ)LLF(θ)q(θ′|θ)

)
, (C.2)

where θ = θ(t−1). If the proposal is rejected, then the value θ(t) = θ(t−1).

Stage 2: In the second stage, the proposal θ′ is accepted with probability

RHF(θ; θ′) = min

(
1,
π(θ′)LHF(θ′)Q(θ|θ′)
π(θ)LHF(θ)Q(θ′|θ)

)
, (C.3)

where the proposal distribution Q satisfies

Q(θ′|θ) = R(θ′, θ)q(θ′|θ) +

(
1−

∫
R(θ, θ′)q(θ′|θ)dθ′

)
δθ(θ

′). (C.4)
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Algorithm C.1 Summary of the elipitical slice sampling iteration (from Murray et al. (2010, Fig-
ure 2)).

1: Input: Current state f , log-likelihood L
2: Choose ellipse ν ∼ N (0,Σ)
3: Construct log-likelihood threshold:

u ∼ Unif[0, 1]

log y = logL(f) + log u

4: Draw initial proposal, define a bracket

θ ∼ Unif[0, 2π]

[θmin, θmax] ∼ [θ − 2π, θ]

5: Define proposal f ′ = f cos θ + ν sin θ
6: if logL(f ′) > log y then
7: Accept proposal f ′
8: else
9: Resize bracket and generate new proposal:

10: if θ < 0 then:
11: θmin = θ
12: else:
13: θmax = θ
14: end if
15: θ ∼ Unif[θmin, θmax]
16: Goto Step 5
17: end if
18: Output: New state f ′

Note that in the algorithm, the integral does not need to be explicitly computed, since if θ = θ′, the
chain remains at the same value, and if θ 6= θ′, then Q(θ′|θ) = RLF(θ; θ′)q(θ′|θ). Note that the
high-fidelity acceptance probability can be easily computed as

RHF(θ; θ′) = min

(
1,
LHF(θ′)LLF(θ)

LHF(θ)LLF(θ′)

)
. (C.5)

If the proposal is accepted, then the value θ(t) = θ′, and otherwise, θ(t) = θ(t−1).

D Multi-fidelity simulated annealing

In simulated annealing, the goal is to sample from some distribution
P (θ) ∝ exp(−E(θ)),

where E(θ) is an energy function (the interpretation is, e.g., a negative log-likelihood). If used
for optimization, E(θ) is the function we are interested in minimizing. In the simplest simulated
annealing case, we instead sample from the annealed distribution

π(θ) ∝ exp(−E(θ))
1
T = exp(−E(θ)/T ).

To adapt this to a multi-fidelity method, we consider energy functions of fidelity K, denoted by
EK(θ). the target densities π(θ|K) and π(K|θ).

To sample from π(θ|K), we accept or reject a proposal θ′ based on:

R = exp

(
−EK(θ′)− EK(θ)

T

)
.

To sample from π(K|θ), we accept or reject a proposal K ′ based on:

R = exp

(
−EK

′(θ)− EK(θ)

T

)(
µ(K ′)

µ(K)

) 1
T

.
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E Variance of the sign-corrected estimator

A rough estimate of the variance of the Monte Carlo estimator is ((Lyne et al., 2015)[Appendix B]):

1

N
×


∑N
n=1 σ(Xn)h2(Xn)∑N

n=1 σ(Xn)
−

(∑N
n=1 σ(Xn)h(Xn)∑N

n=1 σ(Xn)

)2
× V̂

{1/N
∑N
n=1 σ(Xn)}2

, (E.1)

where V̂ is an estimate of the common autocorrelation sum.

Note that to control the variance of the MC estimator, it is desirable to minimize the number of
negative signs and the variance of the low-fidelity estimator by choosing an appropriate µ whose tails
match that of the low-fidelity density sequence πk (Beatson and Adams, 2019; Potapczynski et al.,
2021).

F Experiments: additional experiments and method details

In this section, we provide additional details for the methods used in our experiments along with
additional details of the setup of each experiment.

