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Abstract

More than twenty years after its introduction, Annealed Importance Sampling
(AIS) remains one of the most effective methods for marginal likelihood estima-
tion. It relies on a sequence of distributions interpolating between a tractable
initial distribution and the target distribution of interest which we simulate from
approximately using a non-homogeneous Markov chain. To obtain an importance
sampling estimate of the marginal likelihood, AIS introduces an extended target
distribution to reweight the Markov chain proposal. While much effort has been
devoted to improving the proposal distribution used by AIS, an underappreciated
issue is that AIS uses a convenient but suboptimal extended target distribution.
We here leverage recent progress in score-based generative modeling (SGM) to
approximate the optimal extended target distribution minimizing the variance of the
marginal likelihood estimate for AIS proposals corresponding to the discretization
of Langevin and Hamiltonian dynamics. We demonstrate these novel, differentiable,
AIS procedures on a number of synthetic benchmark distributions and variational
auto-encoders.

1 Introduction

Evaluating the marginal likelihood, also known as evidence, is of key interest in Bayesian statistics as
it allows not only model comparison but is also often used to select hyperparameters. A large variety
of Monte Carlo methods have been proposed to address this problem, including path sampling [19],
AIS [37] and related Sequential Monte Carlo methods [13]. An appealing feature of AIS is that it
provides an unbiased estimate of the marginal likelihood and can thus be used to define an evidence
lower bound (ELBO) or mutual information bounds; see e.g. [53, 51, 7].

AIS builds a proposal distribution using a Markov chain (xk)
K
k=0 initialized at an easy-to-sample

distribution followed by a sequence of Markov chain Monte Carlo (MCMC) transitions targeting
typically annealed versions of the posterior. By proceeding this way, we obtain a proposal xK whose
distribution is expected to be a reasonable approximation to the target posterior. However, this
distribution is intractable as it requires integrating the joint proposal distribution over previous states
(xk)

K−1
k=0 . AIS bypasses this issue by instead using Importance Sampling (IS) on the whole path

(xk)
K
k=0 through the introduction of an artificial extended target distribution whose marginal at time

K coincides with the posterior.

There has been much work devoted to improving AIS in machine learning and statistics but also
in physics where it was introduced independently in [29, 9]. A standard approach to improve AIS
is to modify the intermediate distributions [45, 21, 34] and corresponding transition kernels of the
proposal [10, 53, 18, 51, 54]. We here address a distinct problem. For a given proposal, it was shown
in [13] that the extended target distribution minimizing the variance of the evidence estimate is not
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Figure 1: Top: Samples Xt from an AIS proposal (red) obtained by sampling initially from a
Gaussian at t = 0 and diffusing through Langevin dynamics on intermediate targets πt (white). The
intermediate marginals of the proposal, qt, approximated by the samples are such that qT ≈ π for a
reasonably fast mixing diffusion. Bottom: Computing importance weights. The optimal extended
target used to compute the weights is the distribution obtained by initializing X̄0 exactly from π and
then following the reverse-time dynamics of the forward AIS proposal. This requires access to score
vectors of the marginals qt.

the one used by AIS but is instead defined through the time-reversal of the proposal. However, this
result is difficult to exploit algorithmically as the time-reversal is intractable for useful proposals.

In this paper, we show how one can combine this result with recent advances in SGM to obtain
improved, lower variance, AIS estimates. We concentrate on scenarios where we use unadjusted
overdamped Langevin [23, 53, 51] and unadjusted Hamiltonian proposals with partial momentum
refreshment (i.e. underdamped Langevin) [10, 53, 18, 54, 28] which correspond to time-discretized
diffusion processes. The first benefit of using such proposals is that, by omitting Metropolis–Hastings
steps, one obtains differentiable versions of the Evidence Lower Bound (ELBO) amenable to the
reparameterization trick. The second benefit of these proposals is that their time-reversal can be
approximated by adapting techniques developed for SGM [24, 48, 15] to our setup. We derive a
principled parameterization for an approximation of their time-reversal which we learn by maximizing
the ELBO. As for SGM, this ELBO coincides with a denoising score matching loss [27, 52, 24, 48].
This provides novel, optimized and differentiable, AIS estimators which we refer to as Monte Carlo
Diffusion (MCD). We demonstrate the benefits of this approach on synthetic benchmark distributions
and variational auto-encoders (VAEs) [31]. All proofs can be found in the Appendix. A preliminary
version of this work appeared in [16].

2 Annealed Importance Sampling

2.1 Setup and algorithm

Consider a probability density π on Rd of the form

π(x) =
γ(x)

Z
, Z =

∫
Rd

γ(x)dx, (1)

where γ(x) can be evaluated pointwise. We want to approximate the intractable normalizing constant
Z. In a Bayesian framework, γ(x) = p(x)p(D|x) is the joint density of parameter x and data D,
π(x) = p(x|D) the corresponding posterior and Z = p(D) the evidence.

To estimate Z, AIS introduces the intermediate distributions (πk)
K
k=1 bridging smoothly from a

tractable distribution π0 to the target distribution πK = π of interest. One typically uses πk(x) ∝
γk(x) with γk(x) = π0(x)

1−βkγ(x)βk for 0 = β0 < β1 < · · · < βK = 1 but other choices are
possible [21]. The IS proposal used by AIS is then obtained by running a Markov chain (xk)

K
k=0

such that x0 ∼ π0(·), and then xk ∼ Fk(·|xk−1) for k ≥ 1 where Fk is a MCMC kernel invariant
w.r.t. πk. The proposal is thus given by

Q(x0:K) = π0(x0)
∏K

k=1 Fk(xk|xk−1). (2)
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Denote by qk the marginal distribution of xk under Q satisfying qk(xk) =∫
qk−1(xk−1)Fk(xk|xk−1)dxk−1 for k ≥ 1 and q0 = π0, it is typically intractable for k ≥ 1. As

qK cannot be evaluated in complex scenarios, the marginal IS estimate wmar(xK) = γ(xK)/qK(xK)
of Z is intractable.

One can bypass this issue by introducing an extended target distribution

P (x0:K) =
Γ(x0:K)

Z
, Γ(x0:K) = γ(xK)

K−1∏
k=0

Bk(xk|xk+1), (3)

where (Bk)
K−1
k=0 are backward Markov transition kernels, i.e.

∫
Bk(xk|xk+1)dxk = 1 for any xk+1,

so that by construction xK ∼ π under P . For any selection of backward kernels such that the ratio
Γ/Q is well-defined, we then have

EQ[w(x0:K)] = Z, for w(x0:K) =
Γ(x0:K)

Q(x0:K)
, (4)

i.e. w(x0:K) is an unbiased estimate of Z for x0:K ∼ Q.

The AIS estimate of the evidence is a specific instance of the estimator (4) relying on the back-
ward kernels Bais

k (xk|xk+1) = πk+1(xk)Fk+1(xk+1|xk)/πk+1(xk+1). This yields the following
expression for logw(x0:K):

logwais(x0:K) =
∑K

k=1 log
(
γk(xk−1)/γk−1(xk−1)

)
. (5)

2.2 Limitations of AIS

While designing P in (3) by using the backward Markov kernels (Bais
k )K−1

k=0 is convenient, it is also sub-
optimal in terms of variance. For example, consider the ideal scenario where Fk(xk|xk−1) = πk(xk).
This scenario has been used many times in the literature to provide some guidelines on AIS, see
e.g. [37, 21]. In this case, varQ[logwais(x0:K)] =

∑K
k=1 varπk−1

[log(γk(xk−1)/γk−1(xk−1))] > 0
while varqK [wmar(xK)] = varπ[wmar(xK)] = 0.

