Supplementary Materials

Clément Chadebec Louis J. Vincent
Université Paris Cité, INRIA, Inserm, SU Implicity '
Centre de Recherche des Cordeliers * Université Paris Cité, INRIA, Inserm, SU
clement.chadebec@inria.fr Centre de Recherche des Cordeliers *

louis.vincent@inria.fr

Stéphanie Allassonniére
Université Paris Cité, INRIA, Inserm, SU
Centre de Recherche des Cordeliers *
stephanie.allassonniere@inria.fr

A Usage of Pythae

In this section we illustrate through simple examples how to use Pythae pipelines. The library is
documentecﬂ and also available on pypi’|allowing a wider use and easier integration in other codes.
All of the implementations proposed in the library are adaptations of the official code when available
and allowed by the licence. If not, the method is re-implemented. Table. [T]lists all the implemented
models as of June 2022.

1. Training configuration Before launching a model training, one must specify the training
configuration that should be used. This can be done easily by instantiating a BaseTrain-
erConfig instance taking as input all the hyper-parameters related to the training (number
of training epochs, learning rate to apply...). See the full documentation for additional
arguments that can be passed to the BaseTrainerConfig.

1 from pythae.trainers import BaseTrainerConfig

2 # Set up the model configuration

3 my_training config = BaseTrainerConfig(
4 output_dir='my_model',

5 num_epochs=50,

6 learning_rate=le-3,

7 batch_size=200)

*15 Rue de I’Ecole de Médecine, 75006 Paris
Thttps://www.implicity.com - Implicity Paris, France.
*https://pythae.readthedocs.io/en/latest/?badge=latest
*https://pypi.org/project/pythae/

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://www.implicity.com
https://pythae.readthedocs.io/en/latest/?badge=latest
https://pypi.org/project/pythae/

2. Model configuration Similarly to the TrainerConfig, the model can then be instantiated
with the model configuration specifying any hyper-parameters relevant to the model. Note
that each model has its own configuration with specific hyper-parameters. See the online
documentation for more details.

1 from pythae.models import BetaVAE, BetaVAEConfig

2 # Set up the model configuration

3 my_vae_config = BetaVAEConfig(

4 input_dim=(1, 28, 28),

5 latent_dim=16,

6 beta=2)

7 # Build the model

8 my_vae_model = BetaVAE(model_config=my_vae_config)

3. Training A model training can then be launched by simply using the built-in training
pipeline in which only the training/evaluation data need to be specified.

1 from pythae.pipelines import TrainingPipeline

2 pipeline = TrainingPipeline(

3 training_config=my_training_config,

4 model=my_vae_model)

5 # Launch the Pipeline

6 pipeline(

7 train_data=your_train_data, # arrays or tensors
8 eval_data=your_eva1_data) # arrays or temnsors

4. Model reloading The weights and configuration of the trained model can be reloaded using
the AutoModel instance proposed in Pythae.

1 from pythae.models import AutoModel
2 my_trained_vae = AutoModel.load_from_folder('path/to/trained_model')

5. Data generation A data generation pipeline can be instantiated similarly to a model training.
The pipeline can then be called with any relevant arguments such as the number of samples
to generate or the training and evaluation data that may be needed to fit the sampler.

from pythae.samplers import GaussianMixtureSamplerConfig

[N]

from pythae.pipelines import GenerationPipeline

3 # Define your sampler configuration

4 gmm_sampler_config = GaussianMixtureSamplerConfig/(
5 n_components=10)

6 # Build the pipeline

7 pipeline = GenerationPipeline(

8 model=my_trained_vae,

9 sampler_config=gmm_sampler_config)
10 # Launch generation

11 generated_samples = pipeline(

12 num_samples=100,

13 return_gen=True,

14 train_data=train_data,

15 eval_data=None)

Table 1: List of implemented VAEs

Name Reference

Variational Autoencoder (VAE) Kingma and Welling [13]
Beta Variational Autoencoder (BetaVAE) Higgins et al. [10]

VAE with Linear Normalizing Flows (VAE_LinNF) Rezende and Mohamed [20]
VAE with Inverse Autoregressive Flows (VAE_IAF) Kingma et al. [14]
Disentangled 3-VAE (DisentangledBetaVAE) Higgins et al. [10]
Disentangling by Factorising (FactorVAE) Kim and Mnih [11]
Beta-TC-VAE (BetaTCVAE) Chen et al. [4]
Importance Weighted Autoencoder (IWAE) Burda et al. [1]

VAE with perceptual metric similarity (MSSSIM_VAE) Snell et al. [21]
Wasserstein Autoencoder (WAE) Tolstikhin et al. [22]

Info Variational Autoencoder (INFOVAE_MMD) Zhao et al. [27]

VAMP Autoencoder (VAMP) Tomczak and Welling [23]]
Hyperspherical VAE (SVAE) Davidson et al. [6]
Adversarial Autoencoder (Adversarial_AE) Makhzani [[19]
Variational Autoencoder GAN (VAEGAN) Larsen et al. [16]

Vector Quantized VAE (VQVAE) Van Den Oord et al. [24]
Hamiltonian VAE (HVAE) Caterini et al. [2]
Regularized AE with L2 decoder param (RAE_L?2) Ghosh et al. 8]
Regularized AE with gradient penalty (RAE_GP) Ghosh et al. [8]
Riemannian Hamiltonian VAE (RHVAE) Chadebec et al. [3]

Maintenance plan: We intend for this library to be maintained in the long term. In that view, the
main author’s contact details will remain available and up-to-date on the github repository, which
will remain the main discussion channel. Additionally, we are currently considering adding back-up
contributors that will also support this effort in the long-term. Since this library has already started
to be a community effort with external contributors, we further hope that the community will also
continue to help reviewing and updating the current implementations.

Original papers reproducibility We validate the implementations by reproducing some results
presented in the original publications when the official code has been released or when enough
details about the experimental section of the papers were available (we indeed noted that in many
papers key elements for reproducibility were missing such as the data split considered, which cri-
teria is used to select the model on which the metrics are computed, the hyper-parameters are
not fully disclosed or the network architectures is unclear making reproduction very hard if not
impossible in certain cases). This insists on the fact that the framework is flexible enough to re-
produce results from publications. Finally, we have open-sourced the scripts, configurations and
results on the repository at https://github.com/clementchadebec/benchmark _VAE/tree/
main/examples/scripts/reproducibility and made the trained models available on the Hug-
gingFace Hub (e.g. https://huggingface.co/clementchadebec/reproduced_iwae).

https://github.com/clementchadebec/benchmark_VAE/tree/main/examples/scripts/reproducibility
https://github.com/clementchadebec/benchmark_VAE/tree/main/examples/scripts/reproducibility
https://huggingface.co/clementchadebec/reproduced_iwae

B Interpolations

In this section, we show the interpolations obtained on the three considered datasets. For each
model, we select both a starting image and an ending image from the test set and perform a linear
interpolation between the corresponding embeddings in the learned latent space. We then show the
decoded trajectory all along the interpolation line. For this task, we use the model configuration that
obtained the lowest FID on the validation set with a GMM sampler from the generation task. We
show the resulting interpolations for latent spaces of dimension 16 and 256 for MNIST, 32 and 256
for CIFAR10 and 64 for CELEBA. As mentioned in the paper, for this complex task, variational
approaches tend to outperform the AE-based methods. This is well illustrated on MNIST with a latent
space of dimension 256 since all the AE-based approaches eventually superpose the starting and
ending image, making the interpolation visually irrelevant. Impressively, the regularisation imposed
by the variational approaches prevents such undesirable behaviours from occurring. This adds to the
observation made in Sec. 4.2.2 of the paper where we note some robustness to the latent dimension
for the variational methods. Nonetheless, as stated in the paper this regularisation can also degrade
image reconstruction, leading to very blurry interpolations, as illustrated on Fig. 3]

MNIST (16) MNIST (256)

VAE 55553333331555|553%3333%
999999¢0bbbld9994946bbo
77713zazzi77vvzzzzzi

VAMP 55553%33333|5555333333%

99 9 0bbbblg9999906060bL0LO
77773?,?,2,2,7772?.?_

IWAE 5555333333555 5333333%
9999 6G660LbLLIg949446LLOLOG

LU S S 5533333355553 3%/333)3%
99949 Lbbbl99999494bb0
77722.2_222117_

VAE-IAF 5353333333|31555533%33%333
7999994 060bbbLIg999990606OGO6

B-VAE 55533333335 5553%33/3333
9994%%40bbbblgyq9994¢bbbl
777,*‘77771:2

B-TC-VAE 555 333315555 3% 33 3 3|3

¢ b blblg 9999 4 kbbb

EEAUCEI S S 55333333|555/533333%
999 90000606bjJg99949406006O060

IANEVE S S 55 333333]5555353333%
799996600b0bl799999400060

LEZCREE S S 55333333155 5533333%
99999g¢060bbLIlgg99404000bO

Figure 1: Interpolations on MNIST with the same starting and ending images for latent spaces of
dimension 16 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.

