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A Usage of Pythae

In this section we illustrate through simple examples how to use Pythae pipelines. The library is
documented3 and also available on pypi4 allowing a wider use and easier integration in other codes.
All of the implementations proposed in the library are adaptations of the official code when available
and allowed by the licence. If not, the method is re-implemented. Table. 1 lists all the implemented
models as of June 2022.

1. Training configuration Before launching a model training, one must specify the training
configuration that should be used. This can be done easily by instantiating a BaseTrain-
erConfig instance taking as input all the hyper-parameters related to the training (number
of training epochs, learning rate to apply...). See the full documentation for additional
arguments that can be passed to the BaseTrainerConfig.

1 from pythae.trainers import BaseTrainerConfig
2 # Set up the model configuration
3 my_training_config = BaseTrainerConfig(
4 output_dir='my_model',
5 num_epochs=50,
6 learning_rate=1e-3,
7 batch_size=200)
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2. Model configuration Similarly to the TrainerConfig, the model can then be instantiated
with the model configuration specifying any hyper-parameters relevant to the model. Note
that each model has its own configuration with specific hyper-parameters. See the online
documentation for more details.

1 from pythae.models import BetaVAE, BetaVAEConfig
2 # Set up the model configuration
3 my_vae_config = BetaVAEConfig(
4 input_dim=(1, 28, 28),
5 latent_dim=16,
6 beta=2)
7 # Build the model
8 my_vae_model = BetaVAE(model_config=my_vae_config)

3. Training A model training can then be launched by simply using the built-in training
pipeline in which only the training/evaluation data need to be specified.

1 from pythae.pipelines import TrainingPipeline
2 pipeline = TrainingPipeline(
3 training_config=my_training_config,
4 model=my_vae_model)
5 # Launch the Pipeline
6 pipeline(
7 train_data=your_train_data, # arrays or tensors
8 eval_data=your_eval_data) # arrays or tensors
9

4. Model reloading The weights and configuration of the trained model can be reloaded using
the AutoModel instance proposed in Pythae.

1 from pythae.models import AutoModel
2 my_trained_vae = AutoModel.load_from_folder('path/to/trained_model')

5. Data generation A data generation pipeline can be instantiated similarly to a model training.
The pipeline can then be called with any relevant arguments such as the number of samples
to generate or the training and evaluation data that may be needed to fit the sampler.

1 from pythae.samplers import GaussianMixtureSamplerConfig
2 from pythae.pipelines import GenerationPipeline
3 # Define your sampler configuration
4 gmm_sampler_config = GaussianMixtureSamplerConfig(
5 n_components=10)
6 # Build the pipeline
7 pipeline = GenerationPipeline(
8 model=my_trained_vae,
9 sampler_config=gmm_sampler_config)

10 # Launch generation
11 generated_samples = pipeline(
12 num_samples=100,
13 return_gen=True,
14 train_data=train_data,
15 eval_data=None)
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Table 1: List of implemented VAEs
Name Reference

Variational Autoencoder (VAE) Kingma and Welling [13]
Beta Variational Autoencoder (BetaVAE) Higgins et al. [10]
VAE with Linear Normalizing Flows (VAE_LinNF) Rezende and Mohamed [20]
VAE with Inverse Autoregressive Flows (VAE_IAF) Kingma et al. [14]
Disentangled β-VAE (DisentangledBetaVAE) Higgins et al. [10]
Disentangling by Factorising (FactorVAE) Kim and Mnih [11]
Beta-TC-VAE (BetaTCVAE) Chen et al. [4]
Importance Weighted Autoencoder (IWAE) Burda et al. [1]
VAE with perceptual metric similarity (MSSSIM_VAE) Snell et al. [21]
Wasserstein Autoencoder (WAE) Tolstikhin et al. [22]
Info Variational Autoencoder (INFOVAE_MMD) Zhao et al. [27]
VAMP Autoencoder (VAMP) Tomczak and Welling [23]
Hyperspherical VAE (SVAE) Davidson et al. [6]
Adversarial Autoencoder (Adversarial_AE) Makhzani [19]
Variational Autoencoder GAN (VAEGAN) Larsen et al. [16]
Vector Quantized VAE (VQVAE) Van Den Oord et al. [24]
Hamiltonian VAE (HVAE) Caterini et al. [2]
Regularized AE with L2 decoder param (RAE_L2) Ghosh et al. [8]
Regularized AE with gradient penalty (RAE_GP) Ghosh et al. [8]
Riemannian Hamiltonian VAE (RHVAE) Chadebec et al. [3]

Maintenance plan: We intend for this library to be maintained in the long term. In that view, the
main author’s contact details will remain available and up-to-date on the github repository, which
will remain the main discussion channel. Additionally, we are currently considering adding back-up
contributors that will also support this effort in the long-term. Since this library has already started
to be a community effort with external contributors, we further hope that the community will also
continue to help reviewing and updating the current implementations.

Original papers reproducibility We validate the implementations by reproducing some results
presented in the original publications when the official code has been released or when enough
details about the experimental section of the papers were available (we indeed noted that in many
papers key elements for reproducibility were missing such as the data split considered, which cri-
teria is used to select the model on which the metrics are computed, the hyper-parameters are
not fully disclosed or the network architectures is unclear making reproduction very hard if not
impossible in certain cases). This insists on the fact that the framework is flexible enough to re-
produce results from publications. Finally, we have open-sourced the scripts, configurations and
results on the repository at https://github.com/clementchadebec/benchmark_VAE/tree/
main/examples/scripts/reproducibility and made the trained models available on the Hug-
gingFace Hub (e.g. https://huggingface.co/clementchadebec/reproduced_iwae).
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B Interpolations