Figure 2: Comparing logZ estimates as
a function of K using AIS and MCD.
Both estimates use the same forward
kernels but reweight samples in a differ-
ent way using distinct backward kernels.
Initial distribution π0 is 20-dimensional
N (0, I) and progressively shifts to the
target π = πK = N (10, I). The MCD
estimate is much closer to the ground
truth (logZ = 0) than AIS.

Another illustration of the suboptimality of AIS is to con-
sider a scenario where the proposal is a homogeneous
MCMC chain, i.e. x0 ∼ π0 and xk ∼ F (·|xk−1) for
F a π-invariant MCMC kernel; i.e. use Fk = F and
πk = π for k = 1, ...,K. If F is reasonably well-
mixing, then qK ≈ π for K large enough and the evi-
dence estimate wmar(xK) = γ(xK)/qK(xK) should have
small variance. However, it is easy to check that we have
wais(x0:K) = γ(x0)/π0(x0) for the exact same proposal;
i.e. the AIS estimate does not depend on the MCMC sam-
ples x1:K and boils down to the IS estimate of Z using the
proposal π0.

These two examples illustrate that it would be preferable
to use wmar(xK) rather than wais(x0:K). In Appendix A,
we provide a detailed comparison of both estimates in a
scenario where their variance can be computed analytically.
We propose in the next section an unbiased estimate of
the evidence (MCD) approximating wmar(xK) based on
a different choice of backward kernels. As illustrated in
Figure 2, significant gains can be achieved.

3 Optimized Annealed Importance Sampling

We show here that the optimal extended target distribution P minimizing the variance of the evidence
estimate (4) is defined through the time-reversal of the proposal Q. By exploiting a connection to
SGM, we can approximate this reversal using score matching when the proposal is obtained through
an unadjusted overdamped or underdamped Langevin algorithm.
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3.1 Optimal Extended Target Distribution via Time Reversal

We summarize here Proposition 1 of [13]; see also [46, 5].
Proposition 1. For a proposal Q of the form (2), the extended target P of the form (3) minimizing both
the Kullback–Leibler divergence DKL(Q||P ) and the variance of the evidence estimate w(x0:K) =
Γ(x0:K)/Q(x0:K) for x0:K ∼ Q is given by P opt(x0:K) = Γopt(x0:K)/Z where

Γopt(x0:K) = γ(xK)

K−1∏
k=0

Bopt
k (xk|xk+1), Bopt

k (xk|xk+1) =
qk(xk)Fk+1(xk+1|xk)

qk+1(xk+1)
. (6)

In particular, one has

wmar(xK) =
γ(xK)

qK(xK)
=

Γopt(x0:K)

Q(x0:K)
, and DKL(Q||P opt) = DKL(qK ||π). (7)

This result follows simply from the chain rule and the law of total variance which yield

DKL(Q||P ) = DKL(qK ||π) + EqK

[
DKL(Q(·|xK)||P (·|xK))

]
, (8)

varQ[w(x0:K)] = varqK [wmar(xK)] + EqK [varQ(·|xK)[w(x0:K)]]. (9)

Both quantities are clearly minimized by selecting P (x0:K−1|xK) = Q(x0:K−1|xK).

We emphasize that Proposition 1 applies to any forward kernels (Fk)
K
k=1 including MCMC kernels,

unadjusted Langevin kernels or even deterministic maps2. It shows that P opt is the distribution of
a backward process initialized at π which then follows the time-reversed dynamics of the forward
process Q. If we had qK = π, then we would have P opt = Q as then P opt would correspond to the
backward decomposition of Q.

3.2 Time reversal, Score matching and ELBO for unadjusted overdamped Langevin

We concentrate here on the case where (Fk)
K
k=1 correspond to a time-inhomogeneous unadjusted

(overdamped) Langevin algorithm (ULA) as used in [23, 53, 51]; that is we consider Fk(xk|xk−1) =
N (xk;xk−1 + δ∇ log πk(xk−1), 2δI) where δ > 0 is a stepsize. Let δ := T/K then, as K → ∞,
the proposal Q converges to the path measure Q of the following inhomogeneous Langevin diffusion
(xt)t∈[0,T ] defined by the stochastic differential equation (SDE)

dxt = ∇ log πt(xt)dt+
√
2dBt, x0 ∼ π0, (10)

where (Bt)t∈[0,T ] is standard multivariate Brownian motion and we are slightly abusing notation from
now on as πt for t = tk = kδ corresponds to πk in discrete-time. Many quantitative results measuring
the discrepancy between the law of xT and πT = π for such annealed diffusions have been obtained;
see e.g. [17, 50]. From [22] , it is known that the time-reversed process (x̄t) = (xT−t)t∈[0,T ] is also
a diffusion given by

dx̄t =
{
−∇ log πT−t(x̄t) + 2∇ log qT−t(x̄t)

}
dt+

√
2dB̄t, x̄0 ∼ qT , (11)

where (B̄t)t∈[0,T ] is another multivariate Brownian motion. The continuous-time version of P opt

is the path measure Popt defined by the diffusion (11) but initialized at x̄0 ∼ π rather than qT as
noted in [5]; see Figure 1 for an illustration. This shows that approximating (Bopt

k )K−1
k=0 requires

approximating the so-called scores (∇ log qt(x))t∈[0,T ]. This can be derived heuristically through
the fact that a Taylor expansion yields the following approximation of the optimal backward kernels,
Bopt

k (xk|xk+1) ≈ N (xk;xk+1 − δ∇ log πk+1(xk+1) + 2δ∇ log qk+1(xk+1), 2δI), which indeed
corresponds to a Euler discretization of (11); see e.g. [12, Section 2.1].

In SGM [48], one gradually adds noise to data using an Ornstein–Ulhenbeck diffusion to transform
the complex data distribution into a Gaussian distribution and the generative model is obtained by
approximating the time-reversal of this diffusion initialized by Gaussian noise. Practically, the time-
reversal approximation is obtained by estimating the scores of the noising diffusion using denoising

2The case of deterministic maps corresponds to normalizing flow components, where the inverse flow is the
optimal and only valid reversal, see e.g. [2] which includes a detailed literature review.
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score matching [52]. While in our setup, the diffusion (10) instead goes from a simple distribution to
a complex one (see Appendix D for a discussion), we can still use score matching ideas. We define a
path measure Pθ approximating Popt using a neural network sθ(T − t, x̄t) in place of ∇ log qT−t(x̄t)
in (11), i.e. we consider

dx̄t =
{
−∇ log πT−t(x̄t) + 2sθ(T − t, x̄t)

}
dt+

√
2dB̄t, x̄0 ∼ π. (12)

We would like to learn θ by minimizing DKL(Q||Pθ) over θ, i.e. equivalently we maximize a
continuous-time ELBO. Note that it is neither easily feasible to minimize DKL(Popt||Pθ) (as one
cannot sample from π) nor it is desirable as the evidence estimate is computed using samples from Q.
Hence we want the scores to be well-approximated in regions of high-probability mass under Q.

In practice, the diffusions corresponding to Q and Pθ have to be discretized, so a more direct route
adopted here is to simply take inspiration from (11) and to consider the parameterized backward
kernels Bθ

k(xk|xk+1) = N (xk;xk+1 − δ∇ log πk+1(xk+1) + 2δsθ(k + 1, xk+1), 2δI) to obtain a
parameterized extended target Pθ and corresponding unnormalized target Γθ. We then learn θ by
minimizing DKL(Q||Pθ) where

Q(x0:K) = π0(x0)
∏K−1

k=0 Fk+1(xk+1|xk), Pθ(x0:K) = π(xK)
∏K−1

k=0 Bθ
k(xk|xk+1).