MNIST (16) MNIST (256)
77772:2,12_777 .7,

AAE 5555333333555 5%3333)3
99944« bbb 7999 4kbbb
72227_7_77722.2.
UERNIRZGE S S 553333331555 553%3333%
92999000606bO60LI999990806606O0GEO
7331&1777?22211

VAEGAN 555553333 3]555|5333337%
9999 G4 Llbbblggag9qgubbbb

AE 5555%53%3333 3555 1133 33
99946 60obobldggqgqgqicbblbb

VO S 5 55 3% 333 3 31555 1133 3%
9949 Y4 ¢ lbbblggaqg 2 @l b b
AASE S 5 55 3% 333331555 %
9944 6 bbbblgyqq '-'
I

VQVAE 55533333 313]5555
999%4%Gklbblgqqg9

RAE-12 5555533333155 5 3
9949 4%&lbbbblgqqg 71 b bl
55553%3%33331555 TEEE
99 4 4G cC©Obblgqgaqg @ o bl b

Figure 2: Interpolations on MNIST with the same starting and ending images for latent spaces of
dimension 16 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.

P

©

RAE-GP

CIFARI10 (32) CIFARI10 (256)

VAE

VAMP
IWAE
VAE-lin-NF

VAE-IAF

B-VAE

B-TC-VAE

Factor-VAE

InfoVAE - IMQ n

I PE—

B !E
-

Figure 3: Interpolations on CIFAR10 with the same starting and ending images for latent spaces of
dimension 32 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.

CIFARI10 (32) CIFARI10 (256)

|
W

bR B .

VAEGAN
AE

WAE-IMQ

WAE-RBF

VQVAE

RAE-12

RAE-GP

Figure 4: Interpolations on CIFAR10 with the same starting and ending images for latent spaces of
dimension 32 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.

CELEBA (64) CELEBA (64)

VAE

VAMP

IWAE

VAE-lin-NF

VAE-IAF

B-VAE

B-TC-VAE

Factor-VAE

> 4

InfoVAE - IMQ

. e

2

InfoVAE - RBF

p 053

&

Figure 5: Interpolations on CELEBA with the same starting and ending images for a latent space of
dimension 64. For each model we select the configuration achieving the lowest FID on the generation
task on the validation set with a GMM sampler.

CELEBA (64) CELEBA (64)

566 @
AAE miviziz i a
EEIgIg 8 o &
- B S = |
MSSSIM-VAE : 22
:‘ '?v "_v
, > % "»
VAEGAN s 2 a
o &
2
AE
WAE-IMQ
WAE-RBF
VQVAE
RAE-I2
RAE-GP

Figure 6: Interpolations on CELEBA with the same starting and ending images for a latent space of
dimension 64. For each model we select the configuration achieving the lowest FID on the generation
task on the validation set with a GMM sampler.

10

C Detailed experiments set-up

We detail here the main experimental set-up and implementation choices made in the benchmark. We
let the reader refer to the code available online for specific implementation aspects

The data To perform the benchmaks presented in the paper, we select 3 classical free-fo-use image
datasets: MNIST [[17], CIFAR10 [15] and CELEBA [18]]. These datasets are publicly available,
widely used for generative model related papers and have well known associated metrics in the
literature. Each dataset is split into a train set, a validation set and a test set. For MNIST and
CIFAR10 the validation set is composed of the last 10k images extracted from the official train set
and the test set corresponds to the official one. For CELEBA, we use the official train/val/test split.

Training paradigm We equip each model used in the benchmark with the same neural network
architecture for both the encoder and decoder, taken as a ConvNet and ResNet (architectures given in
Tables. and leading to a comparable number of parameters E} For the 19 considered models, due
to computational limitations, 10 different configurations are considered, allowing a simple exploration
of the models’ hyper-parameters. The sets of hyper-parameters explored are detailed in Appendix. D
for each model. The models are then trained on MNIST and CIFAR10 for 100 epochs, a starting
learning rate of 1le~* and batch size of 100 with Adam optimizer [12]. A scheduler reducing the
learning rate by half if the validation loss does not improve for 10 epochs is also used. For CELEBA,
we use the same setting but we train the models for 50 epochs with a starting learning rate of le 3.
Models with unstable training (NaN, huge training spikes...) are iteratively retrained with a starting
learning rate divided by 10 until training stabilises. All 19 models are trained on a single 32GB V100
GPU. This leads to 10 trained models for each method, each dataset (MNIST, CIFAR10 or CELEBA)
and each neural network (ConvNet or ResNet) leading to a total of 1140 models. The training setting
(curves, configs ...) can be found at https://wandb.ai/benchmark_team/trainings,

Sampling paradigm for the MAF and VAE samplers For the Masked Autoregressive Flow
sampler used for sampling we use a 3-layer MADE [[7] with 128 hidden units and ReLU activation
for each layer and stack 2 blocks of MAF to create the flow. For the masked layers, the mask is made
sequentially and the ordering is reversed between each MADE. For this normalising flow we consider
a starting distribution given by a standard Gaussian. For the auxiliary VAE sampling method proposed
in [3]], we consider a simple VAE with a Multi Layer Perceptron (MLP) encoder and decoder, with 2
hidden layers composed of 1024 units and ReLU activation. Both samplers are fitted with 200 epochs
using the train and evaluation embeddings coming from the trained autoencoder models. A learning
rate of 1e~*, a scheduler decreasing the learning rate by half if the validation loss does not improve
for 10 epochs and a batch size of 100 are used for these samplers.

Table 2: Neural network architecture used for the convolutional networks.

MNIST CIFAR10 CELEBA
Encoder (1,28, 28) (3,32,32) (3, 64, 64)
Layer 1 Conv(128, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU
Layer 2 Conv(256, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU
Layer 3 Conv(512, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU
Layer 4 Conv(1024, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU
Layer 5 Linear(1024, latent_dim)* Linear(4096, latent_dim)* Linear(16384, latent_dim)*
Decoder
Layer 1 Linear(latent_dim, 16384) Linear(latent_dim, 65536) Linear(latent_dim, 65536)
Layer 2 ConvT(512,3,2), BN,ReLU ConvT(512,4,2), BN,ReLU ConvT(512, 5, 2), BN, ReLU
Layer 3 ConvT(256, 3, 2), BN, ReLU ConvT(256, 4, 2), BN, ReLU ConvT(256, 5, 2), BN, ReLU
Layer 4 Conv(l, 3, 2), Sigmoid Conv(3, 4, 1), Sigmoid ConvT(128, 5, 2), BN, ReLU
Layer 5 - - ConvT(3, 5, 1), Sigmoid

*Doubled for VAE-based models

>Some models may actually have additional parameters in their intrinsic structure e.g. a VQVAE learns
a dictionary of embeddings, a VAMP learns the pseudo-inputs, a VAE-IAF learns the auto-regressive flows.
Nonetheless, since we work on images, the number of parameters remains in the same order of magnitude.

11

https://wandb.ai/benchmark_team/trainings

Table 3: Neural network architecture used for the residual networks.

