
Pythae: Unifying Generative Autoencoders in Python
A Benchmarking Use Case

Clément Chadebec
Université Paris Cité, INRIA, Inserm, SU

Centre de Recherche des Cordeliers ∗

clement.chadebec@inria.fr

Louis J. Vincent
Implicity †

Université Paris Cité, INRIA, Inserm, SU
Centre de Recherche des Cordeliers ∗

louis.vincent@inria.fr

Stéphanie Allassonnière
Université Paris Cité, INRIA, Inserm, SU

Centre de Recherche des Cordeliers ∗

stephanie.allassonniere@inria.fr

Abstract

In recent years, deep generative models have attracted increasing interest due to
their capacity to model complex distributions. Among those models, variational
autoencoders have gained popularity as they have proven both to be computationally
efficient and yield impressive results in multiple fields. Following this breakthrough,
extensive research has been done in order to improve the original publication,
resulting in a variety of different VAE models in response to different tasks. In
this paper we present Pythae, a versatile open-source Python library providing
both a unified implementation and a dedicated framework allowing straightforward,
reproducible and reliable use of generative autoencoder models. As an example
of application, we propose to use this library to perform a case study benchmark
where we present and compare 19 generative autoencoder models representative of
some of the main improvements on downstream tasks such as image reconstruction,
generation, classification, clustering and interpolation. The open-source library can
be found at https://github.com/clementchadebec/benchmark_VAE.

1 Introduction

Over the past few years, generative models have proven to be a promising approach for modelling
datasets with complex inherent distributions such a natural images. Among those, Variational
AutoEncoders (VAE) [35, 54] have gained popularity due to their computational efficiency and
scalability, leading to many applications such as speech modelling [10], clustering [24, 66], data
augmentation [14] or image generation [52]. Similarly to autoencoders, these models encourage good
reconstruction of an observed input data from a latent representation, but they further assume latent
vectors to be random variables involved in the generation process of the observed data. This imposes
a latent structure wherein latent variables are driven to follow a prior distribution that can then be used
to generate new data. Since this breakthrough, various contributions have been made to enrich the
original VAE scheme through new generating strategies [24, 63, 27, 5, 48], reconstruction objectives
[39, 59] and more adapted latent representations [29, 34, 64, 3, 14] to cite a few. A drawback of
VAEs is that due to the intractability of the log-likelihood objective function, VAEs have to resort

∗15 Rue de l’École de Médecine, 75006 Paris
†https://www.implicity.com - Implicity Paris, France.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://github.com/clementchadebec/benchmark_VAE
https://www.implicity.com

to optimizing a lower bound on the true objective as a proxy, which has been mentionned as a
major limitation of the model [11, 1, 29, 21, 67]. Hence, extensive research has been proposed to
improve this bound through richer distributions [55, 53, 36, 13]. More recently, it has been shown
that autoencoders can be turned into generative approaches through latent density estimation [27],
extending the concept of Generative AutoEncoders (GAE) to a more general class of autoencoder
models.

Nonetheless, most of this research has been done in parallel across disjoint sub-fields of research
and to the best of our knowledge little to no work has been done on homogenising and integrating
these distinct methods in a common framework. Moreover, for many of the aforementioned publi-
cations, implementations may not be available or maintained, therefore requiring time-consuming
re-implementation. This induces a strong bottleneck for research to move forward in this field and
makes reproducibility challenging, which calls for the need of a unified generative autoencoder
framework. To address this issue we introduce Pythae (Python AutoEncoder), a versatile open
source Python library for generative autoencoders providing unified implementations of common
methods, along with a reproducible framework allowing for easy model training, data generation
and experiment tracking. We then propose to illustrate the usefulness of the proposed library on a
benchmark case study of 19 generative autoencoder methods on classical image datasets. We consider
five different downstream tasks: image reconstruction and generation, latent vector classification and
clustering, and image interpolation on three well known imaging datasets.

2 Variational autoencoders

In this section, we recall the original VAE setting and present some of the main improvements that
were proposed to enhance the model.

2.1 Background

Given x ∈ RD, a set of observed variables deriving from an unknown distribution p(x), a VAE
assumes that there exists z ∈ Rd such that z is a latent representation of x. The generation process of
x thus decomposes as

pθ(x) =

∫
Z
pθ(x|z)pz(z)dz , (1)

where pz is the prior distribution on the latent space Rd. The distribution pθ(x|z) is referred to as
the decoder and is modelled with a simple parametric distribution whose parameters are given by a
neural network. Since the true posterior pθ(z|x) is most of the time intractable due to the integral in
Eq. (1) recourse to Variational Inference [31] is needed and a variational distribution qϕ(z|x) which
we refer to as the encoder is introduced. The approximate posterior qϕ is again taken as a simple
parametric distribution whose parameters are also modelled by a neural network. This allows to
define an unbiased estimate p̂θ of the marginal distribution pθ(x) using importance sampling with
qϕ(z|x) i.e. p̂θ(x) = pθ(x|z)pz(z)

qϕ(z|x) and Ez∼qϕ

[
p̂θ
]
= pθ. Applying Jensen’s inequality leads to a

lower bound on the likelihood given in Eq. (1):
logEz∼qϕ

[
p̂θ(x)

]︸ ︷︷ ︸
pθ(x)

≥ Ez∼qϕ

[
log p̂θ(x)

]
= Ez∼qϕ [log pθ(x|z)]︸ ︷︷ ︸

reconstruction

−DKL

[
qϕ(z|x)||pz(z)

]︸ ︷︷ ︸
regularisation

,
(2)

where DKL(p||q) is the Kullback-Leibler divergence between distributions p and q. This bound
is referred to as the Evidence Lower Bound (ELBO) [35] and is used as the training objective to
maximize in the traditional VAE scheme. It can be interpreted as a two terms objective [27] where
the reconstruction loss forces the output of the decoder to be close to the original input x, while the
regularisation loss forces the posterior distribution qϕ(z|x) outputted by the encoder to be close to
the prior distribution pz(z). Under standard VAE assumption, the prior distribution is a multivariate
standard Gaussian pz = N (0, Id), the approximate posterior is set to qϕ(z|x) = N

(
z
∣∣µ(x),Σ(x))

where
(
µ(x),Σ(x)

)
are outputs of the encoder network.