This is obviously equivalent to maximizing the ELBO EQ[logwθ(x0:K)] where wθ(x0:K) =
Γθ(x0:K)/Q(x0:K). We note that it has previously been proposed to learn parameterized back-
ward kernels for general AIS proposals [44, 26]. However, the parameterization adopted therein,
Bθ

k(xk|xk+1) = N (xk;µθ(xk+1),Σθ(xk+1)), does not leverage the structure of the true reversal
and performs poorly experimentally [51, Section 4.2].

As established in the next proposition, the continuous and discrete time approaches coincide for
δ ≪ 1. Once θ is learned, we then obtain an unbiased estimate of Z through wθ(x0:K) for x0:K ∼ Q.
Proposition 2. Under regularity conditions, we have

DKL(Q||Pθ) = EQ

[ ∫ T

0

||sθ(t, xt)−∇ log qt(xt)||2dt
]
+ C1 (13)

=

K∑
k=1

∫ tk

tk−1

EQ
[
||sθ(t, xt)−∇ log qt|tk−1

(xt|xtk−1
)||2

]
dt+ C2, (14)

where tk = kδ, K = T/δ, qt|s(x′|x) is the density of xt = x′ given xs = x under Q and C1, C2

constants independent of θ. Let L(θ) = δ
∑K

k=1 EQ

[
||sθ(k, xk)−∇ logFk(xk|xk−1)||2

]
denote a

discrete-time approximation of this loss. We have ∇DKL(Q||Pθ) = ∇L(θ) + ϵ(θ) for some function
ϵ satisfying limK→∞ ϵ(θ) = 0.

Equation (13) shows that DKL(Q||Pθ) corresponds to a score matching loss as for SGM [47]. It
is possible to rewrite this loss as (14) so as to replace the intractable score term ∇ log qt(xt) by
the easy to approximate gradients of the log-transitions ∇ log qt(xt|xtk−1

) [52]. In practice, as
mentioned above, we simply learn θ by minimizing the discrete-time KL discrepancy DKL(Q||Pθ).
This formulation is also very convenient as we can additionally learn potential parameters ϕ of a
Qϕ using the same criterion. Note from equation (8) that the KL divergence decomposes as firstly a
term penalizing the difference in the approximating measure and the fixed target at the final time and
secondly another term which can be reduced by optimization of both Qϕ and Pθ conditioned on xT ;
see e.g. [1].

Pseudo-code for our approach (with a comparison to the AIS algorithm proposed in [23, 53, 51]) can
be found in Algorithm 1.

3.3 Incorporating Hamiltonian dynamics via the underdamped Langevin equation

We now consider a proposal defined on an extended space which arises from the time-discretization
of a time-inhomogeneous underdamped Langevin dynamics; see e.g. [33, Chapter 6]. In this scenario,
we first focus on continuous-time as the development of suitable numerical integrators is much more
involved than for overdamped Langevin diffusions. We consider the diffusion (xt, pt)t∈[0,T ] where
pt ∈ Rd is a momentum variable

dxt = M−1ptdt, dpt = ∇ log πt(xt)dt− ζptdt+
√
2ζM1/2dBt (15)
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Algorithm 1 Unadjusted Langevin AIS/MCD – red instructions for AIS and blue for MCD
Require: Unnormalized target γ(x), initial state proposal π0(x), number steps K, stepsize δ, an-

nealing schedule {βk}Kk=0, score model sθ(k, x)
Sample x0 ∼ π0(x0)
Set logw = − log π0(x0)
for k = 1 to K do

Define log γk(·) = βk log γ(·) + (1− βk) log π0(·)
Define Fk(xk|xk−1) = N (xk;xk−1 + δ∇ log γk(xk−1), 2δI)
Sample xk ∼ Fk(·|xk−1)
Define Bk−1(xk−1|xk) = Fk(xk−1|xk) ▷ AIS
Define Bk−1(xk−1|xk) = N (xk−1;xk − δ∇ log γk(xk) + 2δsθ(k, xk), 2δI) ▷ MCD
Set logw = logw + logBk−1(xk−1|xk)− logFk(xk|xk−1)

end for
Set logw = logw + log γ(xK)

initialized at x0 ∼ π0, p0 ∼ N (0,M) defining the path measure Q. Here M is a positive definite
mass matrix, ζ > 0 a friction coefficient and (Bt)t∈[0,T ] a multivariate Brownian motion. If πt

was not time-varying, e.g. πt = π, the invariant distribution of this diffusion would be given by
π̄(x, p) = π(x)N (p; 0,M). Intuitively, in the time varying case the SDE will have enough time
to approximate each intermediate π̄t(x, p) = πt(x)N (p; 0,M) if we change the target sufficiently
slowly. We can think of underdamped Langevin as a continuous-time version of Hamiltonian
dynamics with continuous stochastic partial momentum refreshment [25].

From [22], the time-reversal of the diffusion (15) is also a diffusion process (x̄t, p̄t)t∈[0,T ] =
(xT−t, pT−t)t∈[0,T ] given by (x̄0, p̄0) ∼ ηT and

dx̄t = −M−1p̄tdt, (16)

dp̄t = −∇ log πT−t(x̄t)dt+ ζp̄tdt+ 2ζM∇p̄t log ηT−t(x̄t, p̄t)dt+
√

2ζM1/2dB̄t,

where ηt denotes the density (xt, pt) under (15). In this case, the continuous-time version of Popt is
the path measure Popt defined by the diffusion (16) but initialized at x̄0 ∼ π, p̄0 ∼ N (0,M) rather
than ηT . We will approximate it by the path measure Pθ using a neural network sθ(T − t, x̄t, p̄t) in
place of ∇ log ηT−t(x̄t, p̄t) in (16), i.e. we consider

dx̄t = −M−1p̄tdt, (17)

dp̄t = −∇ log πT−t(x̄t)dt+ ζp̄tdt+ 2ζMsθ(T − t, x̄t, p̄t)dt+
√
2ζM1/2dB̄t.

As for overdamped Langevin, we could also learn θ by minimizing DKL(Q||Pθ) over θ. This again
corresponds to minimizing a score matching loss albeit of a form slightly different from (13).
Proposition 3. Under regularity conditions, we have

DKL(Q||Pθ) = ζEQ

[ ∫ T

0

||sθ(t, xt, pt)−∇pt
log ηt(xt, pt)||2dt

]
+ C1 (18)

= ζ

K∑
k=1

∫ tk

tk−1

EQ
[
||sθ(t, xt, pt)−∇pt

log ηt|tk−1
(xt, pt|xtk−1

, ptk−1
)||2M

]
dt+ C2,

where ||x||M := uTMu, tk = kδ, K = T/δ, C1, C2 are constants independent of θ and
ηt|s(x

′, p′|x, p) is the density of (xt, pt) = (x′, p′) given (xs, ps) = (x, p) under Q.

While the continuous-time perspective shed light on how to parameterize an approximation to the time-
reversal, this does not lead directly to an implementable discrete-time algorithm for underdamped
Langevin. Contrary to overdamped Langevin, we cannot indeed simply use an Euler discretization of
(15) defining Q and (17) defining Pθ to obtain some discrete-time forward and backward kernels
and then compute wθ(x0:K , p0:K) = Γθ(x0:K , p0:K)/Q(x0:K , p0:K). This is because this ratio is
not well-defined due to the lack of noise on the position component in both (15) and (17).