MNIST CIFARI10 CELEBA
Encoder (1,28, 28) (3,32,32) (3, 64, 64)
Layer 1 Conv(64, 4,2) Conv(64, 4, 2) Conv(64, 4, 2)
Layer 2 Conv(128, 4, 2) Conv(128, 4, 2) Conv(128, 4, 2)
Layer 3 Conv(128, 3,2) Conv(128, 3, 1) Conv(128, 3, 2)
Layer 4 ResBlock** ResBlock** Conv(128, 3, 2)
Layer 5 ResBlock** ResBlock** ResBlock**
Layer 6 Linear(2048, latent_dim)* Linear(8192, latent_dim)* ResBlock**
Layer 7 - - Linear(2048, latent_dim)*
Decoder
Layer 1 Linear(latent_dim, 2048) Linear(latent_dim, 8192) Linear(latent_dim, 2048)
Layer 2 ConvT(128, 3, 2) ResBlock** ConvT(128, 3,2)
Layer 3 ResBlock** ResBlock** ResBlock**
Layer 4 ResBlock**, ReLU ConvT(64, 4, 2) ResBlock**
Layer 5 ConvT(64, 3, 2), ReLU ConvT(3, 4, 2), Sigmoid ConvT(128, 5, 2), Sigmoid
Layer 6 ConvT(l, 3, 2), Sigmoid - ConvT(64, 5, 2), Sigmoid
Layer 6 - - ConvT(3, 4, 2), Sigmoid

*Doubled for VAE-based models
**The ResBlocks are composed of one Conv(32, 3, 1) followed by Conv(128, 1, 1) with ReLU.

12

D Additional results

D.1 Effect of the latent dimension on the 4 tasks with the CIFAR10 database

Analogously to the results shown in the paper on the MNIST dataset for the 4 chosen tasks (re-
construction, generation, classification and clustering), Fig.[7] shows the impact the choice of the
latent space dimension has on the performances of the models on the CIFAR10 dataset, whose image
arguably have a greater intrinsic latent dimension than images of the MNIST dataset. Similarly to
MNIST, two distinct groups appear: the AE-based methods and variational methods. Again, for all
tasks but clustering, variational based methods demonstrate good robustness properties with respect
to the dimension of the latent space when compared to AE approaches.

Reconstruction

i
N A R A R U R ¥ AR A T R W U

Generation

l L .“4 ¥ L s lﬁ L latent_dim
= 200 J 1
100 \ X \7. \l X \ \ XL & . 33

Classification 64

= e > »

0.5 128
T04 ; f fl j f[/ # f} 256
3 512
A 4|8 A
0.2 .
Clustering
Ay o vlolw v Ly Ry
£0.20 \ .X h
[}
o
©0.15
< \4 < NS 3 < < < N % < o < N & < 2 R
K\a ?g‘\ QF & W W W& P Yoo oP LadER\ P\ o % [©
R NS S SRS AR\ R AR RS 24
R & §<°A & P N RNal &
A\

Figure 7: From top to bottom: Evolution of the reconstruction MSE, generation FID, classification
accuracy and clustering accuracy with respect to the latent space dimension on the CIFAR dataset.

D.2 Complete generation table

In Table. @ are presented the full results obtained for generation i.e. including the MAF and 2-stage
VAE sampler [5]. As mentioned in the paper, it is interesting to note that fitting a GMM instead of
using the prior for the variational-based approaches seems to often allow a better image generation
since it allows a better prospecting of the learned latent space of each model. Interestingly, it seems
that fitting more complex density estimators such as a normalising flow (MAF sampler) or another
VAE (2-stage sampler) does not improve the generation results when compared to the GMM for those
datasets.

13

Table 4: Inception Score (higher is better) and FID (lower is better) computed with 10k samples on
the test set. For each model and sampler we report the results obtained by the model achieving the
lowest FID score on the validation set.

ConvNet ResNet

Model Sampler MNIST CIFARI0 CELEBA MNIST CIFARI10 CELEBA
FID, ISt FD IS FD ISt | FID{ IS{ FD IS FD IS
N 285 21 2410 22 548 19 | 313 20 1817 25 666 16
VAE GMM 269 21 2359 23 524 19 | 323 21 1797 25 630 17
VAE 403 20 3375 17 709 16 | 487 18 3580 13 764 14
MAF 268 21 2395 22 525 20 | 310 21 1815 25 629 17
VAMP | VAMP | 642 20 3290 15 560 19 | 345 2.1 1819 25 672 16
N 200 21 2453 21 557 19 | 324 20 1912 24 676 16
WAE GMM 284 21 2412 21 527 19 | 344 21 1888 24 641 17
VAE 24 20 3466 15 743 15 | 5001 19 3648 12 764 14
MAF 281 21 2434 21 527 19 | 325 21 1904 24 643 17
N 293 21 2403 21 565 19 | 325 20 1855 24 6.1 16
VAE-lin NF GMM 84 21 2370 22 533 19 | 331 21 1831 25 628 17
VAE 401 20 3110 16 7.1 16 | 497 19 2962 17 756 14
MAF 277 21 2390 21 534 20 | 324 20 1842 25 67 17
N 275 21 2360 22 554 19 | 306 20 1836 25 662 16
VAEIAF GMM 270 21 2354 22 536 19 | 322 21 1808 25 627 17
VAE 394 20 3305 L1 730 15 | 448 19 327 15 767 14
MAF 269 21 2368 22 536 19 | 306 21 1825 25 630 17
N 24 21 1154 36 561 19 | 190 20 1249 34 659 16
SVAE GMM 92 22 922 39 517 19 | 114 21 1126 36 593 17
VAE 140 22 1396 36 550 19 | 203 21 1525 35 6L5 17
MAF 9.5 22 1009 35 515 20 | 120 21 1200 36 597 18
N 203 21 1166 28 557 18 | 207 20 1258 34 659 16
P GMM 16 22 83 41 518 19 | 133 21 1065 37 593 17
VAE 184 22 1279 42 597 18 | 283 20 1640 33 664 15
MAF 120 22 956 36 522 19 | 137 21 1166 34 601 17
N 270 21 2365 22 538 19 | 310 20 1854 25 664 17
FactorVAE GMM 269 21 2340 22 524 20 | 327 21 1844 25 633 17
VAE 412 19 3383 15 750 15 | 547 18 3162 13 777 14
MAF 267 22 2367 22 527 19 | 328 21 1858 25 634 17
N 275 21 2352 21 555 19 | 3L1 20 1828 25 665 16
GMM 267 21 2304 22 527 19 | 323 21 1795 25 68 17
TESRATE = RUEIF VAE 397 20 3272 15 737 15 | 506 19 3634 12 758 14
MAF 259 21 2335 22 522 20 | 305 21 1813 25 67 17
N 283 21 2338 22 567 19 | 310 20 1824 25 664 16
i GMM 277 21 2319 22 537 19 | 328 21 1807 26 623 17
InfoVAE - IMQ VAE 404 19 338 16 737 15 | 499 19 3418 18 757 14
MAF 272 21 2323 21 538 20 | 306 21 1825 25 626 17
N 168 22 1399 26 599 18 | 190 21 1649 24 648 17
AAE GMM 93 22 91 38 539 20 | 1L 21 1185 35 587 18
VAE 134 22 1440 34 582 18 | 151 21 1452 36 590 17
MAF 93 22 10L1 32 538 20 | 119 21 1336 31 592 18
N 267 22 2799 17 1243 13 | 280 21 2542 17 1190 13
GMM 272 22 2797 17 1243 13 | 288 21 2531 17 1192 13
MSSSIM-VAE VAE 512 19 3555 L1 1379 12 | 516 19 3721 L1 1365 12
MAF 269 22 2798 17 1240 13 | 275 21 2541 17 1195 13
N 87 22 1995 22 397 19 | 128 22 1987 22 1228 20
GMM 63 22 1975 21 356 18 65 22 1882 26 843 17
VAZGR VAE 112 21 3109 20 545 16 92 21 2727 20 888 16
MAF 69 23 190 21 367 18 6.6 22 1919 25 848 17
N 267 21 2013 21 3277 10 | 208 13 2100 21 2750 29
AE GMM 93 22 973 36 554 20 | 110 21 1207 34 54 18
MAF 99 22 1083 31 557 20 | 120 21 1365 30 583 18
N 212 22 17501 20 3326 10 | 202 21 1702 23 694 16
WAE - RBF GMM 92 22 971 36 550 20 | 112 21 1203 34 583 17
MAF 98 22 1082 31 560 20 | 118 22 1353 30 583 18
N 189 22 1644 22 646 17 | 203 21 1507 25 6.1 16
WAE - IMQ GMM 86 22 965 36 517 20 | 112 21 1190 35 5.7 18
MAF 9.5 22 1078 31 516 20 | 118 21 1302 30 587 17
N(,1) | 282 20 1522 20 3069 10 | 1707 16 1957 19 1403 22
VQVAE GMM 9.1 22 952 37 516 20 | 107 21 12001 34 579 18
MAF o6 22 1047 32 23 19 | 117 22 1368 30 579 18
N 250 20 1561 26 8.1 28 | 633 22 1709 22 1687 3.1
RAE-L2 GMM 0.1 22 853 39 552 19 | 115 21 1225 34 583 18
MAF 95 22 934 35 552 20 | 123 22 1366 30 590 17
N 270 21 1968 21 861 24 | 615 22 290 20 2019 3.
RAE - GP GMM 97 22 93 37 525 19 | 114 21 1233 34 500 18
MAF 97 22 1063 32 525 19 | 122 22 1394 30 595 18