In this section, we show the interpolations obtained on the three considered datasets. For each
model, we select both a starting image and an ending image from the test set and perform a linear
interpolation between the corresponding embeddings in the learned latent space. We then show the
decoded trajectory all along the interpolation line. For this task, we use the model configuration that
obtained the lowest FID on the validation set with a GMM sampler from the generation task. We
show the resulting interpolations for latent spaces of dimension 16 and 256 for MNIST, 32 and 256
for CIFAR10 and 64 for CELEBA. As mentioned in the paper, for this complex task, variational
approaches tend to outperform the AE-based methods. This is well illustrated on MNIST with a latent
space of dimension 256 since all the AE-based approaches eventually superpose the starting and
ending image, making the interpolation visually irrelevant. Impressively, the regularisation imposed
by the variational approaches prevents such undesirable behaviours from occurring. This adds to the
observation made in Sec. 4.2.2 of the paper where we note some robustness to the latent dimension
for the variational methods. Nonetheless, as stated in the paper this regularisation can also degrade
image reconstruction, leading to very blurry interpolations, as illustrated on Fig. 3.
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Figure 1: Interpolations on MNIST with the same starting and ending images for latent spaces of
dimension 16 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.
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Figure 2: Interpolations on MNIST with the same starting and ending images for latent spaces of
dimension 16 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.
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Figure 3: Interpolations on CIFAR10 with the same starting and ending images for latent spaces of
dimension 32 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.
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Figure 4: Interpolations on CIFAR10 with the same starting and ending images for latent spaces of
dimension 32 and 256. For each model we select the configuration achieving the lowest FID on the
generation task on the validation set with a GMM sampler.
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Figure 5: Interpolations on CELEBA with the same starting and ending images for a latent space of
dimension 64. For each model we select the configuration achieving the lowest FID on the generation
task on the validation set with a GMM sampler.
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Figure 6: Interpolations on CELEBA with the same starting and ending images for a latent space of
dimension 64. For each model we select the configuration achieving the lowest FID on the generation
task on the validation set with a GMM sampler.
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C Detailed experiments set-up

We detail here the main experimental set-up and implementation choices made in the benchmark. We
let the reader refer to the code available online for specific implementation aspects

The data To perform the benchmaks presented in the paper, we select 3 classical free-to-use image
datasets: MNIST [17], CIFAR10 [15] and CELEBA [18]. These datasets are publicly available,
widely used for generative model related papers and have well known associated metrics in the
literature. Each dataset is split into a train set, a validation set and a test set. For MNIST and
CIFAR10 the validation set is composed of the last 10k images extracted from the official train set
and the test set corresponds to the official one. For CELEBA, we use the official train/val/test split.

Training paradigm We equip each model used in the benchmark with the same neural network
architecture for both the encoder and decoder, taken as a ConvNet and ResNet (architectures given in
Tables. 2 and 3) leading to a comparable number of parameters 5. For the 19 considered models, due
to computational limitations, 10 different configurations are considered, allowing a simple exploration
of the models’ hyper-parameters. The sets of hyper-parameters explored are detailed in Appendix. D
for each model. The models are then trained on MNIST and CIFAR10 for 100 epochs, a starting
learning rate of 1e−4 and batch size of 100 with Adam optimizer [12]. A scheduler reducing the
learning rate by half if the validation loss does not improve for 10 epochs is also used. For CELEBA,
we use the same setting but we train the models for 50 epochs with a starting learning rate of 1e−3.
Models with unstable training (NaN, huge training spikes...) are iteratively retrained with a starting
learning rate divided by 10 until training stabilises. All 19 models are trained on a single 32GB V100
GPU. This leads to 10 trained models for each method, each dataset (MNIST, CIFAR10 or CELEBA)
and each neural network (ConvNet or ResNet) leading to a total of 1140 models. The training setting
(curves, configs ...) can be found at https://wandb.ai/benchmark_team/trainings.

Sampling paradigm for the MAF and VAE samplers For the Masked Autoregressive Flow
sampler used for sampling we use a 3-layer MADE [7] with 128 hidden units and ReLU activation
for each layer and stack 2 blocks of MAF to create the flow. For the masked layers, the mask is made
sequentially and the ordering is reversed between each MADE. For this normalising flow we consider
a starting distribution given by a standard Gaussian. For the auxiliary VAE sampling method proposed
in [5], we consider a simple VAE with a Multi Layer Perceptron (MLP) encoder and decoder, with 2
hidden layers composed of 1024 units and ReLU activation. Both samplers are fitted with 200 epochs
using the train and evaluation embeddings coming from the trained autoencoder models. A learning
rate of 1e−4, a scheduler decreasing the learning rate by half if the validation loss does not improve
for 10 epochs and a batch size of 100 are used for these samplers.

Table 2: Neural network architecture used for the convolutional networks.
MNIST CIFAR10 CELEBA

Encoder (1, 28, 28) (3, 32, 32) (3, 64, 64)
Layer 1 Conv(128, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU
Layer 2 Conv(256, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU
Layer 3 Conv(512, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU
Layer 4 Conv(1024, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU
Layer 5 Linear(1024, latent_dim)* Linear(4096, latent_dim)* Linear(16384, latent_dim)*

Decoder
Layer 1 Linear(latent_dim, 16384) Linear(latent_dim, 65536) Linear(latent_dim, 65536)
Layer 2 ConvT(512, 3, 2), BN, ReLU ConvT(512, 4, 2), BN, ReLU ConvT(512, 5, 2), BN, ReLU
Layer 3 ConvT(256, 3, 2), BN, ReLU ConvT(256, 4, 2), BN, ReLU ConvT(256, 5, 2), BN, ReLU
Layer 4 Conv(1, 3, 2), Sigmoid Conv(3, 4, 1), Sigmoid ConvT(128, 5, 2), BN, ReLU
Layer 5 - - ConvT(3, 5, 1), Sigmoid

*Doubled for VAE-based models

5Some models may actually have additional parameters in their intrinsic structure e.g. a VQVAE learns
a dictionary of embeddings, a VAMP learns the pseudo-inputs, a VAE-IAF learns the auto-regressive flows.
Nonetheless, since we work on images, the number of parameters remains in the same order of magnitude.
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Table 3: Neural network architecture used for the residual networks.
MNIST CIFAR10 CELEBA

Encoder (1, 28, 28) (3, 32, 32) (3, 64, 64)
Layer 1 Conv(64, 4, 2) Conv(64, 4, 2) Conv(64, 4, 2)
Layer 2 Conv(128, 4, 2) Conv(128, 4, 2) Conv(128, 4, 2)
Layer 3 Conv(128, 3, 2) Conv(128, 3, 1) Conv(128, 3, 2)
Layer 4 ResBlock** ResBlock** Conv(128, 3, 2)
Layer 5 ResBlock** ResBlock** ResBlock**
Layer 6 Linear(2048, latent_dim)* Linear(8192, latent_dim)* ResBlock**
Layer 7 - - Linear(2048, latent_dim)*

Decoder
Layer 1 Linear(latent_dim, 2048) Linear(latent_dim, 8192) Linear(latent_dim, 2048)
Layer 2 ConvT(128, 3, 2) ResBlock** ConvT(128, 3, 2)
Layer 3 ResBlock** ResBlock** ResBlock**
Layer 4 ResBlock**, ReLU ConvT(64, 4, 2) ResBlock**
Layer 5 ConvT(64, 3, 2), ReLU ConvT(3, 4, 2), Sigmoid ConvT(128, 5, 2), Sigmoid
Layer 6 ConvT(1, 3, 2), Sigmoid - ConvT(64, 5, 2), Sigmoid
Layer 6 - - ConvT(3, 4, 2), Sigmoid

*Doubled for VAE-based models
**The ResBlocks are composed of one Conv(32, 3, 1) followed by Conv(128, 1, 1) with ReLU.
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D Additional results

D.1 Effect of the latent dimension on the 4 tasks with the CIFAR10 database

Analogously to the results shown in the paper on the MNIST dataset for the 4 chosen tasks (re-
construction, generation, classification and clustering), Fig. 7 shows the impact the choice of the
latent space dimension has on the performances of the models on the CIFAR10 dataset, whose image
arguably have a greater intrinsic latent dimension than images of the MNIST dataset. Similarly to
MNIST, two distinct groups appear: the AE-based methods and variational methods. Again, for all
tasks but clustering, variational based methods demonstrate good robustness properties with respect
to the dimension of the latent space when compared to AE approaches.
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Figure 7: From top to bottom: Evolution of the reconstruction MSE, generation FID, classification
accuracy and clustering accuracy with respect to the latent space dimension on the CIFAR dataset.