The integrator we use for the forward equation (15), consists in alternating partial momentum
refreshments and deterministic leapfrog steps (see e.g [33, 38]) giving

p̃t+δ ∼ N (hpt, (1− h2)M), (xt+δ, pt+δ) = Φt(xt, p̃t+δ), (19)
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Algorithm 2 Unadjusted Hamiltonian AIS/MCD – red instructions for AIS and blue for MCD
Require: Unnormalized target γ(x), initial state proposal π0(x), number steps K, stepsize η, an-

nealing schedule {βk}Kk=0, damping coefficient h, mass matrix M , score model sθ(k, x, p)
Sample x0 ∼ π0(x0) and p0 ∼ N (p0; 0,M)
Set logw = − log π0(x0)− logN (p0; 0,M)
for k = 1 to K do

Define log γk(·) = βk log γ(·) + (1− βk) log π0(·)
Sample p̃k ∼ N (hpk−1, (1− h2)M)
Set µq = pk−1

Set µp = p̃k ▷ UHA reversal mean
Set µp = p̃k − 2 log(h)[Msθ(k, xk−1, p̃k) + p̃k] ▷ MCD reversal mean
Set logw = logw + logN (pk−1;hµp, (1− h)2M)− logN (p̃k;hµq, (1− h)2M)
Run leapfrog integrator on γk and set (xk, pk) = Φ(xk−1, p̃k)

end for
Set logw = logw + log γ(xK) + logN (pK ; 0,M)

with h = exp{−ζδ} and Φt is the leapfrog integrator for πt. The resulting forward sampler is similar
to the one proposed by [18], except we do not flip the momentum after the leapfrog step3. This
integrator may be interpreted as a splitting method for equation (15); see e.g [33, Chapter 7].

We need the integrator for the reversal to fulfill two criteria. First, by definition, as the time step
δ → 0 it must recover the SDE (17). Second, the importance weight of the forward sampler to
the reversal must be well defined. Since the leapfrog integrator is a diffeomorphism (or flow) the
only possible way to get a well defined reversal for these steps is to take the inverse Φ−1

t . As the
transformation is also volume preserving, the contribution from the deterministic forward and reverse
terms will then exactly cancel in the importance weight. The required form of the reverse integrator is

(xt, p̃t+δ) = Φ−1
t (xt+δ, pt+δ), pt ∼ N (hfθ(t+ δ, xt, p̃t+δ), (1− h2)M), (20)

where fθ(t+ δ, xt, p̃t+δ) := p̃t+δ + δ2ζ[Msθ(t, xt, p̃t+δ) + p̃t+δ]. In Appendix C we show that as
δ → 0 this can indeed be interpreted as a valid split integrator for the reverse SDE (17). The crucial
point of algorithmic difference from [10, 18, 54] arises from our necessary form for the mean of the
reverse momentum refreshment. These works use hp̃t+δ as the mean instead of hfθ(t+ δ, xt, p̃t+δ).
We again transition to discretized notation with δ := T/K, and k = 0, ...,K. In this case, the log
importance weight, corresponding to the log evidence estimate, satisfies

logwθ(x,p) = log
γ(xK)N (pK ; 0,M)

π0(x0)N (p0; 0,M)
+

K∑
k=1

log
N (pk−1;hfθ(k, xk−1, p̃k), (1− h2)M)

N (p̃k;hpk−1, (1− h2)M)
, (21)

where (x,p) denote all the variables introduced by our integration scheme. We can show informally
that minimizing DKL(Q||Pθ), i.e. maximizing the ELBO given EQ[logwθ(x,p)], again corresponds
to minimizing a score matching type loss (18) when δ ≪ 1; see Appendix C. Pseudo-code for our
approach can be found in Algorithm 2.

4 Experiments

We run a number of experiments estimating normalizing constants to validate our approach, MCD
and compare to differentiable AIS with ULA [53, 51] and Unadjusted Hamiltonian Annealing
(UHA) [18, 54]. We first investigate the performance of these approaches on static target distributions
using the same, fixed initial distribution and annealing schedule. Finally, we explore the performance
of the methods for VAEs. Here, being the most expensive of our experiments, we include runtime
comparisons of our method compared to baselines. Additional results on a Normalizing Flow target
can be found in Appendix F.2. Full experimental details, chosen hyper-parameters, and model
architectures can be found in Appendix E.

Our score model is parameterized by an MLP with residual connections that is conditioned on
integration time t, and on the momentum term for the Hamiltonian case (see Algorithm 2). For an
ablation on various network architectures we refer the reader to Appendix F.3.

3[18] were not attempting to discretize an underdamped Langevin dynamics.
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4.1 Static Targets

We estimate the normalizing constants of five simple distributions with known normalizing constants
equal to logZ = 0; N (10, I), N (0, 0.1I), a Gaussian mixture with 8 components whose means are
drawn from N (3, I) where each component has variance 1, a standard Laplace distribution and a
Student’s T distribution with 3 degrees of freedom. We use N (0, I) as our initial distribution for
all targets except for the Gaussian mixture and N (0, 0.1I) which both use N (0, 32I). We run each
method using K ∈ {64, 256} steps and use a fixed, linear annealing schedule. For all methods,
sampling step-sizes per-timestep are tuned to via gradient descent to maximize the ELBO and the
diagonal mass matrix is learned for the Hamiltonian samplers. Gaussian Mixture and Student-T
results can be found in Tables 1 and 2, respectively. Additional results can be found in Appendix F.1.

Sampler ULA UHA ULA-MCD UHA-MCD
# steps 64 256 64 256 64 256 64 256

Dim-20 -0.47
± 0.22

-0.13
± 0.07

-0.03
± 0.18

0.015
± 0.03

0.01
± 0.02

0.01
± 0.01

0.01
± 0.02

-0.01
± 0.01

Dim-200 -85.62
± 2.01

-21.98
± 1.35

-8.20
± 1.84

-1.26
± 0.35

-0.25
± 0.03

0.08
± 0.122

0.20
± 0.49

-0.05
± 0.04

Dim-500 -304.06
± 5.48

-83.50
± 7.88

-44.45
± 3.24

-8.60
± 1.69

-2.61
± 1.26

1.01
± 0.99

-1.74
± 1.25

-1.02
± 0.03

Table 1: logZ estimates for a Gaussian mixture target. Averages and standard errors over 3 seeds.

On average and as expected, UHA outperforms ULA on most targets. Further our approximation to
the optimal backward kernels can yield considerable improvements – enabling the ULA sampler to
produce better results than UHA (using the standard AIS backward kernels). Additionally, we see
that our approximation to the optimal backward kernels improves the performance of UHA as well.

We further emphasize that often ULA-MCD and UHA-MCD with 64 steps outperform or is on-par
with ULA and UHA with 256 steps, a difference of factor 4 in terms of target gradient evaluations.
As we show below in Table 3, the additional computational costs of fitting the score model of our
method are only roughly twice that of the baselines.

Sampler ULA UHA ULA-MCD UHA-MCD
# steps 64 256 64 256 64 256 64 256

Dim-20 -0.09
± 0.02

-0.02
± 0.01

-0.04
± 0.02

-0.02
± 0.01

-0.06
± 0.02

-0.00
± 0.01

-0.03
± 0.04

-0.01
± 0.01

Dim-200 -1.63
± 0.23

-0.88
± 0.15

-0.36
± 0.34

-0.10
± 0.10

-0.82
± 0.28

-0.30
± 0.38

-0.48
± 0.20

-0.10
± 0.07

Dim-500 -5.43
± 0.78

-3.10
± 0.07

-2.86
± 0.36

-1.03
± 0.13

-4.00
± 0.51

-2.23
± 0.18

-2.03
± 0.18

0.06
± 0.30

Table 2: logZ estimates for a Student-T target. Averages and standard errors over 3 seeds.

4.2 Application to Amortized Inference

Next, we explore the application of our method to amortized inference, in the context of VAEs
[31, 41]. These models are trained to infer latent representations using an inference neural network
that consumes an input and produces parameters of an approximation to the true posterior distribution
of the underlying generative model. In particular, this posterior distribution is different for each input.
When applying AIS to VAE inference [51, 18, 54], the output of the inference network parameterizes
the initial distribution of the annealing sequence to the true posterior. By training this end-to-end,
we effectively learn the initial distribution for the diffusion process. Consequently, the diffusion
marginals and their score vectors ∇ log qt are different for every input, and we need to condition our
score model sθ on the inputs to reflect that. We achieve this by projecting the last hidden layer of the
inference network into a summary vector that is concatenated to the other conditioning inputs of sθ.