2.2 Improvements upon the classical VAE method

Building on the breakthrough of VAEs, several papers have proposed improvements to the model.
In this section we present 4 axes which we consider to be representative of the major advancements

2

made on VAEs, as well as classical models characterising the main improvements within each of
these axes.

Improving the prior It has been shown that the role of the prior distribution pz is crucial in the
good performance of the VAE [30] and choosing a family of overly simplistic priors can lead to
over-regularization [20] and poor reconstruction performance [22]. In particular, it was shown that
the prior maximizing the ELBO objective is the aggregated posterior q(z) = 1

N

∑N
i=1 qϕ(z|xi)

[63]. However, it should be noted that a perfect fit between the prior and the aggregated posterior
is not necessarily desired since it has been shown in [6, 63] that it may lead to over-fitting as it
essentially amounts to the model memorising the training set. Hence, multi-modal priors [46, 24, 63]
were proposed, followed by hierarchical latent variable models [60, 37] and prior learning based
approaches [17, 2] to address the poor expressiveness of the prior distribution and model richer
generative distributions. Considering a specific geometry of the latent space also led to alternative
priors taking into account geometrical aspects of the latent space [23, 25, 43, 3, 15, 57, 33, 14].
Another interesting approach proposed for instance in [64, 27] consists in using density estimation
post training with another distribution or normalising flows [53] on the learned latent codes.

Towards a better lower bound Another major axis of improvement of the VAE model has been
to tighten the gap between the ELBO objective and the true log probability [11, 1, 29, 21, 67]. The
ELBO objective can indeed be written as the difference between the true log probability and a KL
divergence between the approximate posterior and the true posterior

LELBO(x) = log pθ(x)−DKL

[
qϕ(z|x)||p(z|x)

]
. (3)

Hence, if one wants to make the ELBO gap tighter, particular attention should be paid to the choice in
the approximate posterior qϕ(z|x). In the original model, qϕ(z|x) is chosen as a simple distribution
for tractability of the ELBO in Eq. (2). However, several approaches have been proposed to extend
the choice of qϕ to a wider class of distributions using MCMC sampling [55] or normalising flows
[53]. For instance, Kingma et al. [36] improve upon the works of [53] with an inverse auto-regressive
normalising flow (IAF), a new type of normalizing flow that better scales to high-dimensional latent
spaces. With this objective in mind a Hamiltonian VAE aimed at targeting the true posterior during
training with a Hamiltonian Monte Carlo [47] inspired scheme was proposed [13] and extended to
Riemannian latent spaces in [14].

Encouraging disentanglement Although there is no clear consensus upon the definition of dis-
entanglement, it is commonly referred to as the independence between features in a representation
[44]. This is a desirable behaviour for VAEs, as it is argued that disentangled features may be
more representative and interpretable [29]. In that regard, several approaches have been proposed
encouraging a better disentanglement of the features in the latent space. Higgins et al. [29] first
argue that increasing the weight of the KL divergence term in the ELBO loss enforces a higher
disentanglement of the latent features as the posterior probability is forced to match a multivariate
normal standard Gaussian. Following this idea, [12] propose to achieve disentanglement by gradually
increasing the proximity between the posterior and the prior [12]. Other methods challenge the view
that disentanglement can be achieved by simply forcing the posterior to match the prior, or raise the
point that in this case disentanglement is achieved at the cost of a bad reconstruction. From these
observations, new approaches arise such as [34] who augment the VAE objective with a penalty that
encourages factorial representation of the marginal distributions, or [16] that enforce a penalty on the
total correlation favouring disentanglement.

Amending the distance between distributions It can be stressed that the reconstruction term
Ez∼qϕ(z|x)[log pθ(x|z)] in eq. (2) has a crucial role in the reconstruction and that its choice should be
dependent of the application. For instance, methods using a discriminator [39] or using a deterministic
differentiable loss function [59] acting as a distance between the input data and its reconstruction
were also proposed. The second term in the ELBO measures the distance between the approximate
posterior and the prior distribution through the KL divergence and it has however been argued that
other distances between probability distributions could be used instead. Hence, approaches using
a GAN to distinguish samples from the posterior from samples from the prior distribution [42] or
methods based on optimal transport have also been proposed [62, 68].

3

3 The Pythae library

Why Pythae ? To the best of our knowledge, although some well referenced libraries grouping
different Variational Auto-Encoder methods exist (e.g. [61]), there exists no framework providing
both adaptable and easy-to-use unified implementations of state-of-the-art Generative AutoEncoder
(GAE) methods. This induces both a strong brake for reproducible research and democratisation of
the models since implementations might be difficult to adapt to other use-cases, no longer maintained,
or completely unavailable.

Project vision Starting from this observation, we created Pythae, an open-source python library
inspired from [51, 65] providing unified implementations of generative autoencoding methods,
allowing for easy use and training of GAE models. Pythae is designed with the following points in
mind:

• Usable by all Pythae makes GAE models accessible to all - beginners to experts. This
means beginners can run ready-to-use models with a few lines of code, while more advanced
users can easily access and adapt different methods to their specific use-cases, with custom
encoder/decoder definition. Indeed, the library was designed to be flexible enough to
allow users to use existing implementations on their own data, with custom model hyper-
parameters, training configurations and network architectures.
The library has an online documentation3 and is also explained and illustrated through
tutorials available either on a local machine or on the Google Colab platform [9].

• Unified implementation The brick-like structure of Pythae allows for seamless but efficient
interchange between models, sampling techniques, network architectures, model hyper-
parameters and training schemes. Pythae is unit-tested ensuring code quality and continuous
development with a code coverage of 98% as of release 0.6. The library is made available on
pip and conda allowing an easy integration. Its development is performed through releases
that ensure stable and robust implementations.

• A reproducible research environment Pythae is open to all and as such encourages
transparent and reproducible research, as illustrated in the next section. With a variety of
different interchangeable models gathered in a common library, it can be used as a sandbox
for research and applications. Moreover, the library also integrates an easy-to-use experiment
tracking tool (wandb) [8] allowing to monitor runs launched with Pythae and compare them
through a graphic interface, and an online model sharing tool, the HuggingFace Hub,
allowing to share models with peers.

• Evolving and driven by the community Pythae’s design is intended to evolve with the
addition of new models to enrich the existing model base. Furthermore, peers can contribute
by reviewing and submitting models to enrich the library, a few of which have already been
added at the time of this publication.