D.2 Complete generation table

In Table. 4 are presented the full results obtained for generation i.e. including the MAF and 2-stage
VAE sampler [5]. As mentioned in the paper, it is interesting to note that fitting a GMM instead of
using the prior for the variational-based approaches seems to often allow a better image generation
since it allows a better prospecting of the learned latent space of each model. Interestingly, it seems
that fitting more complex density estimators such as a normalising flow (MAF sampler) or another
VAE (2-stage sampler) does not improve the generation results when compared to the GMM for those
datasets.
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Table 4: Inception Score (higher is better) and FID (lower is better) computed with 10k samples on
the test set. For each model and sampler we report the results obtained by the model achieving the
lowest FID score on the validation set.

Model Sampler
ConvNet ResNet

MNIST CIFAR10 CELEBA MNIST CIFAR10 CELEBA
FID ↓ IS ↑ FID IS FID IS ↑ FID ↓ IS ↑ FID IS FID IS

N 28.5 2.1 241.0 2.2 54.8 1.9 31.3 2.0 181.7 2.5 66.6 1.6
GMM 26.9 2.1 235.9 2.3 52.4 1.9 32.3 2.1 179.7 2.5 63.0 1.7
VAE 40.3 2.0 337.5 1.7 70.9 1.6 48.7 1.8 358.0 1.3 76.4 1.4VAE

MAF 26.8 2.1 239.5 2.2 52.5 2.0 31.0 2.1 181.5 2.5 62.9 1.7

VAMP VAMP 64.2 2.0 329.0 1.5 56.0 1.9 34.5 2.1 181.9 2.5 67.2 1.6

N 29.0 2.1 245.3 2.1 55.7 1.9 32.4 2.0 191.2 2.4 67.6 1.6
GMM 28.4 2.1 241.2 2.1 52.7 1.9 34.4 2.1 188.8 2.4 64.1 1.7
VAE 42.4 2.0 346.6 1.5 74.3 1.5 50.1 1.9 364.8 1.2 76.4 1.4IWAE

MAF 28.1 2.1 243.4 2.1 52.7 1.9 32.5 2.1 190.4 2.4 64.3 1.7

VAE-lin NF

N 29.3 2.1 240.3 2.1 56.5 1.9 32.5 2.0 185.5 2.4 67.1 1.6
GMM 28.4 2.1 237.0 2.2 53.3 1.9 33.1 2.1 183.1 2.5 62.8 1.7
VAE 40.1 2.0 311.0 1.6 71.1 1.6 49.7 1.9 296.2 1.7 75.6 1.4
MAF 27.7 2.1 239.1 2.1 53.4 2.0 32.4 2.0 184.2 2.5 62.7 1.7
N 27.5 2.1 236.0 2.2 55.4 1.9 30.6 2.0 183.6 2.5 66.2 1.6

GMM 27.0 2.1 235.4 2.2 53.6 1.9 32.2 2.1 180.8 2.5 62.7 1.7
VAE 39.4 2.0 330.5 1.1 73.0 1.5 44.8 1.9 322.7 1.5 76.7 1.4VAE-IAF

MAF 26.9 2.1 236.8 2.2 53.6 1.9 30.6 2.1 182.5 2.5 63.0 1.7

β-VAE

N 21.4 2.1 115.4 3.6 56.1 1.9 19.1 2.0 124.9 3.4 65.9 1.6
GMM 9.2 2.2 92.2 3.9 51.7 1.9 11.4 2.1 112.6 3.6 59.3 1.7
VAE 14.0 2.2 139.6 3.6 55.0 1.9 20.3 2.1 152.5 3.5 61.5 1.7
MAF 9.5 2.2 100.9 3.5 51.5 2.0 12.0 2.1 120.0 3.6 59.7 1.8
N 21.3 2.1 116.6 2.8 55.7 1.8 20.7 2.0 125.8 3.4 65.9 1.6

GMM 11.6 2.2 89.3 4.1 51.8 1.9 13.3 2.1 106.5 3.7 59.3 1.7
VAE 18.4 2.2 127.9 4.2 59.7 1.8 28.3 2.0 164.0 3.3 66.4 1.5β-TC VAE

MAF 12.0 2.2 95.6 3.6 52.2 1.9 13.7 2.1 116.6 3.4 60.1 1.7

FactorVAE

N 27.0 2.1 236.5 2.2 53.8 1.9 31.0 2.0 185.4 2.5 66.4 1.7
GMM 26.9 2.1 234.0 2.2 52.4 2.0 32.7 2.1 184.4 2.5 63.3 1.7
VAE 41.2 1.9 338.3 1.5 75.0 1.5 54.7 1.8 316.2 1.3 77.7 1.4
MAF 26.7 2.2 236.7 2.2 52.7 1.9 32.8 2.1 185.8 2.5 63.4 1.7
N 27.5 2.1 235.2 2.1 55.5 1.9 31.1 2.0 182.8 2.5 66.5 1.6

GMM 26.7 2.1 230.4 2.2 52.7 1.9 32.3 2.1 179.5 2.5 62.8 1.7
VAE 39.7 2.0 327.2 1.5 73.7 1.5 50.6 1.9 363.4 1.2 75.8 1.4InfoVAE - RBF

MAF 25.9 2.1 233.5 2.2 52.2 2.0 30.5 2.1 181.3 2.5 62.7 1.7

InfoVAE - IMQ

N 28.3 2.1 233.8 2.2 56.7 1.9 31.0 2.0 182.4 2.5 66.4 1.6
GMM 27.7 2.1 231.9 2.2 53.7 1.9 32.8 2.1 180.7 2.6 62.3 1.7
VAE 40.4 1.9 323.8 1.6 73.7 1.5 49.9 1.9 341.8 1.8 75.7 1.4
MAF 27.2 2.1 232.3 2.1 53.8 2.0 30.6 2.1 182.5 2.5 62.6 1.7
N 16.8 2.2 139.9 2.6 59.9 1.8 19.1 2.1 164.9 2.4 64.8 1.7