We train a VAE on the binarized MNIST dataset [43], re-using architectures proposed in [18, 8] (two-
layer MLP encoder/decoder, Bernoulli likelihood). All generative models use the same architecture
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and hyper-parameters. We compare standard amortized variational inference with annealed ULA
and UHA with standard AIS backward transition kernels, as well as ULA and UHA with our MCD
transition kernels. We match the number of sampler steps between ULA/ULA-MCD and UHA/UHA-
MCD to 64 and 32 respectively. ELBO and log-likelihood values on the test set are presented in
Table 3.

Sampler VI ULA UHA ULA-MCD UHA-MCD
ELBO -96.32 ± 0.40 -90.41 ± 0.17 -88.58 ± 0.51 -90.10 ± 0.10 -88.08 ± 0.07

Log-lik. -69.35 ± 0.36 -62.43 ± 0.25 -61.05 ± 1.84 -61.83 ± 0.42 -58.58 ± 0.34
Iteration time 0.024s 0.055s 0.050s 0.101s 0.098s

Total time 3263.40s 4694.52s 5072.19s 11304.36s 11345.59s

Table 3: Test set performance for MNIST VAE. Averages and standard errors over 5 seeds. We
additionally report runtimes for a single training iteration, and total experiment time.

We see that, as reported in prior works [18, 51, 54], Monte Carlo based inference methods provide a
significant benefit over standard amortized variational inference. In addition, our learned backward
kernels lead to improved performance of both ULA and UHA, with the difference being more distinct
for the latter. We also note that UHA has significantly larger error bars than all other methods, but
UHA-MCD does not appear to inherit this. We further provide a runtime comparison in Table 3, both
for a single training iteration, and total experiment time (including evaluation). We find that fitting
the score models of our method results in roughly twice as much runtime (recall we fixed the number
of sampler steps).

5 Limitations

While we have demonstrated that our optimized backward kernels can lead to large improvements
over standard AIS backward kernels, our proposed approach has a number of limitations. First,
since our method relies upon unadjusted Langevin or Hamiltonian sampling, we inherit many of
the issues with these approaches. Using unadjusted samplers enables a fully-differentiable ELBO
estimate which can in theory be used to tune the many parameters of the sampler. However, these
samplers require repeated gradient steps as an inner-loop which can lead to divergence dynamics
and numerical instability, making optimization difficult. Next, our proposed training procedure has
a notable increase in memory consumption as we store the entire sampling trajectory in memory
to train our neural network. We further note that it is possible to compute our importance weights
online using O(1) memory. We could utilize this with Monte Carlo sub-sampling of the timestep (as
with SGM [24]) to derive a constant memory training procedure for our approximate time-reversal at
the cost of increased variance but we leave exploring this to future work. Finally, we observed that,
without mitigation, parameterized forward samplers Qϕ sometimes dropped modes during training.
Since this is a known challenge of using reverse KL, this might be improved by using alternative
optimization objectives [35, 36].

6 Discussion

In this work we have explored AIS using unadjusted Langevin and Hamiltonian dynamics. We
have demonstrated that the backward transition kernels typically used are suboptimal and we have
presented the form of the optimal variance-minimizing backward kernels. We have further shown
how an approximation to these kernels can be learned using score matching and that this objective
corresponds to maximizing the ELBO in the limit of infinitesimally small time-discretization step-
sizes. We have illustrated the benefit of using our proposed optimized backward kernels on a number
of inference problems including fixed targets and amortized tasks with model learning.
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A Variance calculations

We provide here, for a simple example, the variance expressions for logwais(x0:K) and logwmar(xK).
All the expectations in this section are w.r.t. the proposal Q.

We consider the scenario where π0(x) = γ0(x) = N (x; 0, σ2
0) and for k ≥ 1

πk(x) = N (x; 0, σ2
k), γk(x) = exp

(
− x2

2σ2
k

)
.

We select the sequence of variances as follows

σ2
k =

(
σ2
0

)1− k
K
(
σ2

) k
K =

(
σ2

σ2
0

)1/K

σ2
k−1 := βKσ2

k−1

so that π(x) = πK(x) = N (x; 0, σ2). We will pick σ2 < σ2
0 so βK < 1. Finally we consider the

following proposal Q. At initialization x0 ∼ π0 and for k ≥ 1 we have the following transitions
kernels

Fk(x
′|x) = N (x′;αx, (1− α2)σ2

k)

which are πk-invariant and α determines how fast it mixes. For α = 0, we have exact samples
from πk and as α → 1 we are mixing less and less. For this setup, it is possible to provide exact
calculations for the expectation and variance of the log-evidence estimate.
Proposition 4. Under Q, we have xk ∼ N (0, ξ2k) where ξ20 = σ2

0 and

ξ2k = α2ξ2k−1 + (1− α2)σ2
k.

The expectation of the log evidence estimates satisfies

E[logwmar(xK)] =
1

2
log

(
2πξ2K

)
+

1

2

(
1

ξ2K
− 1

σ2
K

)
ξ2K ,

E[logwais(x0:K)] =
1

2
log(2πσ2

0) +
(βK − 1)

2

K∑
k=1

ξ2k−1

σ2
k

,

while their variance is given by

var[logwmar(xK)] =
1

2

(
1

ξ2K
− 1

σ2
K

)2

ξ4K ,

var[logwais(x0:K)] = (βK − 1)
2

( K∑
k=1

ξ4k−1

2σ4
k

+

K∑
K≥l>k≥1

α2(l−k)ξ4k−1

σ2
kσ

2
l

)
.

Proof. The proposal is given by x0 ∼ N (0, σ2
0) and

xk = αxk−1 +
√

1− α2σkϵk, ϵk
i.i.d.∼ N (0, 1).

So marginally, under Q, we have xk ∼ N (0, ξ2k) where (ξk)k≥0 satisfies the recursion stated above.

We are first looking at the optimal log-estimate of Z which is given by

logwmar(xK) = log γK(xK)− log qK(xK)

=
1

2
log

(
2πξ2K

)
+

1

2

(
1

ξ2K
− 1

σ2
K

)
x2
K

so we have

E[logwmar(xK)] =
1

2
log

(
2πξ2K

)
+

1

2

(
1

ξ2K
− 1

σ2
K

)
ξ2K

and, using var[x2] = 2σ4 for x ∼ N (0, σ2), we obtain

var[logwmar(xK)] =
1

2

(
1

ξ2K
− 1

σ2
K

)2

ξ4K .
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We are now looking at the AIS log-estimate of Z which is given by

logwais(x0:K) =

K∑
k=1

log(γk(xk−1))− log(γk−1(xk−1))

=
1

2
log(2πσ2

0) +
(βK − 1)

2

K∑
k=1

x2
k−1

σ2
k

,

the term 1
2 log(2πσ

2
0) coming from the fact that we consider γ0 = π0. It follows that

E[logwais(x0:K)] =
1

2
log(2πσ2

0)+
(βK − 1)

2

K∑
k=1

ξ2k−1

σ2
k

.

The variance is given by

var[logwais(x0:K)] =
(βK − 1)

2

4
var

[
K∑

k=1

x2
k−1

σ2
k

]

=
(βK − 1)

2

4

K∑
k=1

1

σ4
k

var
[
x2
k−1

]
+ 2

(βK − 1)
2

4

K∑
K≥l>k≥1

1

σ2
kσ

2
l

cov
[
x2
k−1, x

2
l−1

]
.