Methods compared We will use the abbreviations SF to denote a single-fidelity algorithm, e.g.,
SF M-H, MF to refer to the pseudo-marginal MF-MCMC method proposed in this work, and TS to
refer to the two-stage M-H algorithm described in Appendix C.4. The primary sampling algorithms
used to update the state θ|K are Metropolis-Hastings (M-H), (line) slice sampling (SS), and elliptical
slice sampling (ESS).

Target estimator π̂ In our experiments, by default we consider the Russian roulette estimator with
µ = geometric(γ0), unless stated otherwise.

Sampling the fidelity K|θ To sample the fidelity from the conditional target K|θ, we consider the
following random walk M-H move. Here the target is

π(K|θ) ∝ µ(K)π̂K(θ). (F.1)
To propose a new fidelity, we consider a random walk on the positive integers: flip a fair coin to
determine a new candidate location k∗ = k ± 1, where k is the current value. Then we can compute
the following ratio and decide to accept/reject this candidate value:

R = min

(
1,
µ(k∗)π̂k∗(D)

µ(k)π̂k(D)

)
.

In problems where the estimator may return negative values, we compute the absolute value of the
estimator |π̂|, as summarized in Algorithm 1.

F.1 Toy conjugate sequence

In this example, we consider a toy conjugate Bayesian model, where the data are assumed to arise
i.i.d. from a perfect-fidelity model L∞(θ) = N (x; θ, σ∞), and a conjugate prior on θ, N (θ|0, 1);
conjugacy leads to a closed form Gaussian posterior density that we can compute and compare to the
posterior samples obtained from the methods that we compare. Thus, the perfect-fidelity target is
π∞(θ) ∝ N (θ|0, 1)

∏N
n=1N (Xn; θ, σ∞).

Now suppose that we only have access to the sequence of low-fidelity models Lk(θ) = N (x; θ, σk),
where σ2

k → σ2
∞. Here we consider the sequence σ2

k = 1 + 2/k2 and σ2
∞ = 1. In this example, we

consider the performance of (1) SF M-H, MF M-H, and two-stage M-H, and (2) SF slice sampling and
slice sampling (there is not an analogous two-stage MCMC algorithm for slice sampling). We generate
N = 200 observations D|θ0 from the perfect-fidelity likelihood with true mean θ0 ∼ N (0, 1).

To compute the “cost” of a likelihood evaluation, we pretend that the likelihood evaluation Lk has
cost k. This is to demonstrate the cost of the method for problems where the cost of an evaluation
increases linearly with k.

In what follows, we first compare the low-fidelity estimators, and then we compare the sampling
methods on one choice of estimator.
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Comparing SF-MCMC, MF-MCMC, and two-stage M-H We also compare to the two-stage
M-H algorithm summarized in Appendix C.4; here we consider 2 two-stage setups of k = {1000, 10}
and k = {100, 5}. For all methods, we ran 4 chains initialized from the prior with T = 10000
iterations. We discarded 2000 burn-in samples and the subsequently collected every other sample.

F.2 Log Gaussian Cox Process

In this section, we provide details for the LGCP experiment on the coal mining disasters data set.

We approximate the integral in Equation (10) with a trapezoidal quadrature rule Ik: i.e., given k
points x̃1, . . . , x̃k ∈ X and observed points {X1, . . . , XN}, the low-fidelity likelihood is:

Lk(f) = exp
(
Ik(f(x̃1), . . . , f(x̃K))

) N∏
n=1

ef(Xn), (F.2)

where Ik is a trapezoid quadrature rule with 2k + c quadrature points and c is a constant offset
parameter. When computing Lk for a grid of values different than the vector of latent function values
currently available, we draw new function values conditioned on the existing values of f .