Code structure Pythae was thought for easy model training and data generation, while striving
for simplicity with a quick and user-friendly model selection and configuration. The backbone
of the library is the module pythae.models in which all the autoencoder models are implemented.
Each model implementation is accompanied with a configuration dataclass containing any hyper-
parameters relative to the model and allowing easing configuration loading and saving from json
files.

All the models are implemented using a common API allowing for a seamless integration with
pythae.trainers (for training) and pythae.samplers (for generation) along with a simplified usage as
illustrated in Fig. 1. In particular, Pythae provides pipelines allowing to train an autoencoder model
or to generate new data with only a few lines of code, as shown in Appendix. A.

It mainly relies on the Pytorch [50] framework and in its basic usage only essential hyper-parameter
configurations and data (arrays or tensors) are needed to launch a model training or generation.
More advanced options allowing further flexibility such as defining custom encoder and decoder
neural-networks are also available and can be found in the documentation and tutorials. It can adapt
to various types of data through the use of different already-implemented or user provided encoder

3The full documentation can be found at https://pythae.readthedocs.io/en/latest/.

4

https://pythae.readthedocs.io/en/latest/

and decoder neural-network architectures. In addition, Pythae also provides several ways to generate
new data through different popular sampling methods in the pythae.samplers module. We detail some
aspects of the library in Appendix. A.

pythae.models

encoder architecture

decoder architecture

model config

model trained model

pythae training pipeline pythae generation pipeline

training config
model config
trained model

sampler config
generated samples

pythae
AutoModel

training config train/eval data sampler config

required

optional

pythae modules

🧪
wandb

dataset

pythae.trainers

callbacks

schedulers

optimizers

pythae.samplers

saves

logs

saves

autoencoder

🤗
HF Hub

Figure 1: Pythae library diagram

4 Case study benchmark

By nature of its structured framework, Pythae allows for easy comparison between models on any
chosen task. As an illustrative purpose, we propose a case study where we use Pythae to perform
a straightforward benchmark comparison of models implemented in Pythae on a selection of well-
known elementary tasks. The aim of these tasks is to underline general trends within groups of
GAEs, based on common behaviours, as well as judge the versatility of the models. However, this
benchmark should not be considered as a means to rank models on these tasks, as performances
depend on sometimes complex hyper-parameter tuning and training, which we consider to be outside
of the scope of this benchmarking use case. The scripts used for the benchmark are provided in
supplementary materials.

4.1 Benchmark setting

In this section, we present the setting of the benchmark. Comprehensive results for all the experiments
are available through the monitoring tool [8] used in Pythae to allow complete transparency.

The data To perform the different tasks presented in this paper, 3 classical and widely used image
datasets are considered: MNIST [40], CIFAR10 [38] and CELEBA [41]. These datasets are publicly
available, widely used for generative model related papers and have well known associated metrics
in the literature. Each dataset is split into a train set, a validation set and a test set. For MNIST and
CIFAR10 the validation set is composed of the last 10k images extracted from the official train set
and the test set corresponds to the official one. For CELEBA, we use the official train/val/test split.

The models We propose to compare 19 generative autoencoder models representative of the
improvements proposed in the literature and presented in Sec. 2.2. Descriptions and explanations
of each implemented model can be found in Appendix. D. We use as baseline an Autoencoder
(AE) and a Variational Autoencoder (VAE). To assess the influence of a more expressive prior, we
propose using a VAE with VAMP prior (VAMP) [63] and regularised autoencoders with either a
gradient penalty (RAE-GP) or a L2 penalty on the weights of the decoder (RAE-L2) that use ex-post
density estimation [27]. To represent models trying to reach a better lower bound, we choose a
Importance Weighted Autoencoder (IWAE) [11] and VAEs adding either simple linear normalising
flows (VAE-lin-NF) [53] or using IAF (VAE-IAF) [36]. For disentanglement-based models, we
select a β-VAE [29], a FactorVAE [34] and a β-TC VAE [16]. To stress the influence of the distance
used between distributions we add a Wasserstein Autoencoder (WAE)[62] and an InfoVAE [68]
with either Inverse Multi-Quadratic (IMQ) or a Radial Basis Function kernel (RBF) together with an
Adversarial Autoencoder (AAE)[42], a VAEGAN[39] and a VAE using structural similarity metric
for reconstruction (MSSSIM-VAE) [59]. Finally, we add a VQVAE [64] since having a discrete
latent space has shown to yield promising results. Models implemented in Pythae requiring too much
training time or more intricate hyper-parameter tuning were excluded from the benchmarks.

5

In the following, we will distinguish AE-based (autoencoder-based) methods (AE, RAE, WAE and
VQVAE) from the other variational-based methods.

Training paradigm Each of the aforementioned models is equipped with the same neural network
architecture for both the encoder and decoder leading to a comparable number of parameters 4. For
each task, 10 different configurations are considered for each model, allowing a simple exploration
of the models’ hyper-parameters, leading to 10 trained models for each dataset and each neural
network type (ConvNet or ResNet) leading to a total of 1140 models5. It is important to note that
the hyper-parameter exploration is not exhaustive and models sensitive to hyper-parameter tuning
may have better performances with a more extensive parameter search. The sets of hyper-parameters
explored are detailed in Appendix. D for each model.

4.2 Experiments

In this section, we present the main results observed on 5 downstream tasks.

4.2.1 Fixed latent dimension

In this first part, latent dimensions are set to 16, 256 and 64 for the MNIST, CIFAR10 and CELEBA
datasets respectively, as we observed those latent dimensions to lead to good performances. See
results per model and across the 10 configurations specified in Appendix. D to assess the influence of
the parameters on the tasks.

Task 1: Image reconstruction For each model, reconstruction error is evaluated by selecting the
configuration minimising the Mean Square Error (MSE) between the input and the output of the
model on the validation set, while results are shown on the test set6. We show in Table. 1 the MSE
and Frechet Inception Distance7 (FID) [28] of the reconstructions from this model on the test set. It is
important to note that using the MSE as a metric places models using different reconstruction losses
(VAEGAN and MSSSIM-VAE) at a disadvantage.

As expected, the autoencoder-based models seem to perform best for the reconstruction task. Nonethe-
less, this experiment also shows the interest of adding regularisation to the autoencoder since
improvements over the AE (RAE-GP, RAE-L2) achieve better performance than the regular AE.
Moreover, β-VAE type models demonstrate their versatility as small enough β values can lead to less
regularisation, therefore favouring a better reconstruction.