Now, using again var[x2] = 2σ4 for x ∼ N (0, σ2), we have var
[
x2
k−1

]
= 2ξ4k−1. To compute

cov
[
x2
k−1, x

2
l−1

]
, we use the fact that one can easily check from the form of the forward transitions

that (xk−1, xl−1) satisfies for l > k

cov(xk−1, xl−1) = αl−kξ2k−1.

So we have in distribution for z ∼ N (0, 1) independent of xk−1

(xk−1, xl−1) = (xk−1, α
l−kxk−1 +

√
ξ2l−1 − α2(l−k)ξ2k−1z).

Thus it follows that

x2
k−1x

2
l−1 = x2

k−1

(
αl−kxk−1 +

√
ξ2l−1 − α2(l−k)ξ2k−1z

)2

= x2
k−1

(
α2(l−k)x2

k−1 + (ξ2l−1 − α2(l−k)ξ2k−1)z
2 + 2αl−k

√
ξ2l−1 − α2(l−k)ξ2k−1xk−1z

)
= α2(l−k)x4

k−1 + (ξ2l−1 − α2(l−k)ξ2k−1)z
2x2

k−1 + 2αl−k
√

ξ2l−1 − α2(l−k)ξ2k−1x
3
k−1z.

Hence, we obtain

cov
[
x2
k−1, x

2
l−1

]
= E

[
x2
k−1x

2
l−1

]
− E

[
x2
k−1

]
E
[
x2
l−1

]
= 3α2(l−k)ξ4k−1 + (ξ2l−1 − α2(l−k)ξ2k−1)ξ

2
k−1 − ξ2k−1ξ

2
l−1

= 2α2(l−k)ξ4k−1.

This finally yields

var[logwais(x0:K)] =
(βK − 1)

2

4

K∑
k=1

1

σ4
k

var
[
x2
k−1

]
+ 2

(βK − 1)
2

4

K∑
K≥l>k≥1

1

σ2
kσ

2
l

cov
[
x2
k−1, x

2
l−1

]
=

(βK − 1)
2

2

K∑
k=1

ξ4k−1

σ4
k

+ (βK − 1)
2

K∑
K≥l>k≥1

α2(l−k)ξ4k−1

σ2
kσ

2
l

,

as required.

We now illustrate these results in Figure 3 by plotting the expectation and the root mean square error
of logwmar and logwais for various α and K.
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Figure 3: Plot of analytic results from Section A. The left column shows the analytic mean E[logw]
as a function of the number of temperature transitions K for different values of the mixing parameter
α ∈ [0, 1]. α = 0 corresponds to perfect mixing while α = 1 corresponds to no mixing. MAR denotes
the optimal importance weight, where AIS shows the one from Annealed Importance Sampling. Both
estimators tend to the correct value logZ (shown as a Cyan line) as K becomes large but MAR does
so faster. The right column shows the same plots but for the root mean squared error (RMSE) of
logw treated as an estimator of logZ. It is computed as the root of the bias squared plus the variance,
i.e

√
(E[logw]− logZ)2 + Var[logw]. The RMSE of both estimators tends to zero in both cases as

K becomes large but MAR does so faster.
B Proof of Propositions

B.1 Proof of Proposition 1

Proof. The chain rule for the Kullback–Leibler divergence DKL(Q||P ) yields

DKL(Q||P ) = DKL(qK ||π) + EqK

[
DKL(Q(·|xK)||P (·|xK))

]
, (22)

where, from (2) and (3), the conditional distributions of x0:K−1 given xK are equal to

Q(x0:K−1|xK) =

K−1∏
k=0

Bopt
k (xk|xk+1), P (x0:K−1|xK) =

K−1∏
k=0

Bk(xk|xk+1), (23)

The expression for Q above follows directly from its time-reversed decomposition; i.e.

Q(x0:K) = qK(xK)

K−1∏
k=0

qk(xk)Fk+1(xk+1|xk)

qk+1(xk+1)
= qK(xK)

K−1∏
k=0

Bopt
k (xk|xk+1), (24)

where we recall that q0(x0) = π0(x0). It thus follows directly from (22) and (23) that the backward
transition kernels (Bk)

K−1
k=0 minimizing DKL(Q||P ) are (Bopt

k )K−1
k=0 as this implies P (x0:K−1|xK) =

Q(x0:K−1|xK).

The variance decomposition formula yields for all P

varQ[w(x0:K)] = varqK [EQ(·|xK)[w(x0:K)]] + EqK [varQ(·|xK)[w(x0:K)]]

= varqK [wmar(xK)] + EqK [varQ(·|xK)[w(x0:K)]]

≥ varqK [wmar(xK)].

By direct calculations, we also have wmar(xK) = Γopt(x0:K)/Q(x0:K) so P opt minimizes the
variance of the evidence estimate.
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B.2 Proof of Proposition 2

We establish first here Proposition 5 and Proposition 6. Both results can then be easily combined to
obtain Proposition 2.

Proposition 5. Under regularity conditions, one has

DKL(Q||Pθ) = EQ

[ ∫ T

0

||sθ(t, xt)−∇ log qt(xt)||2dt
]
+ C1 (25)

=

K∑
k=1

∫ tk

tk−1

EQ
[
||sθ(t, xt)−∇ log qt|tk−1

(xt|xtk−1
)||2

]
dt+ C2, (26)

for constants C1, C2 independent of θ, where tk = kδ with K = T/δ and qt|s(x
′|x) is the density of

Xt = x′ given Xs = x under Q.

To establish (25), we follow arguments similar to [47, Theorem 2]. The loss (26) we then consider
differs from the one uses in the score-based generative modeling literature. This is because, contrary
to the Ornstein–Ulhenbeck process used for SGM, the transition density qt′|t(x

′|x) of the forward
diffusion (10) is not available in closed-form and can only be approximated reliably when t′ − t is
small. Practically, to obtain a tractable criterion, we need to first approximate the integrals in (26) by
the rectangular rule. We also discretize the Langevin dynamics using an Euler–Maruyama scheme;
i.e. we use an approximation Q of Q based on the ULA kernel Fk(xk|xk−1) = N (xk;xk−1 +
δ∇ log πk(xk−1); 2δI) approximating qtk|tk−1

(x′|x). We recall here that we slightly abuse notation
by writing πtk = πkδ as πk. We thus finally obtain a loss

L(θ) = δ

K∑
k=1

EQ

[
||sθ(k, xk)−∇ logFk(xk|xk−1)||2

]
. (27)

Proof. We assume here sufficient regularity conditions ensuring that the SDEs given below admit a
unique solution, their corresponding time-reversed diffusions are well-defined and Girsanov theorem
applies; see e.g. [47, Appendix A].