GMM 9.3 2.2 92.1 3.8 53.9 2.0 11.1 2.1 118.5 3.5 58.7 1.8
VAE 13.4 2.2 144.0 3.4 58.2 1.8 15.1 2.1 145.2 3.6 59.0 1.7AAE

MAF 9.3 2.2 101.1 3.2 53.8 2.0 11.9 2.1 133.6 3.1 59.2 1.8

MSSSIM-VAE

N 26.7 2.2 279.9 1.7 124.3 1.3 28.0 2.1 254.2 1.7 119.0 1.3
GMM 27.2 2.2 279.7 1.7 124.3 1.3 28.8 2.1 253.1 1.7 119.2 1.3
VAE 51.2 1.9 355.5 1.1 137.9 1.2 51.6 1.9 372.1 1.1 136.5 1.2
MAF 26.9 2.2 279.8 1.7 124.0 1.3 27.5 2.1 254.1 1.7 119.5 1.3
N 8.7 2.2 199.5 2.2 39.7 1.9 12.8 2.2 198.7 2.2 122.8 2.0

GMM 6.3 2.2 197.5 2.1 35.6 1.8 6.5 2.2 188.2 2.6 84.3 1.7
VAE 11.2 2.1 310.9 2.0 54.5 1.6 9.2 2.1 272.7 2.0 88.8 1.6VAEGAN

MAF 6.9 2.3 199.0 2.1 36.7 1.8 6.6 2.2 191.9 2.5 84.8 1.7

AE
N 26.7 2.1 201.3 2.1 327.7 1.0 221.8 1.3 210.1 2.1 275.0 2.9

GMM 9.3 2.2 97.3 3.6 55.4 2.0 11.0 2.1 120.7 3.4 57.4 1.8
MAF 9.9 2.2 108.3 3.1 55.7 2.0 12.0 2.1 136.5 3.0 58.3 1.8
N 21.2 2.2 175.1 2.0 332.6 1.0 21.2 2.1 170.2 2.3 69.4 1.6

GMM 9.2 2.2 97.1 3.6 55.0 2.0 11.2 2.1 120.3 3.4 58.3 1.7WAE - RBF
MAF 9.8 2.2 108.2 3.1 56.0 2.0 11.8 2.2 135.3 3.0 58.3 1.8

WAE - IMQ
N 18.9 2.2 164.4 2.2 64.6 1.7 20.3 2.1 150.7 2.5 67.1 1.6

GMM 8.6 2.2 96.5 3.6 51.7 2.0 11.2 2.1 119.0 3.5 57.7 1.8
MAF 9.5 2.2 107.8 3.1 51.6 2.0 11.8 2.1 130.2 3.0 58.7 1.7

N (0, 1) 28.2 2.0 152.2 2.0 306.9 1.0 170.7 1.6 195.7 1.9 140.3 2.2
GMM 9.1 2.2 95.2 3.7 51.6 2.0 10.7 2.1 120.1 3.4 57.9 1.8VQVAE
MAF 9.6 2.2 104.7 3.2 52.3 1.9 11.7 2.2 136.8 3.0 57.9 1.8

RAE-L2
N 25.0 2.0 156.1 2.6 86.1 2.8 63.3 2.2 170.9 2.2 168.7 3.1

GMM 9.1 2.2 85.3 3.9 55.2 1.9 11.5 2.1 122.5 3.4 58.3 1.8
MAF 9.5 2.2 93.4 3.5 55.2 2.0 12.3 2.2 136.6 3.0 59.1 1.7
N 27.1 2.1 196.8 2.1 86.1 2.4 61.5 2.2 229.1 2.0 201.9 3.1

GMM 9.7 2.2 96.3 3.7 52.5 1.9 11.4 2.1 123.3 3.4 59.0 1.8RAE - GP
MAF 9.7 2.2 106.3 3.2 52.5 1.9 12.2 2.2 139.4 3.0 59.5 1.8
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D.3 Further interesting results

Generated samples In addition to quantitative metrics, we also provide in Fig. 8 and Fig. 9
some samples coming from the different models using either a N (0, Id) or fitting a GMM with 10
components on MNIST and CELEBA. This allows to visually differentiate the quality of the different
sampling methods.

VAE

MNIST - N MNIST - GMM

IWAE

VAE-lin-NF

VAE-IAF

β-VAE

β-TC-VAE

Factor-VAE

InfoVAE - IMQ

InfoVAE - RBF

AAE

MSSSIM-VAE

VAEGAN

AE

WAE-IMQ

WAE-RBF

VQVAE

RAE-L2

RAE-GP

Figure 8: Generated samples on MNIST for a latent space of dimension 16 and ConvNet architecture.
For each model, we select the configuration achieving the lowest FID on the validation set.
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VAE

CELEBA - N CELEBA - GMM

IWAE

VAE-lin-NF

VAE-IAF

β-VAE

β-TC-VAE

Factor-VAE

InfoVAE - IMQ

InfoVAE - RBF

AAE

MSSSIM-VAE

VAEGAN

AE

WAE-IMQ

WAE-RBF

VQVAE

RAE-L2

RAE-GP

Figure 9: Generated samples on CELEBA for a latent space of dimension 64 and ConvNet architecture.
For each model, we select the configuration achieving the lowest FID on the validation set.
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Sampler ablation study Fig. 10 shows the same results as Table. 4 but under a different prism.
In this plot, we show the influence each sampler has on the generation quality for all the models
considered in this study. Note that sampling using a N (0, Id) for an AE, RAE or VQVAE is far
from being optimal since those models do not enforce explicitly the latent variables to follow this
distribution. As mentioned in the paper, this experiment shows that using more complex density
estimators such as a GMM or a normalising flow almost always improves the generation metric.

VAE
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VAE_IA
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AE

VAEGAN AE

WAE-im
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WAE-rb
f

VQVAE
RAE_L2

RAE_GP

101

fid

Generation

name
GaussianMixtureSampler
MAFSampler
NormalSampler
TwoStageVAESampler
VAMPSampler

Figure 10: Evolution of the FID for the generation task depending on the sampler, for a ConvNet, the
MNIST dataset and a latent dimension of 16. For each sampler and model, we select the configuration
achieving the lowest FID on the validation set.