Task 2: Image generation We consider an image generation task with the trained models. In this
experiment, we also explore different ways of sampling new data, either 1) using a simple distribution
chosen as N (0, Id) and corresponding to the standard prior for variational approaches (N); 2) fitting
a 10 components mixture of Gaussian in the latent space post training as proposed in [27] (GMM), 3)
fitting a normalising flow taken as a Masked Autoregressive Flow (MAF) [49] or 4) fitting a VAE in a
similar fashion as [22]. For the MAF, two-layer MADE [26] are used. For each sampler, we select
the models achieving the lowest FID on the validation set and compute the Inception Score8 (IS) [56]
and the FID on the test set9. It should be noted that although the use of IS and FID has been criticised
[4, 58, 18, 45, 32], we still choose to use those metrics for clarity’s sake as they are within the most
commonly used metrics for image generation on generative models. The main results are shown in
Table. 3 for the normal and GMM sampler (see Appendix. D for the other sampling schemes).

One of the key findings of this experiment is that performing ex-post density (therefore not using the
standard Gaussian prior) for the variational approach tends to almost always lead to better generation

4Some models may actually have additional parameters in their intrinsic structure e.g. a VQVAE learns a dic-
tionary of embeddings, a VAMP learns the pseudo-inputs, a VAE-IAF learns auto-regressive flows. Nonetheless,
since we work on images, the number of parameters remains in the same order of magnitude.

5The training setting (curves, configs ...) can be found at https://wandb.ai/benchmark_team/
trainings while detailed experimental set-up is available in Appendix. C.

6See the whole results at https://wandb.ai/benchmark_team/reconstructions
7We used the implementation of https://github.com/bioinf-jku/TTUR
8We used the implementation of https://github.com/openai/improved-gan
9See the whole results at https://wandb.ai/benchmark_team/generations

6

https://wandb.ai/benchmark_team/trainings
https://wandb.ai/benchmark_team/trainings
https://wandb.ai/benchmark_team/reconstructions
https://github.com/bioinf-jku/TTUR
https://github.com/openai/improved-gan
https://wandb.ai/benchmark_team/generations

metrics even when a simple 10-components mixture of Gaussian is used. Interestingly, we note that
when a more advanced density estimation model such as a MAF is used, results appear equivalent to
those of the GMM (see Appendix. D). This may be due to the simplicity of the database we used
and in consequence of the distribution of the latent codes that can be approximated well enough
with a GMM. It should nonetheless be noted that the number of components in the GMM remains a
key parameter which was set to the number of classes for MNIST and CIFAR10 since it is known,
however too high a value may lead to overfitting while a low one may lead to worse results.

Task 3: Classification To measure the meaningfulness of the learned latent representations we
perform a simple classification task with a single layer classifier as proposed in [19]. The rationale
behind this is that if a GAE succeeds in learning a disentangled latent representation a simple linear
classifier should perform well [7]. A single layer classifier is trained in a supervised manner on
the latent embeddings of MNIST and CIFAR10. The train/val/test split used is the same as for the
autoencoder training. For each model configuration, we perform 20 runs of the classifier on the latent
embeddings and define the best hyper-parameter configuration as the one achieving the highest mean
accuracy on these 20 runs on the validation set. We report the mean accuracy on the test set across
the 20 runs for the selected configuration in Table. 2 (left)10.

As expected, models explicitly encouraging disentanglement in the latent space such as the β-VAE
and β-TC VAE achieve better classification when compared to a standard VAE. Nonetheless, AE-
based models seem again the best suited for such a task since variational approaches tend to enforce
a continuous space, consequently bringing latent representations of different classes closer to each
other. As a general observation, we can state that models with a more flexible prior achieve better
results on this task.

Task 4: Clustering As a complement to the previous task, performing clustering directly in the
latent space of the trained autoencoders can give insights on the quality of the latent representation.
Indeed, a well defined latent space will maintain the separation of the classes inherent to the datasets,
leading to easy and stable k-means performances. To do so, we propose to fit 100 separate runs of the
k-means algorithm and we show the mean accuracy obtained on the train embeddings in Table. 2
(right)11. This experiment allows us to explore and measure the clusterability of the generated latent
spaces [7]. To measure accuracy we assign the label of the most prevalent class to each cluster.

The conclusions of this experiment are slightly different from the previous one since models targeting
disentanglement seem to be equalled by the original VAE. Interestingly, adversarial approaches and
other alternatives to the standard VAE KL regularisation method seem to achieve the best results.

Task 5: Interpolation Finally, we propose to assess the ability of the model to perform meaningful
interpolations. For this task, we consider a starting and ending image in the test set of MNIST and
CIFAR10 and perform a linear interpolation in the generated latent spaces between the two encoded
images. We show in Appendix. B the decoding along the interpolation curves. For this task, no
metric was found relevant since the notion of "good" interpolation can be disputable. Nonetheless,
the obtained interpolated images can be reconstructed and qualitatively evaluated.

For this task, variational approaches were found to obtain better results as the inherent structure
the posterior distribution imposes in the latent space results in a "smoother" transition from one
image to another when compared to autoencoders that mainly superpose images, especially in higher
dimensional latent spaces.

4.2.2 Varying latent dimension

An important parameter of autoencoder models which is too often neglected in the literature is
the dimension of the latent space. We now propose to keep the same configurations as previously
but re-evaluate Tasks 1 to 5 with the latent space varying in the range [16, 32, 64, 128, 256, 512].
Results are shown in Fig. 2 for MNIST and a ConvNet12 (see Appendix. D for CIFAR, ResNet and
interpolations). For the generation task, we select the sampler with lowest FID on the validation set.

10See the whole results at https://wandb.ai/benchmark_team/classifications
11See the whole results at https://wandb.ai/benchmark_team/clustering
12MSSSIM-VAE was removed from this plot for visualisation purposes.