By the chain rule for KL divergence, one has

DKL(Q||Pθ) = DKL(qT ||π) + EqT

[
DKL(Q(·|xT )||Pθ(·|xT ))

]
(28)

where Q(·|xT ) and Pθ(·|xT ) are the path measures induced by

dx̄t =
{
−∇ log πT−t(x̄t) + 2∇ log qT−t(x̄t)

}
dt+

√
2dB̄t, x̄0 = xT , (29)

and

dx̄t =
{
−∇ log πT−t(x̄t) + 2∇ log sθ(T − t, x̄t)

}
dt+

√
2dB̄t, x̄0 = xT . (30)

We now use Girsanov theorem (see e.g. [32, Section 10.3] and [39]) to compute the Radon–Nikodym
derivative dQ(·|xT )/dPθ(·|xT ) so that

EqT

[
DKL(Q(·|xT )||Pθ(·|xT ))

]
=− EQ

[
log

dPθ(·|xT )

dQ(·|xT )

]
=EQ

[√
2

∫ T

0

(∇ log qT−t(x̄t)− sθ(T − t, x̄t))dB̄t +

∫ T

0

||∇ log qT−t(x̄t)− sθ(T − t, x̄t)||2dt
]

=EQ

[ ∫ T

0

||∇ log qt(xt)− sθ(t, xt)||2dt
]
,

as EQ

[ ∫ T

0
ft(x̄t)dB̄t

]
= 0 for any function ft.
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As in [11] in a different context, we can write for any partition of [0, T ] defined by t0 = 0 < t1 <
· · · < tK−1 < tK = T

EQ

[ ∫ T

0

||∇ log qt(xt)− sθ(t, xt)||2dt
]
=

∫ T

0

∫
||∇ log qt(x)− sθ(t, x)||2qt(x)dxdt

=

K∑
k=1

∫ tk

tk−1

∫
||∇ log qt(x)− sθ(t, x)||2qt(x)dxdt

where, for a constant c independent of θ, we have∫ tk

tk−1

∫
||∇ log qt(x)− sθ(t, x)||2qt(x)dxdt

=

∫ tk

tk−1

∫ {
||∇ log qt(x)||2 + ||sθ(t, x)||2 − 2sθ(t, x)

T∇ log qt(x)
}
qt(x)dxdt

=

∫ tk

tk−1

∫ {
||sθ(t, x)||2 − 2sθ(t, x)

T∇ log qt(x)
}
qt(x)dxdt+ c.

Now we have∫ tk

tk−1

∫
sθ(t, x)

T∇ log qt(x)qt(x)dxdt =

∫ tk

tk−1

∫
sθ(t, x)

T∇qt(x)dxdt (31)

where, using Chapman-Kolmogorov, qt satisfies

qt(x) =

∫
qtk−1

(xtk−1
)qt|tk−1

(x|xtk−1
)dxtk−1

. (32)

It follows that

∇qt(x) =

∫
qtk−1

(xtk−1
)∇qt|tk−1

(x|xtk−1
)dxtk−1

. (33)

Hence, we have∫ tk

tk−1

∫
sθ(t, x)

T∇qt(x)dxdt

=

∫ tk

tk−1

∫ ∫
sθ(t, x)

T∇ log qt|tk−1
(x|xtk−1

)qtk−1
(xtk−1

)qt|tk−1
(x|xtk−1

)dxtk−1
dxdt

so minimizing EqT

[
DKL(Q(·|xT )||Pθ(·|xT ))

]
w.r.t. θ is equivalent to minimize

K∑
k=1

∫ tk

tk−1

∫ ∫
||sθ(t, x)||2qtk−1

(xtk−1
)qt|tk−1

(x|xtk−1
)dxtk−1

dxdt

−2

K∑
k=1

∫ tk

tk−1

∫ ∫
sθ(t, x)

T∇ log qt|tk−1
(x|xtk−1

)qtk−1
(xtk−1

)qt|tk−1
(x|xtk−1

)dxtk−1
dxdt

=

K∑
k=1

∫ tk

tk−1

∫ ∫
||sθ(t, x)−∇ log qt|tk−1

(x|xtk−1
)||2qtk−1

(xtk−1
)qt|tk−1

(x|xtk−1
)dxtk−1

dxdt+ C

where C is independent of θ. Hence, this is equivalent to minimizing (26).
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We now establish results about the discrete-time Kullback–Leibler divergence DKL(Q||Pθ). First
note that

DKL(Q||Pθ) = EQ

[
log

Q(x0:K)

Pθ(x0:K)

]
= EQ

[
log

π0(x0)
∏K−1

k=0 Fk+1(xk+1|xk)

π(xK)
∏K−1

k=0 Bθ
k(xk|xk+1)

]

= −
K−1∑
k=0

EQ

[
logBθ

k(xk|xk+1)
]
+ C1, (34)

where, as Bθ
k(xk|xk+1) = N (xk;xk+1 − δ∇ log πk+1(xk+1) + 2δsθ(k + 1, xk+1), 2δI), one has

− logBθ
k(xk|xk+1) =

1

4δ
||xk − xk+1 + δ∇ log πk+1(xk+1)− 2δsθ(k + 1, xk+1)||2 + C2

= δ
∥∥∥sθ(k + 1, xk+1)−

1

2δ
(xk − xk+1 + δ∇ log πk+1(xk+1))

∥∥∥2 + C2 (35)

≈ δ
∥∥∥sθ(k + 1, xk+1)−

1

2δ
(xk − xk+1 + δ∇ log πk+1(xk))

∥∥∥2 + C2

= δ
∥∥∥sθ(k + 1, xk+1)−∇ logFk+1(xk+1|xk)

∥∥∥2 + C2, (36)

where we have used πk+1(xk+1) ≈ πk+1(xk) for δ ≪ 1. The sum over k = 0, ...,K − 1 of the first
terms on the r.h.s. of (35) are equal to the loss L(θ) defined in (27). More rigorously, we can prove
the following result.
Assumption 1. There exists L ≤ ∞ such that for all k and x, x′ ∈ Rd∥∥∥∇ log πk(x)−∇ log πk(x

′)
∥∥∥ ≤ L

∥∥∥x− x′
∥∥∥. (37)

Assumption 2. There exists C ≤ ∞ such that

lim sup
K

max
k=0,...,K−1

EQK

[∥∥∥∇ log πk+1(xk)
∥∥∥2] ≤ C (38)

and for any θ

lim sup
K

max
k=0,...,K−1

EQK

[∥∥∥∇θsθ(k + 1, xk+1)
∥∥∥2] ≤ C, (39)

where we have emphasized here notationally that Q is a function of K.
Proposition 6. Under Assumptions 1-2, the gradient of the Kullback–Leibler divergence DKL(Q||Pθ)
satisfies

∇DKL(Q||Pθ) = ∇L(θ) + ϵ(θ), (40)
for L(θ) defined in (27) and a function ϵ satisfying limK→∞ ϵ(θ) = 0.

Proof. In the rest of the proof, all the expectations are taken w.r.t. Q unless mentioned otherwise
and we drop it from the notations for simplicity. However as we take gradients w.r.t. to both x and θ,
this is indicated notationally to avoid confusion. We also assume that θ is a scalar in the proof, the
extension to the multivariate case is straightforward.

Using (34), we have

∇θDKL(Q||Pθ) = −
K−1∑
k=0

E
[
∇θ logB

θ
k(xk|xk+1)

]
, (41)

where, from (35), one has

−∇θ logB
θ
k(xk|xk+1) (42)

=δ∇θ

∥∥∥sθ(k + 1, xk+1)−
1

2δ
(xk − xk+1 + δ∇x log πk+1(xk+1))

∥∥∥2
=2δ∇θsθ(k + 1, xk+1)

T(sθ(k + 1, xk+1)−
1

2δ
(xk − xk+1 + δ∇x log πk+1(xk+1))). (43)
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We also have

∇θL(θ) = δ

K−1∑
k=0

E
[
∇θ

∥∥∥sθ(k, xk)−∇x logFk(xk|xk−1)
∥∥∥2] , (44)

where

δ∇θ

∥∥∥sθ(k, xk)−∇x logFk(xk|xk−1)
∥∥∥2

=δ∇θ

∥∥∥sθ(k, xk)−
1

2δ
(xk − xk+1 + δ∇x log πk+1(xk))

∥∥∥2
=2δ∇θsθ(k + 1, xk+1)

T(sθ(k + 1, xk+1)−
1

2δ
(xk − xk+1 + δ∇x log πk+1(xk))). (45)

So we obtain by using (34) and (35)

∇θDKL(Q||Pθ) = ∇θL(θ) + ϵ(θ), (46)

for

ϵ(θ) = 2δE

[
K−1∑
k=0

∇θsθ(k + 1, xk+1)
T(∇x log πk+1(xk)−∇x log πk+1(xk+1))