For all samplers, we used a squared-exponential kernel with lengthscale ` = 20 and variance of 1.
For the low-fidelity estimator L̂k, we used a Russian roulette estimator and set the offset c = 10.
The truncation parameter of the MF model was fixed at γ0 = 0.08. The results in the rightmost
figure in Figure 3 are computed with respect to an average over 3 chains initialized from the prior
with T = 10000 samples. The estimates with MF-ESS in Figure 3 were adjusted for negative signs;
empirically, we observed roughly 2.5% of negative signs in our experiments.

F.3 Bayesian ODE system identification

Given a set of parameters θ and initial conditions, we can solve the ODE at a fidelity k to obtain the
solution z(k)n . Thus, the likelihood of fidelity k is given by:

Lk(θ) =

N∏
n=1

2∏
j=1

LogNormal(log(z
(k)
n,j(θ)), σ), (F.3)

where k represents the fidelity of the ODE solver for obtaining the solution zn(θ). We use the
following priors on the parameters

(logα, log β, log γ, log δ) ∼ N (θ0, σ0I), θ0 = [0,−2, 0,−3]>, σ0 = 0.1. (F.4)

In order to apply elliptical slice sampling, which requires the prior to have mean 0, we apply a change
of variables: define Lk(θ̄) = Lk(θ + θ0), and then transform the sampled values θ(t) = θ̄(t) + θ0. In
our experiments, we first verified the sampler was recovering values on synthetic data generated with
initial conditions z0 = [1.0, 1.0], system parameters α = 1.5, β = 1.0, γ = 3.0, δ = 1.0, and noise
parameter σ = 0.8 at a grid of N solution values.

We then applied the method to the Hudson’s Bay Lynx-Hare data set, which documents the canadian
lynx and showshoe hare populations between 1900 and 1920, based on the data collefted by the
Hudson’s Bay company. We compared two single-fidelity models with ODE step size dt = 1 ×
10−5, 1× 10−4. For the multi-fidelity ESS sampler, we visualize the results of γ0 = 0.12, and the
step size for the low-fidelity target sequence was computed as dt(k) = 1/(sk + c), where we set
s = 10 and c = 50.

The results using Euler’s method to solve the ODE are in Figure 4, and the results of the 4th-order
Runge Kutta solver are in Figure F.1. The maximum number of iterations of each ODE solver was
set to 1× 108 iterations.

In the top row of each figure, the black vertical dotted line denotes maximum likelihood estimates
reported by Howard (2009).1 In the bottom row of each figure, we report the posterior mean estimates

1Our model is a modification of the one proposed in a Stan case study, which compares their Bayesian
estimates to the reported maximum likelihood results. See https://mc-stan.org/users/documentation/
case-studies/lotka-volterra-predator-prey.html for further discussion.
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(a) Marginal densities of system parameters

(b) Posterior mean estimate vs computational cost

Figure F.1: Lokta-Volterra system parameter identification with a 4th-order Runge Kutta ODE solver.
The fidelity represents (a function of) the step size of the ODE solver. Top: Marginal distributions of
system parameters. Bottom: Posterior mean estimates of the parameters vs wallclock.

of the system parameters averaged over 4 chains initialized from the prior. The wallclock time in
seconds of each iteration was measured and the average per iteration was reported. Here the first
5000 samples of each chain were discarded and then every third sample was collected. Overall, we
observe that the single-fidelity models can both be quite expensive; while they are able to recover
the posterior mean well, they require quite a bit more computation than the multi-fidelity approach.
Empirically, we observed roughly 1% of negative signs in our experiments.

F.4 PDE-constrained optimization

In the problem setting, the spatial domain is [0, L] and the time domain is [0, T ]. For our experiments,
we chose L = 10 and T = 1.

To solve the PDE, we discretize the spatial domain into a grid of size ∆x: thus, we can consider points
x1, . . . , xI and u1(t), . . . , uI(t), where ui(t) = u(xi, t). Then, we represent the second derivative
using the central difference formula for the second degree derivative:

∂2u(x, t)

∂2x
≈
[
ui+1(t)− 2ui(t) + ui−1(t)

∆x2

]I
i=1

.