Neural network architecture ablation study As explained in the paper and in Appendix. C, we
consider two different neural architectures for the encoder and decoder of each model: a ConvNet
(convolutional neural network) and a ResNet (residual neural network). Fig. 11 shows the influence
the choice of the neural architecture has on the ability of the model to perform the 4 tasks presented
in the paper. The results are computed for each model on MNIST and a latent dimension of 16.
The ConvNet architecture has approximately 20 times more parameters than the ResNet in such
conditions. We select the best configuration for each model and each task on the validation set and
report the results on the test set. Unsuprisingly, we see in Fig. 11 that the ConvNet architecture, more
adapted to capture features intrinsic to images, leads to the best performances for reconstruction and
generation. Interestingly, the ResNet outperforms the ConvNet for the classification and clustering
tasks, meaning that in addition to the network complexity, its structure can play a major role in the
representation learned by the models.

Training time Fig. 12 shows the training times required for each model for both network architec-
tures on the MNIST dataset. For each model, we show the results obtained with the configuration
giving the best performances on the generation task with fixed latent dimension 16. It is interesting
to note that although VAEGAN outperforms other models on the generation task, it is at the price
of a higher computational time. This is due to the discriminator network (a convolutional neural
net) that is called several times during training and takes images as inputs. It should be noted
that methods applying normalising flows to the posterior (VAE-lin-NF and VAE-IAF) maintain a
reasonable training time, as the flows were chosen for their scalability.
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Figure 11: Evolution of the metrics for the 4 tasks depending on the network type on the MNIST
dataset and a latent dimension of 16.
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D.4 Configurations and results by models

In this section we briefly explain each model considered in the benchmark, and show the evolution of
performances on the 4 tasks and the training speed with respect to the choice of the hyper-parameters.
For all 4 tasks we consider the MNIST dataset and a fixed latent space of dimension 16, as well as
the Normal Gaussian sampler (if applicable) and the convolutional network architecture. For each
model, 10 configuration runs with different hyper-parameters were tested. It should be noted that
this configuration search was done empirically and is not exhaustive, therefore models with multiple
hyper-parameters or that are sensitive to the choice of hyper-parameters will tend to have sub-optimal
configuration choices. Although hyper-parameter choices are dependant on both the auto-encoder
architecture and the dataset, it is interesting to note the relative evolution of the performances on the
different tasks and the training time induced by different hyper-parameter choices.

Notations In order to better underline the differences between different models and for clarity
purposes, we set the following unified notations:

• X = {x1, . . . , xN} ∈ XN the input dataset

• x ∈ X an observation from the dataset, and z ∈ Z = Rd its corresponding latent vector
• x̂ the reconstruction of x by the auto-encoder model
• pz(z) the prior distribution, with pz ≡ N (0, Id) under standard VAE assumption
• qϕ(z|x) the approximate posterior distribution, modelled by the encoder. Kingma and

Welling [13] set
qϕ(z|x) ≡ N

(
µϕ(x),Σϕ(x))

)
where Σϕ(x) = diag[σϕ(x)] and

(
µϕ(x), σϕ(x)

)
∈ R2×d are outputs of the encoder

network. The sampling process z ∼ qϕ(z|x) is therefore performed by sampling ε ∼
N (0, Id) and setting z = µϕ(x) + Σϕ(x)

1/2 · ε (re-parametrization trick).
• pθ(x|z) the distribution of x given z

• pθ(x) =
∫
Z pθ(x|z)pz(z)dz the marginal distribution of x

• qϕ(z) =
1

N

∑N
i=1 qϕ(z|xi) the aggregated posterior integrated over the training set.

• DKL the Kullback-Leibler divergence

We further recall that Kingma and Welling [13] use the unbiased estimate p̂θ(x) of pθ(x) defined as

p̂θ(x) =
pθ(x|z)pz(z)

qϕ(z|x)

to derive the standard Evidence Lower Bound (ELBO) of the log probability log pθ(x) which we
wish to maximize:

LELBO = Ex∼pθ(x)

[
LELBO(x)

]
with

LELBO(x) = Ez∼qϕ [log pθ(x|z)]︸ ︷︷ ︸
reconstruction

−DKL

[
qϕ(z|x)||pz(z)

]︸ ︷︷ ︸
regularisation

The reconstruction loss is maximized when x̂ is close to x, thus encouraging a good reconstruction of
the input x, while the regularisation term is maximized when qϕ(z|x) is close to pz(z), encouraging
the posterior distribution to follow the chosen prior distribution.

The integration over pθ(x) is approximated by the empirical distribution of the training dataset, and
the negative ELBO function acts as a loss function to minimize for the encoder and decoder networks.
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VAE with a VampPrior (VAMP) Starting from the observation that a standard Gaussian prior
may be too simplistic, Tomczak and Welling [23] proposes a less restrictive prior: the Variational
Mixture of Posteriors (VAMP). A VAE with a VAMP prior aims at relaxing the posterior constraint
by replacing the conventional normal prior with a multimodal aggregated posterior given by:

pz(z) =
1

K

K∑
k=1

qϕ(z|uk) ,

where uk are pseudo-inputs living in the data space X learned through back-propagation and acting
as anchor points for the prior distribution. For the VAMP VAE implementation, we use the same
architecture as the authors’ implementation for the network generating the pseudo-inputs: a MLP
with a single layer and Tanh activation.

Results by configuration

Table 5: VAMP configurations
Config 1 2 3 4 5 6 7 8 9 10

Number of pseudo-inputs (K) 10 20 30 500 100 150 200 250 300 500
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Figure 13: Results on VAMP
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Importance Weighted Autoencoder (IWAE) Burda et al. [1] introduce an alternative lower bound
to maximize, derived from importance weighting where the new unbiased estimate p̂θ(x) of the
marginal distribution pθ(x) is computed with L samples z1, . . . , zL ∼ qϕ(z|x) :

p̂θ(x) =
1

L

L∑
i=1

pθ(x|zi)pz(zi)
qϕ(zi|x)

.

This estimate induces a new lower bound of the true marginal distribution pθ(x) using Jensen’s
inequality:

LIWAE(x) := Ez1,...,zL∼q(z|x)

[
log

1

L

L∑
i=1

pθ(x|zi)pz(zi)
qϕ(zi|x)

]
≤ logEz1,...,zL∼q(z|x)

[
p̂θ(x)

]︸ ︷︷ ︸
pθ(x)

.

As the number of samples L increases, LIWAE(x) becomes closer to log pθ(x), therefore providing a
tighter bound on the true objective. Note that when L = 1 we recover the original VAE framework.

As expected the reconstruction quality increases with the number of samples. Nonetheless, we note
that increasing the number of samples has a significant impact on the computation of a single training
step, therefore leading to a much slower training process.