7

https://wandb.ai/benchmark_team/classifications
https://wandb.ai/benchmark_team/clustering

Assessing the influence of the latent dimension A clear difference in behaviour is exhibited
between variational-based and AE-based methods. For each given task, AEs share a common trend
with respect to the evolution of the latent dimension: a common optimal latent dimension within
the range [16, 32, 64, 128, 256, 512] is found for each task, but differs drastically among different
tasks (e.g. 512 for reconstruction, 16 for generation, either 16 or 512 for classification and 512
for clustering with the MNIST dataset). This suggests the existence of a common intra-group
optimal latent space dimension for a given task. In addition, we observe that β-VAE type methods
(with the right hyper-parameter choice) can exhibit similar behaviours to AE models. The same
observation can be made for variational-based methods, where it is interesting to note that although
lower performances are achieved, the apparent optimal latent dimension varies less with respect to
the choice of the task. Therefore, a latent dimension of 16 to 32 appears to be the optimal choice for
all 4 Tasks on the MNIST dataset, and 32 to 128 on the CIFAR10 dataset. It should be noted that
unsupervised tasks such as clustering of the latent representation of the CIFAR10 dataset are hard
and models are expected to perform poorly, leading to less interpretable results.

0.00

0.01

0.02

m
se

Reconstruction

25

50

fid

Generation

0.85

0.90

0.95

ac
cu

ra
cy

Classification

VAE
VAMP

IWAE

VAE_Li
nNF

VAE_IA
F

Beta
VAE

Beta
TCVAE

Fac
tor

VAE

INFO
VAE-im

q

INFO
VAE-rb

f

Adver
sar

ial_
AE

VAEGAN AE

WAE-im
q

WAE-rb
f

VQVAE
RAE_L2

RAE_GP
0.25

0.50

0.75

ac
cu

ra
cy

Clustering

latent_dim

latent_dim
16
32
64
128
256
512

latent_dim
16
32
64
128
256
512

latent_dim
16
32
64
128
256
512

Figure 2: From top to bottom: Evolution of the reconstruction MSE, generation FID, classification
accuracy and clustering accuracy with respect to the latent space dimension on the MNIST dataset.

5 Conclusion

In this paper, we introduce Pythae, a new open-source Python library unifying common and state-
of-the-art Generative AutoEncoder (GAE) implementations, allowing reliable and reproducible
model training, data generation and experiment tracking. This library was designed as an open
model testing environment driven by the community, wherein peers are encouraged to contribute by
adding their own models, and by doing so favour reproducible research and accessibility to ready-
to-use GAE models. As an illustration of the capabilities of Pythae, we perform a benchmarking
of 19 generative autoencoder models on 5 downstream tasks (image reconstruction, generation,
classification, clustering and interpolation) leading to some interesting findings on the general
behaviours of generative autoencoder models. We hope that the library will continue to be adopted
by the community and expand thanks to the increasing number of contributions.

8

Table 1: Mean Squared Error (10−3) and FID (lower is better) computed with 10k samples on the test
set. For each model, the best configuration is the one achieving the lowest MSE on the validation set.

Model
ConvNet ResNet

MNIST (16) CIFAR10 (256) CELEBA (64) MNIST (16) CIFAR10 (256) CELEBA (64)
MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓ MSE ↓ FID ↓

VAE 16.85 30.71 16.24 218.66 9.83 49.22 17.24 36.06 16.33 176.63 10.59 58.75

VAMP 24.17 44.95 17.45 221.40 10.81 51.64 17.11 37.58 16.87 177.03 11.50 60.89

IWAE 14.14 34.28 16.19 237.14 9.47 50.00 15.79 38.74 16.02 183.37 10.14 60.18
VAE-lin-NF 16.75 31.14 16.57 221.39 9.90 49.84 17.23 36.74 16.59 177.08 10.68 58.73

VAE-IAF 16.71 30.64 16.33 223.65 9.87 50.05 17.05 35.98 16.39 177.05 10.63 58.41

β-VAE 5.61 10.55 3.60 50.55 7.28 46.96 5.87 15.81 2.40 55.67 7.78 51.59
β-TC VAE 6.78 14.11 5.06 53.49 7.65 50.82 7.12 18.44 4.05 66.89 8.08 52.70
Factor VAE 17.27 30.39 16.41 224.3 10.16 53.61 18.13 37.97 16.55 176.8 10.93 59.46

InfoVAE-IMQ 16.65 30.62 16.19 216.44 9.81 50.51 17.17 37.33 16.32 173.79 10.63 58.04
InfoVAE-RBF 16.59 30.63 16.23 217.52 9.85 50.14 17.01 37.04 16.32 175.37 10.64 58.68

AAE 5.59 10.87 2.60 40.66 7.25 50.22 5.98 17.01 2.33 55.93 7.76 50.97

MSSSIM-VAE 32.60 37.91 39.42 276.70 35.60 124.52 33.67 40.25 39.61 254.34 35.43 119.92
VAEGAN 15.49 5.54 31.40 289.35 8.91 86.58 23.25 11.35 30.22 300.07 9.32 86.32

AE 5.47 11.61 2.82 41.98 7.03 51.08 6.13 13.74 2.34 55.43 7.74 50.54
WAE-IMQ 5.55 11.29 2.81 41.79 7.04 52.11 5.78 16.21 2.34 56.55 7.74 50.50
WAE-RBF 5.53 11.34 2.82 42.21 7.03 51.43 5.80 16.14 2.34 56.00 7.74 51.38

VQVAE 5.59 11.02 2.84 44.60 7.06 52.27 6.00 15.27 2.34 55.84 7.73 50.29
RAE-L2 5.24 15.37 2.25 49.28 6.90 53.98 5.76 17.27 2.35 57.85 7.74 51.07
RAE-GP 5.31 12.08 2.81 41.15 7.06 51.85 5.83 15.69 2.34 56.71 7.76 51.36

Table 2: Left: Mean test accuracy of a single layer classifier on the embedding obtained in the latent
spaces of each model average on 20 runs. Right: Mean accuracy of 100 k-means fitted on the training
embeddings coming from the autoencoders.