14

D.3 Further interesting results

Generated samples In addition to quantitative metrics, we also provide in Fig. [§] and Fig. [J]
some samples coming from the different models using either a (0, I) or fitting a GMM with 10
components on MNIST and CELEBA. This allows to visually differentiate the quality of the different
sampling methods.

MNIST - MNIST - GMM

VAE
IWAE
U 2 7 3 L7 /43 (0
B-VAE
B-TC-VAE m
Factor-VAE
InfoVAE - IMQ
AR [> 9206927 93
AAE
MSSSIM-VAE £ 53290927 1]
VAEGAN
AR
(GO) 423 1 297 ¢0|%201 71007/ 8
WAE-RBF 0028587435
VQVAE
RAE-L2
RAE-GP

Figure 8: Generated samples on MNIST for a latent space of dimension 16 and ConvNet architecture.
For each model, we select the configuration achieving the lowest FID on the validation set.

15

CELEBA - N CELEBA - GMM

VAE o1 ey Q QE‘E.H- -QEMMGE
we DAACAPEE R CRGR EINEn
we EFBLEHT ACR LI eA0. Eo
we A ISR B PPARAOAREN
e EEEERL 096 [OO AR OD
weve (@ GOACERN £ 8HANEY. BF
v COAROETFEOR 019 ARAHAAGE
“ o RAODAOINBA L AF IHINE
ACET DDA IO
l!lEﬂd‘l AR & YA
wsve: FSORRNRNAN AeDFPFEREOR
e AEFEIROBIC SHREO. 6 ONE)
v RN ERERReCDT
wewo AAMRAREDG ACDRLIDEE P
weor I FY WA AEORE
o RN F: D A€ JREAROE
o ISCRGROSAIIOE @ TEE
weor (PPN NERE QGRS e

Figure 9: Generated samples on CELEBA for a latent space of dimension 64 and ConvNet architecture.
For each model, we select the configuration achieving the lowest FID on the validation set.

16

Sampler ablation study Fig.|10[shows the same results as Table. 4| but under a different prism.
In this plot, we show the influence each sampler has on the generation quality for all the models
considered in this study. Note that sampling using a (0, I;) for an AE, RAE or VQVAE is far
from being optimal since those models do not enforce explicitly the latent variables to follow this
distribution. As mentioned in the paper, this experiment shows that using more complex density
estimators such as a GMM or a normalising flow almost always improves the generation metric.

Generation

-I -I -[j _I .I j name
l e GaussianMixtureSampler
o * MAFSampler
= 4 NormalSampler
10t] + TwoStageVAESampler
VAMPSampler
K\a ?3'8 @Vi{' . (&((\?(S \\VQ' q?g/ QV(‘(' ;\@Q ,‘6\ N V(<' (,‘?*$?(‘(' \G\Q ,&‘é QV(‘(' \?' R
R N R Rl R AN S RN T T
\W@/ Naiee %e@ & ((0\\ §<° & K\ N Al
S N S

Figure 10: Evolution of the FID for the generation task depending on the sampler, for a ConvNet, the
MNIST dataset and a latent dimension of 16. For each sampler and model, we select the configuration
achieving the lowest FID on the validation set.

Neural network architecture ablation study As explained in the paper and in Appendix. C, we
consider two different neural architectures for the encoder and decoder of each model: a ConvNet
(convolutional neural network) and a ResNet (residual neural network). Fig. [IT]shows the influence
the choice of the neural architecture has on the ability of the model to perform the 4 tasks presented
in the paper. The results are computed for each model on MNIST and a latent dimension of 16.
The ConvNet architecture has approximately 20 times more parameters than the ResNet in such
conditions. We select the best configuration for each model and each task on the validation set and
report the results on the test set. Unsuprisingly, we see in Fig. [IT|that the ConvNet architecture, more
adapted to capture features intrinsic to images, leads to the best performances for reconstruction and
generation. Interestingly, the ResNet outperforms the ConvNet for the classification and clustering
tasks, meaning that in addition to the network complexity, its structure can play a major role in the
representation learned by the models.

Training time Fig.[I2|shows the training times required for each model for both network architec-
tures on the MNIST dataset. For each model, we show the results obtained with the configuration
giving the best performances on the generation task with fixed latent dimension 16. It is interesting
to note that although VAEGAN outperforms other models on the generation task, it is at the price
of a higher computational time. This is due to the discriminator network (a convolutional neural
net) that is called several times during training and takes images as inputs. It should be noted
that methods applying normalising flows to the posterior (VAE-lin-NF and VAE-IAF) maintain a
reasonable training time, as the flows were chosen for their scalability.

17

Reconstruction

0.02
9 e
€0.01
Ll e [L o~ -~ [-~ o~
Generation
60
| 40
2 ' < e
20
- T les [et e et e Net_type
Classification e convnet
T0.95 — o — S ST e + resnet
-
e
3 0.90 N\
e o— -
3 - - e
© 0.85 \
Clustering
0.8 -
T07 7 / e v e / < S / /
>
/ s s /
§06 /
©
0.5
3 < o K
\\‘;(’ \Wﬁg \‘;y \;\(§< (</>P- ’04‘?(5’ C\V((’ QF ((/\@o\ & ~'z>\§</ {(’6>$ V("C@Q & 04‘?@ ((/9’ ((/SB
DA It g
) 3 < L & &
= N VS‘

Figure 11: Evolution of the metrics for the 4 tasks depending on the network type on the MNIST
dataset and a latent dimension of 16.

Training times on best configuration on the MNIST dataset with latent space 16

L

L \
I
2
= 2
ElO
[
£ Net_type
s e convnet
[=4
€ * resnet
s
=10t

< X < X X TR T S S R N N SR N e

W WS o T R A A \i"'@\ﬁ\;"‘ o R

Y0 oV O @ Y W N
&S e

Figure 12: Total training time for the models trained on the MNIST dataset with latent dimension 16
with the best performance on the generation task.

18

D.4 Configurations and results by models

In this section we briefly explain each model considered in the benchmark, and show the evolution of
performances on the 4 tasks and the training speed with respect to the choice of the hyper-parameters.
For all 4 tasks we consider the MNIST dataset and a fixed latent space of dimension 16, as well as
the Normal Gaussian sampler (if applicable) and the convolutional network architecture. For each
model, 10 configuration runs with different hyper-parameters were tested. It should be noted that
this configuration search was done empirically and is not exhaustive, therefore models with multiple
hyper-parameters or that are sensitive to the choice of hyper-parameters will tend to have sub-optimal
configuration choices. Although hyper-parameter choices are dependant on both the auto-encoder
architecture and the dataset, it is interesting to note the relative evolution of the performances on the
different tasks and the training time induced by different hyper-parameter choices.