Results by configuration

Table 6: IWAE configurations
Config 1 2 3 4 5 6 7 8 9 10

Number of samples (L) 2 3 4 5 6 7 8 9 10 12
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Figure 14: Results on IWAE
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Variational Inference with Normalizing Flows (VAE-lin-NF) In order to model a more complex
family of approximate posterior distributions, Rezende and Mohamed [20] propose to use a succession
of normalising flows to transform the simple distribution qϕ(z|x), allowing it to model more complex
behaviours. In practice, after having sampled z0 ∼ qϕ(z|x), z0 is passed through a chain of K
invertible smooth mappings from the latent space Rd to itself:

zK = fK ◦ · · · ◦ f2 ◦ f1(z0) .

The modified latent vector zK is then used as input z for the decoder network. In their paper, the
authors propose to use two types of transformations: planar and radial flows.

fplanar(z) = z + uh(w⊤z + b) ; fradial(z) = z + βg(α, r)(z − z0) ,

where h is a smooth non-linearity with tractable derivatives and g(α, r) = 1
α+r . The parameters are

such that r = ∥z − z0∥, u,w, z0 ∈ Rd, α ∈ R+ and b, β ∈ R. We can easily compute the resulting
density q given by

log q(zK) = log qϕ(z0|x)−
K∑

k=1

log

∣∣∣∣det ∂fk∂z

∣∣∣∣ .
This makes the ELBO tractable and optimisation possible.

Results by configuration

Table 7: VAE-lin-NF configurations
Config 1 2 3 4 5 6 7 8 9 10

Flow sequence PPPPP RRRRR PRPRP 10P 15P 20P 30P PRPRPRPRPR PPP PRPPRPPPPR

‘P’ stands for planar flow - ‘R’ stands for radial flow
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Figure 15: Results on VAE-lin-NF
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Variational Inference with Inverse Autoregressive Flow (VAE-IAF) Kingma et al. [14] improve
upon the works of [20] with a new type of normalising flow that better scales to high-dimensional
latent spaces. The main idea is again to apply several transformations to a sample from a simple
distribution in order to model richer distributions. Starting from z0 ∼ qϕ(z|x), the proposed IAF flow
consists in applying consecutively the following transformation

zk = µk + σk · zk−1 ,

where µk and σk are the outputs of an autoregressive neural network taking zk−1 as input. Inspired
from the original paper, to implement one Inverse Autoregressive Flow we use MADE [7] and stack
multiple IAF together to create a richer flow. The MADE mask is made sequentially for the masked
autoencoders and the ordering is reversed after each MADE.

Results by configuration

Table 8: VAE-IAF configurations
Config 1 2 3 4 5 6 7 8 9 10

hidden size in MADE 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 64.0 128.0
number hidden units in MADE 2.0 2.0 2.0 2.0 2.0 2.0 4.0 6.0 2.0 2.0
number of IAF blocks 1.0 2.0 5.0 10.0 20.0 4.0 4.0 4.0 4.0 4.0
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Figure 16: Results on VAE-IAF
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β-VAE Higgins et al. [10] argue that increasing the weight of the KL divergence term in the ELBO
loss enforces a stronger disentanglement of the latent features as the posterior probability is forced
to match a multivariate standard Gaussian. They propose to add a hyper-parameter β in the ELBO
leading to the following objective to maximise:

Lβ-VAE(x) = Ez∼qϕ [log pθ(x|z)]− βDKL

[
qϕ(z|x)||pz(z)

]
.

Although the original publication specifies β > 1 to encourage a better disentanglement, a smaller
value of β can be used to relax the regularisation constraint of the VAE. Therefore, for this model we
consider a range of values for β from 1e−3 to 1e3.

As expected, we see in Fig. 17 a trade-off appearing between reconstruction and generation. Indeed,
a very small β will tend to less regularise the model since the latent variables will no longer be driven
to follow the prior, favouring a better reconstruction. On the other hand, a higher value for β will
constrain the model, leading to a better generation quality. Moreover, as can be seen in Fig. 17, too
high a value of β will lead to over-regularisation, resulting in poor performances on all evaluated
tasks.

Results by configuration

Table 9: β-VAE configurations
Config 1 2 3 4 5 6 7 8 9 10

β 1e−3 1e−2 1e−1 0.5 2 5 10 20 1e2 1e3
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Figure 17: Results on β-VAE
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β-TC-VAE Chen et al. [4] extend on the ideas of Higgins et al. [10] by rewriting and re-weighting
specific terms in the ELBO loss with multiple hyperparameters. The authors note that the KL-
divergence term of the ELBO loss can be rewritten as

Ex∼pθ

[
DKL

[
qϕ(z|x)||pz(z)

]]
= I(x, z)︸ ︷︷ ︸

Mutual information

+DKL

[
qϕ(z)||

d∏
j=1

qϕ(zj)
]

︸ ︷︷ ︸
TC-loss

+

d∑
j=1

DKL

[
qϕ(zj)||pz(zj)

]
︸ ︷︷ ︸

Dimension-wise KL

• The mutual information term corresponds to the amount of information shared by x and its
latent representation z. It is claimed that maximising the mutual information encourages
better disentanglement and a more compact representation of the data.

• The TC-loss corresponds to the total correlation between the latent distribution and its
fully disentangled version, maximising it enforces the dimensions of the latent vector to be
uncorrelated.

• Maximising the dimension-wise KL prevents the marginal distribution of each latent dimen-
sion from diverging too far from the prior Gaussian distribution

The authors therefore propose to replace the classical regularisation term with the more general term

Lreg := αI(x, n) + βDKL

[
qϕ(z)||

∏
j

qϕ(zj)
]
+ γ

∑
j

DKL

[
qϕ(zj)||pz(zj)

]
.

Similarly to the authors, we set α = γ = 1 and only perform a search on the parameter β. Fig. 18
shows a reconstruction-generation trade-off similar to the β-VAE model

Results by configuration

Table 10: β-TC-VAE configurations
Config 1 2 3 4 5 6 7 8 9 10

β 1e−3 1e−2 1e−1 0.5 1 2 5 10 50 1e2
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Figure 18: Results on β-TC-VAE

26



Factor VAE Kim and Mnih [11] augment the VAE objective with a penalty that encourages factorial
representation of the marginal distributions, enforcing a stronger disentangling of the latent space.
Noting that a high β value in β-VAE ELBO loss encourages disentanglement at the expense of
reconstruction quality, FactorVAE proposes a new lower bound of the log likelihood with an added
disentanglement term:

LFactorVAE(x) := LELBO(x)− γDKL

(
qϕ(z)||q̄ϕ(z)

)
, with q̄ϕ(z) :=

d∏
j=1

qϕ(zj)

The distribution of representations qϕ(z) = 1
N

∑N
i=1 qϕ(z|xi) of the entire dataset is therefore forced

to be close to its fully-disentangled equivalent q̄ϕ(z) while leaving the ELBO loss as it is. They
further propose to approximate the KL divergence with a discriminator network D that is trained
jointly to the VAE:

DKL

(
q(z)||q̄(z)

)
≈ Eqz(z)

[
log

D(z)

1−D(z)

]
As suggested in the authors’s paper, the discriminator is set as a MLP composed of 6 layers each with
1000 hidden units and LeakyReLU activation.