Model

Classification Clustering

ConvNet ResNet ConvNet ResNet
MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10

VAE 86.75 (0.05) 32.61 (0.03) 86.80 (0.03) 32.37 (0.03) 69.71 (2.01) 17.18 (0.68) 74.21 (0.97) 18.12 (0.74)

VAMP 92.17 (0.02) 33.46 (0.17) 92.58 (0.04) 33.03 (0.22) 67.26 (1.25) 24.03 (0.24) 72.48 (0.96) 23.35 (0.11)

IWAE 87.96 (0.04) 31.86 (0.04) 88.18 (0.03) 32.26 (0.04) 63.93 (1.73) 19.55 (0.67) 73.66 (2.30) 18.44 (0.86)
VAE-lin-NF 86.04 (0.04) 31.57 (0.02) 85.85 (0.05) 31.74 (0.03) 65.48 (2.76) 17.09 (0.64) 68.80 (3.65) 18.74 (0.68)

VAE-IAF 88.32 (0.02) 33.52 (0.02) 87.91 (0.02) 32.41 (0.02) 75.31 (1.69) 17.81 (0.73) 76.11 (2.15) 18.42 (0.66)

β-TC VAE 90.96 (0.02) 45.40 (0.05) 91.91 (0.02) 42.17 (0.07) 65.68 (0.91) 24.14 (0.65) 68.98 (2.67) 25.57 (0.61)
Factor VAE 86.08 (0.06) 31.38 (0.04) 83.44 (0.05) 31.76 (0.04) 51.02 (1.73) 15.77 (0.60) 60.79 (2.06) 17.56 (0.68)

InfoVAE-IMQ 86.33 (0.04) 32.48 (0.02) 86.31 (0.06) 32.10 (0.05) 68.17 (2.34) 16.65 (0.80) 71.31 (2.62) 18.10 (0.79)
InfoVAE-RBF 85.94 (0.03) 32.50 (0.03) 86.12 (0.04) 31.67 (0.03) 66.02 (1.14) 16.22 (0.69) 71.93 (1.91) 18.61 (0.67)

AAE 93.28 (0.03) 43.93 (0.07) 94.31 (0.03) 40.62 (0.11) 74.19 (3.22) 24.72 (0.75) 80.41 (2.09) 24.76 (0.53)

MSSSIM-VAE 78.30 (0.03) 20.26 (0.06) 76.54 (0.03) 20.24 (0.04) 49.33 (1.32) 11.70 (0.19) 48.58 (1.37) 11.70 (0.17)
VAEGAN 92.34 (0.02) 26.56 (0.04) 90.31 (0.03) 29.90 (0.03) 77.29 (1.19) 17.20 (0.45) 79.67 (0.90) 22.23 (0.44)

AE 93.81 (0.02) 42.15 (0.07) 94.26 (0.03) 40.47 (0.13) 73.55 (0.60) 23.19 (0.52) 77.30 (0.84) 23.18 (0.37)
WAE-IMQ 93.60 (0.02) 45.89 (0.07) 94.62 (0.03) 41.35 (0.03) 72.33 (2.92) 23.81 (0.61) 78.46 (3.48) 25.09 (0.82)
WAE-RBF 93.72 (0.02) 43.38 (0.08) 94.51 (0.02) 40.63 (0.08) 74.20 (1.94) 23.70 (0.71) 77.33 (1.92) 24.66 (0.63)

VQVAE 93.45 (0.02) 42.89 (0.07) 94.63 (0.04) 40.40 (0.09) 72.61 (0.40) 23.85 (0.48) 76.68 (2.36) 23.68 (0.37)
RAE-L2 94.75 (0.01) 42.76 (0.08) 94.43 (0.03) 40.22 (0.05) 74.07 (0.36) 23.77 (0.54) 78.66 (0.29) 24.84 (0.73)
RAE-GP 94.10 (0.02) 43.66 (0.07) 94.45 (0.02) 40.93 (0.14) 72.88 (0.52) 24.84 (0.53) 77.66 (1.29) 23.86 (0.32)

9

Table 3: Inception Score (higher is better) and FID (lower is better) computed with 10k samples on
the test set. For each model and sampler we report the results obtained by the model achieving the
lowest FID score on the validation set.

Model Sampler
ConvNet ResNet

MNIST CIFAR10 CELEBA MNIST CIFAR10 CELEBA
FID ↓ IS ↑ FID IS FID IS ↑ FID ↓ IS ↑ FID IS FID IS

VAE N 28.5 2.1 241.0 2.2 54.8 1.9 31.3 2.0 181.7 2.5 66.6 1.6
GMM 26.9 2.1 235.9 2.3 52.4 1.9 32.3 2.1 179.7 2.5 63.0 1.7

VAMP VAMP 64.2 2.0 329.0 1.5 56.0 1.9 34.5 2.1 181.9 2.5 67.2 1.6

IWAE N 29.0 2.1 245.3 2.1 55.7 1.9 32.4 2.0 191.2 2.4 67.6 1.6
GMM 28.4 2.1 241.2 2.1 52.7 1.9 34.4 2.1 188.8 2.4 64.1 1.7

VAE-lin NF N 29.3 2.1 240.3 2.1 56.5 1.9 32.5 2.0 185.5 2.4 67.1 1.6
GMM 28.4 2.1 237.0 2.2 53.3 1.9 33.1 2.1 183.1 2.5 62.8 1.7

VAE-IAF N 27.5 2.1 236.0 2.2 55.4 1.9 30.6 2.0 183.6 2.5 66.2 1.6
GMM 27.0 2.1 235.4 2.2 53.6 1.9 32.2 2.1 180.8 2.5 62.7 1.7

β-VAE N 21.4 2.1 115.4 3.6 56.1 1.9 19.1 2.0 124.9 3.4 65.9 1.6
GMM 9.2 2.2 92.2 3.9 51.7 1.9 11.4 2.1 112.6 3.6 59.3 1.7

β-TC VAE N 21.3 2.1 116.6 2.8 55.7 1.8 20.7 2.0 125.8 3.4 65.9 1.6
GMM 11.6 2.2 89.3 4.1 51.8 1.9 13.3 2.1 106.5 3.7 59.3 1.7

FactorVAE N 27.0 2.1 236.5 2.2 53.8 1.9 31.0 2.0 185.4 2.5 66.4 1.7
GMM 26.9 2.1 234.0 2.2 52.4 2.0 32.7 2.1 184.4 2.5 63.3 1.7

InfoVAE - RBF N 27.5 2.1 235.2 2.1 55.5 1.9 31.1 2.0 182.8 2.5 66.5 1.6
GMM 26.7 2.1 230.4 2.2 52.7 1.9 32.3 2.1 179.5 2.5 62.8 1.7