Notations In order to better underline the differences between different models and for clarity
purposes, we set the following unified notations:

¢ X ={z1,...,on} € XY the input dataset

+ x € X an observation from the dataset, and z € Z = R? its corresponding latent vector

* Z the reconstruction of = by the auto-encoder model

* p.(2) the prior distribution, with p, = N(0, I;) under standard VAE assumption

* gy(z|x) the approximate posterior distribution, modelled by the encoder. Kingma and

Welling [13]] set
o (2l2) = N (pg(2), By ()

where S4(z) = diag[oy(x)] and (pe(z), 04(x)) € R?*? are outputs of the encoder
network. The sampling process z ~ gg4(z|z) is therefore performed by sampling ¢ ~
N(0,1,) and setting z = pg(z) + Sg(z)'/2 - & (re-parametrization trick).
po(x|z) the distribution of = given z
s po(z) = | Z po(x|2)p,(2)dz the marginal distribution of x
40 (

z) = Z i1 4o (2|x;) the aggregated posterior integrated over the training set.

e Di the Kullback—Leibler divergence
We further recall that Kingma and Welling [[13]] use the unbiased estimate py(x) of py(x) defined as

~ Po\T|2)Pz\%
po(a) = 2212
q0(2|2)
to derive the standard Evidence Lower Bound (ELBO) of the log probability log pg(z) which we
wish to maximize:
LELBo = Expy(a) [LELBO(T)]
with
Lprpo(x) = E.vg, log po(2]2)] — Dk [qs(2]2)|p2(2)]

reconstruction regularisation

The reconstruction loss is maximized when z is close to z, thus encouraging a good reconstruction of
the input z, while the regularisation term is maximized when ¢, (z|z) is close to p,(z), encouraging
the posterior distribution to follow the chosen prior distribution.

The integration over py(x) is approximated by the empirical distribution of the training dataset, and
the negative ELBO function acts as a loss function to minimize for the encoder and decoder networks.

19

VAE with a VampPrior (VAMP) Starting from the observation that a standard Gaussian prior
may be too simplistic, Tomczak and Welling [23]] proposes a less restrictive prior: the Variational
Mixture of Posteriors (VAMP). A VAE with a VAMP prior aims at relaxing the posterior constraint
by replacing the conventional normal prior with a multimodal aggregated posterior given by:

1 K
p() = £ > asl:lun),
k=1

where uy, are pseudo-inputs living in the data space X learned through back-propagation and acting
as anchor points for the prior distribution. For the VAMP VAE implementation, we use the same
architecture as the authors’ implementation for the network generating the pseudo-inputs: a MLP
with a single layer and Tanh activation.

Results by configuration

Table 5: VAMP configurations
Config 1 2 3 4 5 6 7 8 9 10
Number of pseudo-inputs (K) 10 20 30 500 100 150 200 250 300 500

VAMP_MNIST_convnet_16

0.92
0.66
0.90
0.64

0.88
0.62

0.86
0.60

Classification_accuracy —
Clustering_accuracy —

0.84
0.02550

0.02525

mse «—

0.02500

102
0.02475 9x 10!

8x 10!

Generation_fid «—

0.02450

1
0.02425 7x10

300

200

100

Train time (minutes) Reconstruction

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 13: Results on VAMP

20

Importance Weighted Autoencoder (IWAE) Burda et al. [1]] introduce an alternative lower bound
to maximize, derived from importance weighting where the new unbiased estimate py(x) of the

marginal distribution pg () is computed with L samples 21, ..., 21 ~ g4(z|x) :
L
Z LUlZ»L pz z)
d¢ Zz|x

i—1

This estimate induces a new lower bound of the true marginal distribution py(x) using Jensen’s
inequality:

L
1 po(x|zi)p=(2i) "
Lrwag(z) =K., spmq(ale) [10% I ; T wlaln) <10gE., . 2y ~q(zlz) [Po(2)] -
N po(x)

As the number of samples L increases, Liwag(x) becomes closer to log pg (), therefore providing a
tighter bound on the true objective. Note that when L = 1 we recover the original VAE framework.

As expected the reconstruction quality increases with the number of samples. Nonetheless, we note
that increasing the number of samples has a significant impact on the computation of a single training
step, therefore leading to a much slower training process.

Results by configuration

Table 6: IWAE configurations
Config 1 2 3 4 5 6 7 8 9 10

Number of samples (L) 2 3 4 5 6 7 8 9 10 12

IWAE_MNIST_convnet_16

0.880

0.875

0.870

0.865

Classification_accuracy —
Clustering_accuracy —

0.860

3.3x10!
0.0155
32x10t

0.0150 3.1x10%

Generation_fid «—

0.0145 3x10!

2.9x 10!

200

100

Train time (minutes) Reconstruction_mse «—

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 14: Results on IWAE

21

Variational Inference with Normalizing Flows (VAE-lin-NF) In order to model a more complex
family of approximate posterior distributions, Rezende and Mohamed [20] propose to use a succession
of normalising flows to transform the simple distribution g4 (z|x), allowing it to model more complex
behaviours. In practice, after having sampled zp ~ gy (2|z), 2o is passed through a chain of K
invertible smooth mappings from the latent space R? to itself:

2z = fro---0 fao fi(z0).

The modified latent vector zg is then used as input z for the decoder network. In their paper, the
authors propose to use two types of transformations: planar and radial flows.

fplanar(z) =z+ Uh(wTZ + b) ; fradial(z) =z+ BQ(OZ, 7‘)(2 - ZO) ’

where h is a smooth non-linearity with tractable derivatives and g(«, r) = %H The parameters are

such that 7 = ||z — zol|, u,w, 20 € R%, o € RT and b, 3 € R. We can easily compute the resulting
density g given by

Afk
det E

K
log q(zx) = log gs(z0lx) — Y _ log
k=1

This makes the ELBO tractable and optimisation possible.

Results by configuration

Table 7: VAE-lin-NF configurations
Config 1 2 3 4 5 6 7 8 9 10

Flow sequence ~ PPPPP RRRRR PRPRP 10P I5P 20P 30P PRPRPRPRPR PPP PRPPRPPPPR
‘P’ stands for planar flow - ‘R’ stands for radial flow

VAE_LinNF_MNIST_convnet_16

y—

0.8 0.6

0.7 0.5

0.4
0.6

Classification_accurac
Clustering_accuracy —

0.3

°
«

0.045
0.040 102

0.035

0.030 6x 10!

0.025

Generation_fid «—

4x10!
0.020

3x10!

90

85

Train time (minutes) Reconstruction_mse «—

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 15: Results on VAE-lin-NF

22

Variational Inference with Inverse Autoregressive Flow (VAE-IAF) Kingma et al. [[14] improve
upon the works of [20] with a new type of normalising flow that better scales to high-dimensional
latent spaces. The main idea is again to apply several transformations to a sample from a simple
distribution in order to model richer distributions. Starting from zy ~ ¢4 (z|z), the proposed IAF flow
consists in applying consecutively the following transformation

2k = Mg+ Ok - Zp—1,

where p;, and oy, are the outputs of an autoregressive neural network taking zj_; as input. Inspired
from the original paper, to implement one Inverse Autoregressive Flow we use MADE [7]] and stack
multiple IAF together to create a richer flow. The MADE mask is made sequentially for the masked
autoencoders and the ordering is reversed after each MADE.

Results by configuration

Table 8: VAE-IAF configurations

Config 1 2 3 4 5 6 7 8 9 10
hidden size in MADE 320 320 320 320 320 320 320 320 640 128.0
number hidden units in MADE 2.0 2.0 2.0 2.0 2.0 2.0 4.0 6.0 2.0 2.0
number of IAF blocks 1.0 2.0 5.0 10.0 20.0 4.0 4.0 4.0 4.0 4.0

VAE_IAF_MNIST_convnet_16

Classification_accuracy —
Clustering_accuracy —

0.64

0.0171
2.95 x 10*

0.0170 2.9% 10!

0.0169 2.85x 10!