Results by configuration

Table 11: FactorVAE configurations
Config 1 2 3 4 5 6 7 8 9 10

γ 1 2 5 10 15 20 30 40 50 100
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Figure 19: Results on FactorVAE
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InfoVAE Zhao et al. [27] note that the traditional VAE ELBO objective can lead to both inaccurate
amortized inference and VAE models that tend to ignore most of the latent variables, therefore not
fully taking advantage of the modelling capacities of the VAE scheme and learning less meaningful
latent representations. In order to counteract these two issues, they propose to rewrite and re-weight
the ELBO objective in order to counterbalance the imbalance between the distribution in the data
space and the latent space, and add a mutual information term between x and z to encourage a stronger
dependency between the two variables, preventing the model from ignoring the latent encoding. One
can re-write the ELBO loss in order to explicit the KL divergence between the marginalised posterior
and the prior

LELBO(x) := −DKL[qϕ(z)||pz(z)]− Ez∼pz

[
DKL[qϕ(x|z)||pθ(x|z)]

]
.

Introducing an additional mutual information term Iq(x; z) and extending the objective function to
use any given divergence D between probability measures instead of the KL objective, the authors
propose a new objective defined as

LInfoVAE(x) := −λD[qϕ(z)||pz(z)]− Ez∼pz

[
DKL[qϕ(x|z)||pθ(x|z)]

]
+ αIq(x; z)

where λ and α are hyperparameters. In our experiments, α is set to 0 as recommended in the paper
in the case where pθ(x|z) is a simple distribution. D is chosen as the Maximum Mean Discrepancy
(MMD) [9], defined as

MMDk(pλ(z), qϕ(z)) = ||
∫
Z
k(z, .)dpλ(z)−

∫
Z
k(z, .)dqϕ(z)||Hk

with k : Z × Z → R a positive-definite kernel and its associated RKHS Hk. We choose to
differentiate 2 cases in the benchmark: one with a Radial Basis Function (RBF) kernel, the other
with the Inverse MultiQuadratic (IMQ) kernel as proposed in [22] where the kernel is given by
k(x, y) =

∑
s∈S

s·C
s·C+∥x−y∥2

2
with s ∈ [0.1, 0.2, 0.5, 1, 2, 5, 10] and C = 2 · d · σ2, d being the

dimension of the latent space and σ a parameter part of the hyper-parameter search.

The authors underline that choosing λ > 0, α = 1− λ and D = DKL, we recover the β-VAE model
[10], while choosing α = λ = 1 and setting D as the Jensen Shannon divergence we recover the
Adversarial AE model [19].

Results by configuration

Table 12: InfoVAE configurations
Config 1 2 3 4 5 6 7 8 9 10

kernel bandwidth - σ 1e−2 1e−1 0.5 1 1 1 1 1 2 5
λ 10 10 10 1e−2 1e−1 10 100 100 10 10
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Figure 20: Results on InfoVAE-RBF
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Figure 21: Results on InfoVAE-IMQ
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Adversarial AE (AAE) Makhzani [19] propose to use a GAN-like approach by replacing the
regularisation induced by the KL divergence with a discriminator network D trained to differentiate
between samples from the prior and samples from the posterior distribution. The encoder network
therefore acts as a generator network, leading to the following objective

LAAE(x) = Ez∼qϕ(z|x)[log pθ(x|z)] + αLGAN ,

with LGAN the standard GAN loss defined by

LGAN = Ez̃∼pz(z)

[
log(1−D(z̃)))

]
+ Ex∼pθ

[
Ez∼qϕ(z|x)[logD(z)]

]
.

For the Adversarial Autoencoder implementation, we use a MLP neural network for the discriminator
composed of a single hidden layer with 256 units and ReLU activation.

We observe a similar trade-off between reconstruction and generation quality as observed with β-VAE
type models, as the α term acts like the β term, balancing between regularisation and reconstruction.

Results by configuration

Table 13: AAE configurations
Config 1 2 3 4 5 6 7 8 9 10

α 1e−3 1e−2 1e−1 0.25 0.5 0.75 0.9 0.95 0.99 0.999
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Figure 22: Results on Adversarial AE
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EL-VAE (MSSSIM-VAE) Snell et al. [21] propose an extension of the ELBO loss to a more general
case where any deterministic reconstruction loss ∆(x, x̂) can be used by replacing the probabilistic
decoder pθ with a deterministic equivalent fθ such that the reconstruction x̂ of x given z ∼ qϕ(z|x)
is defined as x̂ = fθ(z). The modified ELBO objective is thus defined as

LEL−VAE(x) = ∆(x, x̂)− βDKL

(
qϕ(z|x)||p(z)

)
,

with β ≤ 1. As suggested in the original paper we use a multi scale variant of the single scale SSIM
[26]: the Multi Scale Structural Similarity Metric (MS-SSIM) [25].

Results by configuration

Table 14: MSSSIM-VAE configurations
Config 1 2 3 4 5 6 7 8 9 10

β 1e−2 1e−2 1e−2 1e−1 1e−1 1e−1 1 1 1 1
window size in MSSSIM 3 5 11 5 3 11 11 5 3 15
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Figure 23: Results on MSSSIM-VAE
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VAE-GAN Larsen et al. [16] use a GAN like approach by training a discriminator to distinguish
real data from reconstructed data. In addition, the discriminator learns to distinguish between real
data and data generated by sampling from the prior distribution in the latent space.

Noting that intermediate layers of a discriminative network trained to differentiate real from generated
data can act as data-specific features, the authors propose to replace the reconstruction loss of the
ELBO with a Gaussian log-likelihood between outputs of intermediate layers of a discriminative
network D:

LVAE-GAN = Ez∼qθ(z|x)

[
logN (Dl(x)|Dl(x̂), I)

]
︸ ︷︷ ︸

reconstruction

−DKL

[
qϕ(z|x)||pz(z)

]︸ ︷︷ ︸
regularisation

−LGAN ,

where Dl is the output of the lth layer of the discriminator D, chosen to be representative of abstract
intermediate features learned by the discriminator, and LGAN is the standard GAN objective defined
as

LGAN = log

(
D(x)

1−D(xgen)

)
,

where xgen is generated using z ∼ pz(z). As encouraged by the authors, we add a hyper-parameter
α to the reconstruction loss for the decoder only, such that a higher value of α will encourage better
reconstruction abilities with respect to the features extracted at the lth layer of the discriminator
network, whereas a smaller value will encourage fooling the discriminator, therefore favouring
regularisation toward the prior distribution. For the VAEGAN implementation, we use a discriminator
whose architecture is similar to the model’s encoder given in Table. 2. For MNIST and CIFAR we
remove the BatchNorm layer and change the activation of layer 2 to Tanh instead of ReLU. For
CELEBA, the BatchNorm layer is kept and the activation of layer 2 is also changed to Tanh. For all
datasets, the output size of the last linear layer is set to 1 instead of d and followed by a Sigmoid
activation.