Thus, we now consider the system of equations (with the appropriate boundary conditions imposed):

ui+1(t)− 2ui(t) + ui−1(t)

∆x2
=
dui(t)

dt
.
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We solve the system with the Tsitouras 5/4 Runge-Kutta method, setting ∆t = 0.4∆x2 so as to
satisfy a CFL stability condition. Here the fidelity of the problem is given by the size of the spatial
discretization ∆x, which in turn controls the discretization of ∆t.

The target temperature ū was constructed by solving the PDE with parameters α0 = 0.85 and
β0 = 0.21. For the simulated annealing algorithm, we use a Metropolis-Hastings algorithm as the
base sampler; all methods used a truncated Normal proposal with scale set to 0.3 and a logarithmic
temperature schedule.

In the top row of Figure 5, we visualization the target ū solutions recovered by a number of methods.
The low-fidelity solution in target (c) is given by a crude step size of ∆x = 2; note that we do not
evaluate the cost of this given how poorly the solution is recovered at this state.

In the bottom row of Figure 5, we compare the MF-ESS approach with two single-fidelity step sizes,
∆x = 5× 10−3, 1× 10−2. In the multi-fidelity method, the low-fidelity target sequence was chosen
using the discretization sequence ∆x(k) = 1/(k + c), where c = 8. The results are averaged over
random seeds using the initialization [0, 0]. The horizontal dotted lines in each plot denote the values
of α0, β0, and we plot the current minimum at each iteration.

F.5 Gaussian process regression parameter inference

In many applications of GPs, the goal is to integrate out the parameters θ via a Monte Carlo
approximation that uses MCMC to sample {θ(t)} from the target density

π∞(θ | D = (X, y)) ∝ π(θ)L∞(θ) = logNormal(θ | ν0, ν1)×N (y | 0,Σθ + σ2
0I). (F.5)

Note that the Gaussian pdf has the form

L∞(θ) = |2π(Σθ + σ2
0I)|− 1

2 exp

(
−1

2
y>(Σθ + σ2

0I)−1y

)
, (F.6)

and so when N is large, the linear system and determinant above become expensive.

Let the low-fidelity likelihood Lk(θ) denote the computation of the likelihood with k iterations of
(preconditioned) conjugate gradient. That is, suppose, z(k) is the kth iteration of the CG with respect
to the linear system (Σθ + σ2

0I)z = y. Thus, the low-fidelity likelihood is

Lk(θ) = |2π(Σθ + σ2
0I)|− 1

2 exp

(
−1

2
y>z(k)

)
.

In practice, the determinant also needs to be approximated with another low-fidelity computation. Our
goal here is to show a proof of concept, and so we only consider the linear system above; however,
we note that the determinant can be iteratively computed as a byproduct of conjugate gradient as in
Potapczynski et al. (2021). Note that we can compute the likelihood recursively in that each z(k)

reuses computation from the previous step z(k−1), and thus a Russian roulette estimator also can
reuse computation for each term in the sum.

We generate synthetic data from the GP model with N = 100, σ2
0 = 1, and lengthscale θ0 = 45.

For the GP model, we use the Log Normal prior on θ given above in Equation (F.5) with parameters
ν0 = 3.8, ν1 = 0.03. We compare several likelihoods: a high-fidelity likelihood (K = 100),
low-fidelity likelihood (K = 5), and the multi-fidelity approach we describe with γ0 = 0.1. The
low-fidelity likelihood sequence was constructed by computing the solution to the linear system using
a conjugate gradient solver with k steps. Finally, we also compare to a two-stage M-H approach with
k ∈ {100, 5}. For all methods, we use a M-H sampler with T = 50000 iterations. The results are in
Figure 6.

G Broader impacts

In this work, we develop a method that allows for the use of multi-fidelity models in MCMC. However,
we do not discuss in detail how to use and interpret the results of MCMC output. Ultimately, any
finite sample collected will have initialization bias and generally requires additional choices for the
number of burnin samples and the number of samples to thin. These choices are in practice important
and should be considered carefully before interpreting or using the resulting posterior estimate.
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