0.0168 2.8x 10"

Generation_fid «—

0.0167 275x 10!

90

85

Train time (minutes) Reconstruction_mse «—

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 16: Results on VAE-IAF

23

B-VAE Higgins et al. [10] argue that increasing the weight of the KL divergence term in the ELBO
loss enforces a stronger disentanglement of the latent features as the posterior probability is forced
to match a multivariate standard Gaussian. They propose to add a hyper-parameter 3 in the ELBO
leading to the following objective to maximise:

Lavag(w) = Ezng,[log po(2|2)] — BDK L [46(2]2)]p=(2)] -

Although the original publication specifies 5 > 1 to encourage a better disentanglement, a smaller
value of 3 can be used to relax the regularisation constraint of the VAE. Therefore, for this model we
consider a range of values for 3 from le™3 to 1e3.

As expected, we see in Fig.|17|a trade-off appearing between reconstruction and generation. Indeed,
a very small 5 will tend to less regularise the model since the latent variables will no longer be driven
to follow the prior, favouring a better reconstruction. On the other hand, a higher value for S will
constrain the model, leading to a better generation quality. Moreover, as can be seen in Fig.[I7] too
high a value of 3 will lead to over-regularisation, resulting in poor performances on all evaluated
tasks.

Results by configuration

Table 9: 8-VAE configurations
Config 1 2 3 4 5 6 7 8 9 10

B 1le7® 1e72 1le7! 05 2 5 10 20 1% 1€3

BetaVAE_MNIST_convnet_16

1 0.7
Lol o T e T
g - 0.6 >
3 8
% 0.6 0.5 é
g o4
2 04 £
g 03 5
= 7
ﬁ 0.2 0.2 E
o
0.1

0.07
| 0.06
3 |
£ 0.05 3
<! =
§ 0.04 S 102 c
F=1 % 2
g : B
2003 B
“ c
2
g 0.02 8
Q
< 0.01
B
£ 85
£
E
g 80
<
o
= 1 2 3 4 5 6 7 8 9 10

run configuration number

Figure 17: Results on 3-VAE

24

B-TC-VAE Chen et al. [4] extend on the ideas of Higgins et al. [10] by rewriting and re-weighting
specific terms in the ELBO loss with multiple hyperparameters. The authors note that the KL-
divergence term of the ELBO loss can be rewritten as

d
Eonpy |Dir(as(z12)|lp2(2)] | = I(z,2) +Drrlae(2)ll [] a6(2))]
Mutual information J=1
TC-loss
d
+ Z Dicr[a6(2))lIp=(25)]
j=1

Dimension-wise KL

* The mutual information term corresponds to the amount of information shared by z and its
latent representation z. It is claimed that maximising the mutual information encourages
better disentanglement and a more compact representation of the data.

» The TC-loss corresponds to the total correlation between the latent distribution and its
fully disentangled version, maximising it enforces the dimensions of the latent vector to be
uncorrelated.

* Maximising the dimension-wise KL prevents the marginal distribution of each latent dimen-
sion from diverging too far from the prior Gaussian distribution

The authors therefore propose to replace the classical regularisation term with the more general term
Leeg =l (z,n) + BDr a6 () [[a0(2)] + 7D Prrlao(z)lIp=(2)] -
J J

Similarly to the authors, we set « = v = 1 and only perform a search on the parameter 3. Fig.
shows a reconstruction-generation trade-off similar to the 5-VAE model

Results by configuration

Table 10: 5-TC-VAE configurations
Config 1 2 3 4 5 6 7 8 9 10

B le® 1e7? 1le! 05 1 2 5 10 50 1e?

25

BetaTCVAE_MNIST_convnet_16

«— Adeandoe Buuaisnid

0.6
0.5
0.4
0.3

— pl_uoneIdUIn

102

10

run configuration number

Results on S-TC-VAE

Figure 18

26

o @ ~ © 0
S S S S (=]

4« o N o % m o
S © 9 © @ ©w
o o o o

— 95WUORINIISU0IBY (SSINUIW) BN Ulel |

0.05

«— Adeandoeuonediyisse|d

Factor VAE Kim and Mnih [11]] augment the VAE objective with a penalty that encourages factorial
representation of the marginal distributions, enforcing a stronger disentangling of the latent space.
Noting that a high value in 5-VAE ELBO loss encourages disentanglement at the expense of
reconstruction quality, FactorVAE proposes a new lower bound of the log likelihood with an added
disentanglement term:

d
Lractorvae () == Lerpo(r) — YDk (%(Z)H%(Z)) , with 67¢(Z) = H %(Zj)

The distribution of representations g¢(z) = +; Zf;l ¢4 (z|z;) of the entire dataset is therefore forced
to be close to its fully-disentangled equivalent g,(z) while leaving the ELBO loss as it is. They
further propose to approximate the KL divergence with a discriminator network D that is trained
jointly to the VAE:

D(z) }

D (a(2)la(2)) = Eq.2) [log 1—D(z)

As suggested in the authors’s paper, the discriminator is set as a MLP composed of 6 layers each with
1000 hidden units and LeakyReLU activation.

Results by configuration

Table 11: FactorVAE configurations
Config 1 2 3 4 5 6 7 8 9 10
v 1 2 5 10 15 20 30 40 50 100

FactorVAE_MNIST _convnet_16

0.5

y—

0.850

0.4

2
@
=3
=1

0.3

Clustering_accuracy —

Classification_accurac:

0.2

3.1x10!

3x10!

2.9x 10!

Generation_fid «—

2.8x 10!

Reconstruction_mse «—

27 x10*

Train time (minutes)

run configuration number

Figure 19: Results on FactorVAE

27

InfoVAE Zhao et al. [27] note that the traditional VAE ELBO objective can lead to both inaccurate
amortized inference and VAE models that tend to ignore most of the latent variables, therefore not
fully taking advantage of the modelling capacities of the VAE scheme and learning less meaningful
latent representations. In order to counteract these two issues, they propose to rewrite and re-weight
the ELBO objective in order to counterbalance the imbalance between the distribution in the data
space and the latent space, and add a mutual information term between x and 2 to encourage a stronger
dependency between the two variables, preventing the model from ignoring the latent encoding. One
can re-write the ELBO loss in order to explicit the KL divergence between the marginalised posterior
and the prior

Cerpo(@) = —Dier[0(2)[Ips(2)] — Exv. [DKL[q¢<w|z>||pe<w|z>]} .

Introducing an additional mutual information term I, (z; z) and extending the objective function to
use any given divergence D between probability measures instead of the KL objective, the authors
propose a new objective defined as

Lintovar () := —=AD|gs(2)|[p=(2)] — Eznp. {DKL[%@IZ)IIW(M)]] +aly(w; 2)

where A and « are hyperparameters. In our experiments, « is set to 0 as recommended in the paper
in the case where py(x|z) is a simple distribution. D is chosen as the Maximum Mean Discrepancy
(MMD) [9], defined as

MMDy, (2 (=), 4o(2)) = || /Z Kz, Jdpa(z) — /Z k(2)dgs ()l

with k : Z x Z — R a positive-definite kernel and its associated RKHS ;. We choose to

differentiate 2 cases in the benchmark: one with a Radial Basis Function (RBF) kernel, the other

with the Inverse MultiQuadratic (IMQ) kernel as proposed in [22] where the kernel is given by

k(z,y) = 3 Wc—yu with s € [0.1,0.2,0.5,1,2,5,10] and C = 2 - d - 02, d being the
s€ES

dimension of the latent space and o a parameter part of the hyper-parameter search.

The authors underline that choosing A > 0, « = 1 — A and D = D, we recover the 5-VAE model

[10], while choosing & = A = 1 and setting D as the Jensen Shannon divergence we recover the
Adversarial AE model [19]].