Results by configuration

Table 15: VAEGAN configurations
Config 1 2 3 4 5 6 7 8 9 10

α 0.3 0.5 0.7 0.8 0.8 0.8 0.9 0.9 0.99 0.999
reconstruction layer (l) 3 3 3 3 2 4 3 3 3 3

32



0.70

0.75

0.80

0.85

0.90

Cl
as

sif
ica

tio
n_

ac
cu

ra
cy

VAEGAN_MNIST_convnet_16

0.02

0.03

0.04

0.05

0.06

Re
co

ns
tru

ct
io

n_
m

se

1 2 3 4 5 6 7 8 9 10
run configuration number

300

400

Tr
ai

n 
tim

e 
(m

in
ut

es
)

0.55

0.60

0.65

0.70

0.75

Cl
us

te
rin

g_
ac

cu
ra

cy

101

2 × 101

3 × 101

4 × 101

Ge
ne

ra
tio

n_
fid

Figure 24: Results on VAEGAN
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Wasserstein Autoencoder (WAE) Tolstikhin et al. [22] generalise the VAE objective by replacing
both terms in the ELBO: similarly to [21] (EL-VAE), the reconstruction loss is replaced by any
measurable cost function ∆, and the standard KL divergence is substituted with any arbitrary
divergence D between two distributions, leading to the following objective function

Eqϕ(z|x)[∆(x, x̂)] + λDz(pz(z), qϕ(z)) ,

with λ a hyper-parameter. The authors propose two different penalties for Dz:

1. GAN-based: WAE-GAN
An adversarial discriminatory network D(z, z′) is trained jointly to separate the "true" points
sampled from the prior pz(z) from the "fake" ones sampled from qϕ(z|x), similarly to [19]
(Adversarial AE).

2. MMD-based
The Maximum Mean Discrepancy is used as a distance between the prior and the posterior
distribution. This is the case considered in the benchmark. We choose to differentiate 2
cases in the benchmark: one with a Radial Basis Function (RBF) kernel, the other with
the Inverse MultiQuadratic (IMQ) kernel as proposed in [22] where the kernel is given by
k(x, y) =

∑
s∈S

s·C
s·C+∥x−y∥2

2
with s ∈ [0.1, 0.2, 0.5, 1, 2, 5, 10] and C = 2 · d · σ2, d being

the dimension of the latent space and σ a parameter part of the hyper-parameter search. As
proposed by the authors, for this model we choose to use a deterministic encoder meaning
that qϕ(z|x) = δµϕ(x).

Results by configuration

Table 16: WAE configurations
Config 1 2 3 4 5 6 7 8 9 10

kernel bandwidth - σ 1e−2 1e−1 0.5 1 1 1 1 1 2 5
λ 1 1 1 1e−2 1e−1 1 10 100 1 1
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Figure 25: Results on WAE-RBF
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Figure 26: Results on WAE-IMQ
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Vector Quantized VAE (VQ-VAE) Van Den Oord et al. [24] propose to use a discrete space. There-
fore, the latent embedding space is defined as a RK×D vector space of K different D dimensional
embedding vectors E = {e1, . . . , eK} which are learned and updated at each iteration.

Given an embedding size d and an input x, the output of the encoder ze(x) is of size Rd×D. Each of
its d elements is then assigned to the closest embedding vector resulting in an embedded encoding
zq(x) ∈ Ed such that

(
zq(x)

)
j
= el where l = argmin1≤l≤d||(ze(x))j − el||2 for j ∈ [1, d]. Since

the argmin operation is not differentiable, learning of the embeddings and regularisation of the latent
space is done by introducing the stopgradient operator sg in the training objective:

LVQ-VAE(x) := log p(x|zq(x)) + α||sg[ze(x)]− e||22 + β||ze(x)− sg[e]||22 .

For the VQVAE implementation we use the Exponential Moving Average update as proposed in [24]
to replace the term ||sg[ze(x)]− e||22 in the loss. Thus, we consider only two hyper-parameters in the
search: the size of the dictionary of embeddings K and the regularisation factor β.

Results by configuration

Table 17: VQVAE configurations
Config 1 2 3 4 5 6 7 8 9 10

K 128 256 512 512 512 512 512 512 1024 2948
β 0.25 0.25 0.9 0.1 0.5 0.25 0.75 0.25 0.25 0.25
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Figure 27: Results on VQVAE

36



RAE L2 and RAE GP Ghosh et al. [8] propose to replace the stochastic VAE with a deterministic
autoencoder by adapting the ELBO objective to a deterministic case. Under standard VAE assumption
with Gaussian decoder, both the reconstruction and the regularisation terms in the ELBO loss can be
written in closed form as

Lreconstruction(x) = ||x− x̂||22 ,

Lregularisation(x) =
1

2

[
||z||22 − d+

d∑
i=1

(σϕ(x)i − log σϕ(x)i)
]
.

Arguing that the regularisation of the VAE model is done through a noise injection mechanism by
sampling from the approximate posterior distribution z ∼ N (µϕ, diag(σϕ)), the authors propose to
replace this stochastic regularisation with an explicit regularisation term, leading to the following
deterministic objective:

LRAE = ||x− x̂||22 +
β

2
||z||22 + λLREG , (1)

where LREG is an explicit regularisation. They propose to use either

• a L2 loss on the weights of the decoder (RAE-L2), which amounts to applying weight decay
on the parameters of the decoder.

• a gradient penalty on the output of the decoder (RAE-GP), which amounts to applying a L2
norm on the gradient of the output of the decoder.

Results by configuration

Table 18: RAE configurations
Config 1 2 3 4 5 6 7 8 9 10

β 1e−6 1e−4 1e−3 1e−3 1e−3 1e−3 1e−3 1e−2 1e−1 1
λ 1e−3 1e−3 1e−6 1e−4 1e−2 1e−1 1 1e−3 1e−3 1e−3
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Figure 28: Results on RAE-L2
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Figure 29: Results on RAE-GP
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