InfoVAE - IMQ N 28.3 2.1 233.8 2.2 56.7 1.9 31.0 2.0 182.4 2.5 66.4 1.6
GMM 27.7 2.1 231.9 2.2 53.7 1.9 32.8 2.1 180.7 2.6 62.3 1.7

AAE N 16.8 2.2 139.9 2.6 59.9 1.8 19.1 2.1 164.9 2.4 64.8 1.7
GMM 9.3 2.2 92.1 3.8 53.9 2.0 11.1 2.1 118.5 3.5 58.7 1.8

MSSSIM-VAE N 26.7 2.2 279.9 1.7 124.3 1.3 28.0 2.1 254.2 1.7 119.0 1.3
GMM 27.2 2.2 279.7 1.7 124.3 1.3 28.8 2.1 253.1 1.7 119.2 1.3

VAEGAN N 8.7 2.2 199.5 2.2 39.7 1.9 12.8 2.2 198.7 2.2 122.8 2.0
GMM 6.3 2.2 197.5 2.1 35.6 1.8 6.5 2.2 188.2 2.6 84.3 1.7

AE N 26.7 2.1 201.3 2.1 327.7 1.0 221.8 1.3 210.1 2.1 275.0 2.9
GMM 9.3 2.2 97.3 3.6 55.4 2.0 11.0 2.1 120.7 3.4 57.4 1.8

WAE - RBF N 21.2 2.2 175.1 2.0 332.6 1.0 21.2 2.1 170.2 2.3 69.4 1.6
GMM 9.2 2.2 97.1 3.6 55.0 2.0 11.2 2.1 120.3 3.4 58.3 1.7

WAE - IMQ N 18.9 2.2 164.4 2.2 64.6 1.7 20.3 2.1 150.7 2.5 67.1 1.6
GMM 8.6 2.2 96.5 3.6 51.7 2.0 11.2 2.1 119.0 3.5 57.7 1.8

VQVAE N 28.2 2.0 152.2 2.0 306.9 1.0 170.7 1.6 195.7 1.9 140.3 2.2
GMM 9.1 2.2 95.2 3.7 51.6 2.0 10.7 2.1 120.1 3.4 57.9 1.8

RAE-L2 N 25.0 2.0 156.1 2.6 86.1 2.8 63.3 2.2 170.9 2.2 168.7 3.1
GMM 9.1 2.2 85.3 3.9 55.2 1.9 11.5 2.1 122.5 3.4 58.3 1.8

RAE - GP N 27.1 2.1 196.8 2.1 86.1 2.4 61.5 2.2 229.1 2.0 201.9 3.1
GMM 9.7 2.2 96.3 3.7 52.5 1.9 11.4 2.1 123.3 3.4 59.0 1.8

Acknowledgments and Disclosure of Funding

The research leading to these results has received funding from the French government under
management of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program,
reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 (Agence
Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6). This work was granted access to
the HPC resources of IDRIS under the allocation AD011013517 made by GENCI (Grand Equipement
National de Calcul Intensif).

10

References
[1] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information

bottleneck. In International Conference on Learning Representations, 2017.

[2] Jyoti Aneja, Alexander Schwing, Jan Kautz, and Arash Vahdat. NCP-VAE: Variational autoencoders with
noise contrastive priors. arXiv:2010.02917 [cs, stat], 2020.

[3] Georgios Arvanitidis, Lars Kai Hansen, and Sören Hauberg. Latent space oddity: On the curvature of deep
generative models. In 6th International Conference on Learning Representations, ICLR 2018, 2018.

[4] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint arXiv:1801.01973, 2018.

[5] Matthias Bauer and Andriy Mnih. Resampled priors for variational autoencoders. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 66–75. PMLR, 2019.

[6] Matthias Bauer and Andriy Mnih. Resampled priors for variational autoencoders. pages 66–75. PMLR,
2019. ISBN 2640-3498.

[7] David Berthelot*, Colin Raffel*, Aurko Roy, and Ian Goodfellow. Understanding and improving in-
terpolation in autoencoders via an adversarial regularizer. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=S1fQSiCcYm.

[8] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/.
Software available from wandb.com.

[9] Ekaba Bisong. Google Colaboratory, pages 59–64. Apress, Berkeley, CA, 2019. ISBN 978-1-4842-4470-8.
doi: 10.1007/978-1-4842-4470-8_7. URL https://doi.org/10.1007/978-1-4842-4470-8_7.

[10] Merlijn Blaauw and Jordi Bonada. Modeling and transforming speech using variational autoencoders.
Morgan N, editor. Interspeech 2016; 2016 Sep 8-12; San Francisco, CA.[place unknown]: ISCA; 2016. p.
1770-4., 2016. Publisher: International Speech Communication Association (ISCA).

[11] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv:1509.00519 [cs, stat], 2016.

[12] Christopher P. et al. Burgess. Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599,
2018.

[13] Anthony L Caterini, Arnaud Doucet, and Dino Sejdinovic. Hamiltonian variational auto-encoder. In
Advances in Neural Information Processing Systems, pages 8167–8177, 2018.

[14] Clément Chadebec, Elina Thibeau-Sutre, Ninon Burgos, and Stéphanie Allassonnière. Data Augmentation
in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder. arXiv
preprint arXiv:2105.00026, 2021.

[15] Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick Smagt. Metrics
for deep generative models. In International Conference on Artificial Intelligence and Statistics, pages
1540–1550. PMLR, 2018.

[16] Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement
in variational autoencoders. Advances in neural information processing systems, 31, 2018.

[17] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever,
and Pieter Abbeel. Variational lossy autoencoder. arXiv preprint arXiv:1611.02731, 2016.

[18] Min Jin Chong and David Forsyth. Effectively unbiased fid and inception score and where to find them. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6070–6079,
2020.

[19] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 215–223. JMLR Workshop and Conference Proceedings, 2011.

[20] Marissa Connor, Gregory Canal, and Christopher Rozell. Variational autoencoder with learned latent
structure. In International Conference on Artificial Intelligence and Statistics, pages 2359–2367. PMLR,
2021.

[21] Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoencoders. In
International Conference on Machine Learning, pages 1078–1086. PMLR, 2018.

11

https://openreview.net/forum?id=S1fQSiCcYm
https://www.wandb.com/
https://doi.org/10.1007/978-1-4842-4470-8_7

[22] Bin Dai and David Wipf. Diagnosing and Enhancing VAE Models. In International Conference on
Learning Representations, 2018.