Results by configuration

Table 12: InfoVAE configurations

Config 1 2 3 4 5 6 7 8 9 10
kernel bandwidth- ¢ 1le™2 1le”™! 0.5 1 1 1 1 1 2 5
A 10 10 10 1le 2 1e* 10 100 100 10 10

28

Classification_accuracy —

Train time (minutes) Reconstruction_mse «—

Classification_accuracy —

Train time (minutes) Reconstruction_mse «—

o
@
o
o

0.855

0.850

0.845
0.0171

0.0170

0.0169

0.0168

0.0167

0.0166

82

80

0.860

0.855

0.850

0.845

0.0172

0.0171

0.0170

0.0169

0.0168

0.0167

84

82

INFOVAE_MMD-rbf_MNIST_convnet_16

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 20: Results on InfoVAE-RBF

INFOVAE_MMD-img_MNIST_convnet_16

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 21: Results on InfoVAE-IMQ

29

0.65

0.60

0.55

0.50

3.1x10!
3.05 x 101
3x 10!
2.95 x 10t
2.9x10!
2.85x 10*
2.8x 10!
2.75x 10

0.65

0.60

0.55

3.05 x 10*

3x 10!

2.95 x 10t

2.9x 10!

2.85 x 10

Clustering_accuracy —

Generation_fid «—

Clustering_accuracy —

Generation_fid «—

Adversarial AE (AAE) Makhzani [[19] propose to use a GAN-like approach by replacing the
regularisation induced by the KL divergence with a discriminator network D trained to differentiate
between samples from the prior and samples from the posterior distribution. The encoder network
therefore acts as a generator network, leading to the following objective

EAAE($> = Ez~q¢(z|x) [logp9 (.’IJ|Z)] + aLGAN P
with Lgan the standard GAN loss defined by

LoaN = EEN:Dz (2) |:10g(1 — D(é))):| + EINPS |:E’z~q¢(z|:r) [log D(Z)} .
For the Adversarial Autoencoder implementation, we use a MLP neural network for the discriminator
composed of a single hidden layer with 256 units and ReLU activation.

We observe a similar trade-off between reconstruction and generation quality as observed with 5-VAE
type models, as the « term acts like the 5 term, balancing between regularisation and reconstruction.

Results by configuration

Table 13: AAE configurations
Config 1 2 3 4 5 6 7 8 9 10

o 1le™® 1e72 1e7' 025 05 075 09 095 099 0999

Adversarial_AE_MNIST_convnet_16

0.935 075
2. 0.930
3

£ 0.925 0.70
3

g

®0.920
c

0.65
S 0.915
]

=
E 0.910

0.60

Clustering_accuracy —

3
S 0.905

4x 10!

n_mse «—
o
o
=
]

3x10!
'0.010

0.008

Generation_fid «—

2x 10!
0.006

87.5
85.0

82.5

Train time (minutes) Reconstructio

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 22: Results on Adversarial AE

30

EL-VAE (MSSSIM-VAE) Snell et al. [21] propose an extension of the ELBO loss to a more general
case where any deterministic reconstruction loss A(x, &) can be used by replacing the probabilistic
decoder py with a deterministic equivalent fy such that the reconstruction Z of x given z ~ g4(z|x)
is defined as & = fy(z). The modified ELBO objective is thus defined as

LeL-vae(z) = Az, 2) - BDkL(ge(2]2)|Ip(2)) ,

with 8 < 1. As suggested in the original paper we use a multi scale variant of the single scale SSIM
[26]: the Multi Scale Structural Similarity Metric (MS-SSIM) [25].

Results by configuration

Table 14: MSSSIM-VAE configurations

Config 1 2 3 4 5 6 7 8 9 10
B 1e™2 1e7?2 1e7? 1le! 1le7! 1e? 1 11 1
window size in MSSSIM 3 5 11 5 3 11 1m 5 3 15

MSSSIM_VAE_MNIST convnet 16

0.5

y—

0.4

0.3

0.2

Clustering_accuracy —

Classification_accurac:

0.1

o
=3
&

102
0.06

Reconstruction_mse «—
Generation_fid «—

0.04

95

920

85

Train time (minutes)

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 23: Results on MSSSIM-VAE

31

VAE-GAN Larsen et al. [16] use a GAN like approach by training a discriminator to distinguish
real data from reconstructed data. In addition, the discriminator learns to distinguish between real
data and data generated by sampling from the prior distribution in the latent space.

Noting that intermediate layers of a discriminative network trained to differentiate real from generated
data can act as data-specific features, the authors propose to replace the reconstruction loss of the
ELBO with a Gaussian log-likelihood between outputs of intermediate layers of a discriminative
network D:

LVAE-GAN = Ez~q9(z|a;) [IOgN(Dl(I)Dl(f)J)} —DkL [%(ZW)HPz(Z)] —LgaN ,

- regularisation

reconstruction
where D is the output of the [*" layer of the discriminator D, chosen to be representative of abstract
intermediate features learned by the discriminator, and L an is the standard GAN objective defined

D()
xr
‘CGAN - 1Og <1 — D(xgen)>)

where ey is generated using z ~ p,(z). As encouraged by the authors, we add a hyper-parameter
« to the reconstruction loss for the decoder only, such that a higher value of a will encourage better
reconstruction abilities with respect to the features extracted at the I*" layer of the discriminator
network, whereas a smaller value will encourage fooling the discriminator, therefore favouring
regularisation toward the prior distribution. For the VAEGAN implementation, we use a discriminator
whose architecture is similar to the model’s encoder given in Table. 2] For MNIST and CIFAR we
remove the BatchNorm layer and change the activation of layer 2 to Tanh instead of ReL.U. For
CELEBA, the BatchNorm layer is kept and the activation of layer 2 is also changed to Tanh. For all
datasets, the output size of the last linear layer is set to 1 instead of d and followed by a Sigmoid
activation.

Results by configuration

Table 15: VAEGAN configurations

Config 1 2 3 4 5 6 7 8 9 10
« 03 05 07 08 08 08 09 09 099 099
reconstruction layer (1) 3 3 3 3 2 4 3 3 3 3

32

VAEGAN_MNIST_convnet_16

«— Adeandoe Buuaisnid

0.75

0.70
0.65
0.60
0.55

4 x 10!

— pl_uoneIdUIn

3x10!

2x 10!
10t

10

=3
o
S

—

o un o

® @ NN
(=} o (=} (=}

Adeindoe”uoneduisse))

©
e <
S o
—asw

P o =)
S 9 9 S S
s o o ~ ~

TuoRINIISUOIRY (SSINUIW) BN Ulel L

run configuration number

Results on VAEGAN

Figure 24

33

Wasserstein Autoencoder (WAE) Tolstikhin et al. [22]] generalise the VAE objective by replacing
both terms in the ELBO: similarly to [21] (EL-VAE), the reconstruction loss is replaced by any
measurable cost function A, and the standard KL divergence is substituted with any arbitrary
divergence D between two distributions, leading to the following objective function

Egy(z1a) [A (@, 2)] + AD= (p2(2), 45(2))

with X a hyper-parameter. The authors propose two different penalties for D.:

1. GAN-based: WAE-GAN

An adversarial discriminatory network D(z, z’) is trained jointly to separate the "true" points
sampled from the prior p,(z) from the "fake" ones sampled from g, (z|z), similarly to [19]
(Adversarial AE).

. MMD-based

The Maximum Mean Discrepancy is used as a distance between the prior and the posterior

distribution. This is the case considered in the benchmark. We choose to differentiate 2

cases in the benchmark: one with a Radial Basis Function (RBF) kernel, the other with

the Inverse MultiQuadratic IMQ) kernel as proposed in [22] where the kernel is given by

Elx,y) = > m with s € [0.1,0.2,0.5,1,2,5,10] and C' = 2 - d - 02, d being
s€S ’

the dimension of the latent space and o a parameter part of the hyper-parameter search. As
proposed by the authors, for this model we choose to use a deterministic encoder meaning

that g (2]2) = 0y, (2)-

Results by configuration

Classification_accuracy —

n_mse «—

Train time (minutes) Reconstructio

0.005675

0.005650

10.005625

0.005600

0.005575

0.005550

0.005525

Table 16: WAE configurations

Config 1 2 3 4 5 6 7 8 9 10
kernel bandwidth- ¢ le™2 1le™! 05 1 1 1 1 1 2 5
A 1 1 1 1e”2 1e”! 1 10 100 1 1

WAE_MMD-rbf_MNIST_convnet_16

0.9375 0.74

0.9350
0.9325 073
0.9300

0.72
0.9275

Clustering_accuracy —

0.9250
0.71

2.9x10!
2.8x 10!
2.7 x 10t
2.6 x 10!
2.5%10!
2.4x10!

Generation_fid «—

23x10!
22 x 10!
2.1x10!

920

85

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 25: Results on WAE-RBF

34

Classification_accuracy —

Train time (minutes) Reconstruction_mse «—

0.935

0.930

0.925

0.920

0.915

0.910

0.0059

0.0058

0.0057

0.0056

85

84

83

WAE_MMD-imq_MNIST_convnet_16

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 26: Results on WAE-IMQ

35

0.72
0.71
0.70

0.69

0.67
2.8x 10!

2.6 x 10!
2.4x10!

2.2x 10!

2x10!

Clustering_accuracy —

Generation_fid «—

Vector Quantized VAE (VQ-VAE) Van Den Oord et al. [24]] propose to use a discrete space. There-
fore, the latent embedding space is defined as a R* %P vector space of K different D dimensional
embedding vectors £ = {ey, ..., ex } which are learned and updated at each iteration.

Given an embedding size d and an input x, the output of the encoder z.(z) is of size R¥*?. Each of
its d elements is then assigned to the closest embedding vector resulting in an embedded encoding
z4(z) € £% such that (zq(:z:))J = e¢; where | = argmin, ., ,|[(zc(x)); — ez for j € [1,d]. Since
the argmin operation is not differentiable, learning of the embeddings and regularisation of the latent
space is done by introducing the stopgradient operator sg in the training objective:

Lyova(x) = log p(x]zq (7)) + al|sglze(x)] — ell3 + Bllze(x) — sgle]l[3 -

For the VQVAE implementation we use the Exponential Moving Average update as proposed in [24]
to replace the term ||sg[z.(2)] — e||3 in the loss. Thus, we consider only two hyper-parameters in the
search: the size of the dictionary of embeddings K and the regularisation factor (.

Results by configuration

Table 17: VQVAE configurations

Config 1 2 3 4 5 6 7 8 9 10
K 128 256 512 512 512 512 512 512 1024 2948
B 025 0.25 0.9 0.1 0.5 025 075 025 0.25 0.25

VQVAE_MNIST_convnet_16

0.725

y—

0.9400
0.720

0.9375 0.715

0.9350 0.710

0.9325 0.705

0.9300 0.700

Clustering_accuracy —

Classification_accurac:

0.9275 0.695

0.005725

2
0.005700 10

mse «—

10.005675

1
0.005650 6x10

0.005625

Generation_fid «—

4 x 10!

0.005600
3x10!

0.005575

90

85

80

Train time (minutes) Reconstruction

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 27: Results on VQVAE

36

RAE L2 and RAE GP Ghosh et al. [8]] propose to replace the stochastic VAE with a deterministic
autoencoder by adapting the ELBO objective to a deterministic case. Under standard VAE assumption
with Gaussian decoder, both the reconstruction and the regularisation terms in the ELBO loss can be
written in closed form as

'Creconslruction(x) = HQE - j' |§)
1 d
»Cregularisation(m) - 5 |:||Z||§ —d + Z(U¢(x)l - IOg U¢(x)1) .
i=1

Arguing that the regularisation of the VAE model is done through a noise injection mechanism by
sampling from the approximate posterior distribution z ~ N (14, diag(cy)), the authors propose to
replace this stochastic regularisation with an explicit regularisation term, leading to the following
deterministic objective:

. B
£RAE=||CU—~”C\|3+§HZ||§+>\£REG> M
where Lrgg is an explicit regularisation. They propose to use either

* a L2 loss on the weights of the decoder (RAE-L2), which amounts to applying weight decay
on the parameters of the decoder.

* a gradient penalty on the output of the decoder (RAE-GP), which amounts to applying a L2
norm on the gradient of the output of the decoder.

Results by configuration

Table 18: RAE configurations

Config 1 2 3 4 5 6 7 8 9 10
8 1e8 1e7* 1e7® 1e73 1e7® 1e7® 1e73 1e7? 1e7! 1
A 1e™3 1e73 1e™© le 4 le™2 le ! 1 1e™3 1e™3 le™3

RAE_L2_MNIST_convnet_16

y—

o

9

)
Clustering_accuracy —

Classification_accurac

0.008

0.007 6 x 10!

1
0.006 4x10

Generation_fid «—

Reconstruction_mse «—

3x10!

85

Train time (minutes)

80

1 2 3 4 5 6 7 8 9 10
run configuration number

Figure 28: Results on RAE-L2

37

RAE_GP_MNIST_convnet_16

«— Adeandoe Buuaisnid — plj_uonesausn

S o %
m N 4 o o = = o
oo~) X X X
S oS oS o o — © < m

=)

A

o

©

~

©

n

<

™

~

-

< o o~ P © ~ © o o
o o o o <] o o N <1
o c S S < < < ~ N
IS =] S
El

«— Adeandde uonesyisse|d — 9SWUORINIISU0IBY (SSINUIW) BN Ulel |

run configuration number

Results on RAE-GP

Figure 29

38

References

(1]

(2]

(3]

[4

—_

[5

—

(6]

[7

—

[8

—_—

[9

—

(10]

(11]

[12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]
(20]

[21]

[22]

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv:1509.00519 [cs, stat], 2016.

Anthony L Caterini, Arnaud Doucet, and Dino Sejdinovic. Hamiltonian variational auto-encoder. In
Advances in Neural Information Processing Systems, pages 8167-8177, 2018.

Clément Chadebec, Elina Thibeau-Sutre, Ninon Burgos, and Stéphanie Allassonniere. Data Augmentation
in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder. arXiv
preprint arXiv:2105.00026, 2021.

Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement
in variational autoencoders. Advances in neural information processing systems, 31, 2018.

Bin Dai and David Wipf. Diagnosing and Enhancing VAE Models. In International Conference on
Learning Representations, 2018.

Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspherical
variational auto-encoders. In 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018,
pages 856-865. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.

Mathieu Germain, Karol Gregor, lain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pages 881-889. PMLR, 2015.

Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Scholkopf. From
variational to deterministic autoencoders. In 8th International Conference on Learning Representations,
ICLR 2020, 2020.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723-773, 2012.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mo-
hamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational
framework. ICLR, 2(5):6, 2017.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on Machine
Learning, pages 2649-2658. PMLR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114 [cs, stat], 2014.

Durk P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved
variational inference with inverse autoregressive flow. Advances in neural information processing systems,
29, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Anders Boesen Lindbo Larsen, Sgren Kaae Sgnderby, Hugo Larochelle, and Ole Winther. Autoencoding
beyond pixels using a learned similarity metric. In International conference on machine learning, pages
1558-1566. PMLR, 2016.

Yann LeCun. The MNIST database of handwritten digits. 1998.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Alireza et al. Makhzani. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2016.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning, pages 1530-1538. PMLR, 2015.

Jake Snell, Karl Ridgeway, Renjie Liao, Brett D Roads, Michael C Mozer, and Richard S Zemel. Learning
to generate images with perceptual similarity metrics. In 2017 IEEE International Conference on Image
Processing (ICIP), pages 4277-4281. IEEE, 2017.

I Tolstikhin, O Bousquet, S Gelly, and B Scholkopf. Wasserstein auto-encoders. In 6th International
Conference on Learning Representations (ICLR 2018), 2018.

39

(23]

[24]

[25]

[26]

(27]

Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on Artificial
Intelligence and Statistics, pages 1214-1223. PMLR, 2018.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for image quality
assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, volume 2,
pages 1398-1402. Ieee, 2003.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600-612, 2004.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximizing variational autoen-
coders. arXiv preprint arXiv:1706.02262, 2016.

40

	Usage of Pythae
	Interpolations
	Detailed experiments set-up
	Additional results
	Effect of the latent dimension on the 4 tasks with the CIFAR10 database
	Complete generation table
	Further interesting results
	Configurations and results by models