[23] Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspherical
variational auto-encoders. In 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018,
pages 856–865. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.

[24] Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh Salimbeni, Kai
Arulkumaran, and Murray Shanahan. Deep unsupervised clustering with gaussian mixture variational
autoencoders. arXiv:1611.02648 [cs, stat], 2017.

[25] Luca Falorsi, Pim de Haan, Tim R. Davidson, Nicola De Cao, Maurice Weiler, Patrick Forré, and Taco S.
Cohen. Explorations in homeomorphic variational auto-encoding. arXiv:1807.04689 [cs, stat], 2018.

[26] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pages 881–889. PMLR, 2015.

[27] Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf. From
variational to deterministic autoencoders. In 8th International Conference on Learning Representations,
ICLR 2020, 2020.

[28] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, 2017.

[29] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mo-
hamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational
framework. ICLR, 2(5):6, 2017.

[30] Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up the variational
evidence lower bound. In Workshop in Advances in Approximate Bayesian Inference, NIPS, volume 1,
page 2, 2016.

[31] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine Learning, 37(2):183–233, 1999.

[32] Steffen Jung and Margret Keuper. Internalized biases in fréchet inception distance. In NeurIPS 2021
Workshop on Distribution Shifts: Connecting Methods and Applications, 2021.

[33] Dimitrios Kalatzis, David Eklund, Georgios Arvanitidis, and Soren Hauberg. Variational autoencoders with
riemannian brownian motion priors. In International Conference on Machine Learning, pages 5053–5066.
PMLR, 2020.

[34] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on Machine
Learning, pages 2649–2658. PMLR, 2018.

[35] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114 [cs, stat], 2014.

[36] Durk P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved
variational inference with inverse autoregressive flow. Advances in neural information processing systems,
29, 2016.

[37] Alexej Klushyn, Nutan Chen, Richard Kurle, and Botond Cseke. Learning Hierarchical Priors in VAEs.
Advances in neural information processing systems, page 10, 2019.

[38] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[39] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoencoding
beyond pixels using a learned similarity metric. In International conference on machine learning, pages
1558–1566. PMLR, 2016.

[40] Yann LeCun. The MNIST database of handwritten digits. 1998.

[41] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[42] Alireza et al. Makhzani. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2016.

12

[43] Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota Tomioka, and Yee Whye Teh. Continuous
hierarchical representations with poincaré variational auto-encoders. In Advances in neural information
processing systems, pages 12565–12576, 2019.

[44] Emile Mathieu, Tom Rainforth, Nana Siddharth, and Yee Whye Teh. Disentangling disentanglement in
variational autoencoders. In International Conference on Machine Learning, pages 4402–4412. PMLR,
2019.

[45] Stanislav Morozov, Andrey Voynov, and Artem Babenko. On self-supervised image representations for
gan evaluation. In International Conference on Learning Representations, 2020.

[46] Eric Nalisnick, Lars Hertel, and Padhraic Smyth. Approximate inference for deep latent gaussian mixtures.
In NIPS Workshop on Bayesian Deep Learning, volume 2, page 131, 2016.

[47] Radford M Neal. Hamiltonian importance sampling. In talk presented at the Banff International Research
Station (BIRS) workshop on Mathematical Issues in Molecular Dynamics, 2005.

[48] Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based
prior model. Advances in Neural Information Processing Systems, 33, 2020.

[49] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation.
Advances in neural information processing systems, 30, 2017.

[50] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[52] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2.
Advances in Neural Information Processing Systems, 2020.

[53] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning, pages 1530–1538. PMLR, 2015.

[54] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International conference on machine learning, pages
1278–1286. PMLR, 2014.

[55] Tim Salimans, Diederik Kingma, and Max Welling. Markov chain monte carlo and variational inference:
Bridging the gap. In International Conference on Machine Learning, pages 1218–1226, 2015.

[56] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. Advances in neural information processing systems, 29, 2016.

[57] Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. The riemannian geometry of deep generative
models. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 428–4288. IEEE, 2018. ISBN 978-1-5386-6100-0. doi: 10.1109/CVPRW.2018.00071.

[58] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. How good is my gan? In Proceedings of the
European Conference on Computer Vision (ECCV), pages 213–229, 2018.

[59] Jake Snell, Karl Ridgeway, Renjie Liao, Brett D Roads, Michael C Mozer, and Richard S Zemel. Learning
to generate images with perceptual similarity metrics. In 2017 IEEE International Conference on Image
Processing (ICIP), pages 4277–4281. IEEE, 2017.

[60] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoder. In 29th Annual Conference on Neural Information Processing Systems (NIPS
2016), 2016.

[61] A.K Subramanian. Pytorch-vae. https://github.com/AntixK/PyTorch-VAE, 2020.

[62] I Tolstikhin, O Bousquet, S Gelly, and B Schölkopf. Wasserstein auto-encoders. In 6th International
Conference on Learning Representations (ICLR 2018), 2018.

[63] Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on Artificial
Intelligence and Statistics, pages 1214–1223. PMLR, 2018.

13

https://github.com/AntixK/PyTorch-VAE

[64] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

[65] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45, Online, October 2020. Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

[66] Linxiao Yang, Ngai-Man Cheung, Jiaying Li, and Jun Fang. Deep clustering by gaussian mixture
variational autoencoders with graph embedding. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6440–6449, 2019.

[67] Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational inference.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8):2008–2026, 2018.

[68] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximizing variational autoen-
coders. arXiv preprint arXiv:1706.02262, 2016.

14

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This paper

introduces an open source library favouring open science and presents a benchmark
done with it.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] A github is
provided along with links to the experiment tracking tool we used to monitor any of
the experiments we performed in the paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Supplementary materials and experiment tracking tool.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix. C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the datasets

we use in the benchmarks and stress that the library is inspired from official implemen-
tations if available and use allowed by the attached licence.

(b) Did you mention the license of the assets? [Yes] We used well-known datasets (see
Appendix. C).

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Links to github, library documentation and links to the experiment tracking tool we
used for complete transparency on the benchmarks.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We used well-known databases.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We used well-known databases.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

	Introduction
	Variational autoencoders
	Background
	Improvements upon the classical VAE method

	The Pythae library
	Case study benchmark
	Benchmark setting
	Experiments
	Fixed latent dimension
	Varying latent dimension

	Conclusion