]
. (47)

Hence we have

|ϵ(θ)| ≤ 2δ

K−1∑
k=0

E
[
|∇θsθ(k + 1, xk+1)

T(∇x log πk+1(xk)−∇x log πk+1(xk+1))|
]

≤ 2δ

K−1∑
k=0

E
[∥∥∥∇θsθ(k + 1, xk+1)

∥∥∥2]1/2 E [∥∥∥∇x log πk+1(xk)−∇x log πk+1(xk+1)
∥∥∥2]1/2

(48)

From Assumption 1, we have

E
[∥∥∥∇x log πk+1(xk)−∇x log πk+1(xk+1)

∥∥∥2] ≤ L2E
[∥∥∥xk+1 − xk

∥∥∥2]
≤ 2L2δE

[
δ
∥∥∥∇x log πk+1(xk)

∥∥∥2 + 2M

]
, (49)

where M = EZ∼N (0,I)[||Z||2] as xk+1 = xk + δ∇x log πk+1(xk) +
√
2δZ under Q. Now using

Assumption 2, it follows from (48), (49), (38), (39) and K = O(1/δ) that ϵ(θ) = O(
√
δ). The result

follows.

B.3 Proof of Proposition 3

We also assume here sufficient regularity conditions ensuring that the SDEs given below admit a
unique solution, their corresponding time-reversed diffusions are well-defined and Girsanov theorem
applies. The proof is very similar to the proof of the first part of Proposition 2 (i.e. Proposition 5 in
Appendix B.2).

To start with, we use again the chain rule for KL divergences, one has

DKL(Q||Pθ) = DKL(ηT ||πT ⊗N (0,M)) + EηT

[
DKL(Q(·|xT , pT )||Pθ(·|xT , pT ))

]
(50)

where Q(·|xT , pT ) is the path measure induced by

dx̄t = −M−1p̄tdt, (51)

dp̄t = −∇ log πT−t(x̄t)dt+ ζp̄tdt+ 2ζM∇p̄t
log ηT−t(x̄t, p̄t)dt+

√
2ζM1/2dB̄t
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and Pθ(·|xT , pT ) the path measure induced by

dx̄t = −M−1p̄tdt, (52)

dp̄t = −∇ log πT−t(x̄t)dt+ ζp̄tdt+ 2ζMsθ(T − t, x̄t, p̄t) +
√

2ζM1/2dB̄t,

these two diffusions being initialized at (x̄0, p̄0) = (xT , pT ).

By now applying a version of Girsanov’s theorem that allows for some of the components of the
diffusions to be noiseless [49, Theorem 4], we obtain

EηT

[
DKL(Q(·|xT , pT )||Pθ(·|xT , pT ))

]
=
1

2
EQ

[ ∫ T

0

∫
||2ζM∇p log ηt(xt, pt)− 2ζMsθ(t, xt, pt)||2(2ζM)−1dt

]
=ζEQ

[ ∫ T

0

||∇p log ηt(xt, pt)− sθ(t, xt, pt)||2Mdt
]
. (53)

Now equation (18) follows directly from (50) and (53). We are now going to rewrite this loss to make it
more tractable. We have for any partition of [0, T ] defined by t0 = 0 < t1 < · · · < tK−1 < tK = T

EQ

[ ∫ T

0

||∇p log ηt(xt, pt)− sθ(t, xt, pt)||2Mdt
]

=

∫ T

0

∫
||∇p log ηt(x, p)− sθ(t, x, p)||2M ηt(x, p)dxdpdt

=

K∑
k=1

∫ tk

tk−1

∫
||∇p log ηt(x, p)− sθ(t, x, p)||2M ηt(x, p)dxdpdt

where∫ tk

tk−1

∫
||∇p log ηt(x, p)− sθ(t, x, p)||2Mηt(x, p)dxdpdt

=

∫ tk

tk−1

∫ {
||∇p log ηt(x, p)||2 + ||sθ(t, x, p||2M − 2sθ(t, x, p)

TM∇p log ηt(x, p)
}
ηt(x, p)dxdpdt

=

∫ tk

tk−1

∫ {
||sθ(t, x, p)||2M − 2sθ(t, x, p)

TM∇p log ηt(x, p)
}
ηt(x, p)dxdpdt+ c.

Now we have∫ tk

tk−1

∫
sθ(t, x, p)

TM∇p log ηt(x, p)ηt(x, p)dxdpdt =

∫ tk

tk−1

∫
sθ(t, x, p)

TM∇pηt(x, p)dxdpdt

where, using Chapman-Kolmogorov, we have

ηt(x, p) =

∫
ηtk−1

(xtk−1
, ptk−1

)ηt|tk−1
(x, p|xtk−1

, ptk−1
)dxtk−1

dptk−1
.

Here ηt|tk−1
(x, p|xtk−1

, ptk−1
) denote the transition density of (xt, pt) = (x, p) given (xtk−1

, ptk−1
)

under the forward dynamics (15) so that

∇pηt(x, p) =

∫
ηtk−1

(xtk−1
, ptk−1

)∇pηt|tk−1
(x, p|xtk−1

, ptk−1
)dxtk−1

dptk−1
.

Hence, it follows that∫ tk

tk−1

∫
sθ(t, x, p)

TM∇pηt(x, p)dxdpdt

=

∫ tk

tk−1

∫ ∫
ηtk−1

(xtk−1
, ptk−1

)ηt|tk−1
(x, p|xtk−1

, ptk−1
)×

× sθ(t, x, p)
TM∇p log ηt|tk−1

(x, p|xtk−1
, ptk−1

)dxdpdxtk−1
dptk−1

dt
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so ζ−1DKL(Q||Pθ) is equal up to an additive constant c independent of θ to

K∑
k=1

∫ tk

tk−1

∫ ∫
sθ(t, x, p)

TMsθ(t, x, p)ηtk−1
(xtk−1

, ptk−1
)ηt|tk−1

(x, p|xtk−1
, ptk−1

)dxdpdxtk−1
dptk−1

dt

−2

K∑
k=1

∫ tk

tk−1

∫ ∫
ηtk−1

(xtk−1
, ptk−1

)ηt|tk−1
(x, p|xtk−1

, ptk−1
)sθ(t, x, p)

TM×

×∇p log ηt|tk−1
(x, p|xtk−1

, ptk−1
)dxdpdxtk−1

dptk−1
dt

=

K∑
k=1

∫ tk

tk−1

∫ ∫
||sθ(t, x, p)−∇p log ηt|tk−1

(x, p|xtk−1
, ptk−1

)||2Mηtk−1
(xtk−1

, ptk−1
)×

× ηt|tk−1
(x, p|xtk−1

, ptk−1
)dxdpdxtk−1

dptk−1
dt+ c

Hence, finally we obtain as required

DKL(Q||Pθ) =ζ

K∑
k=1

∫ tk

tk−1

E
[
||sθ(t, xt, pt)−∇pt log ηt|tk−1

(xt, pt|xtk−1
, ptk−1

)||2M
]
dt+ C2.

(54)

C Details of the reverse integrator for the Hamiltonian variant

We take equation (17) and rewrite in the following form.

dx̄t = −M−1p̄tdt, (55)

dp̄t = −∇ log πT−t(x̄t)dt+ 2ζ[Msθ(T − t, x̄t, p̄t) + p̄t]dt+ [−ζp̄tdt+
√

2ζM1/2dB̄t].

As in [15], we have rewritten the SDE for p̄t in three distinct components, the last one corresponding
to an Ornstein–Ulhenbeck process. The integrator we propose however differs from [15] and
will rely on a leapfrog component. In details, we integrate successively over the time interval
x̄ ∈ [t′ − δ, t′] =⇒ x ∈ [t + δ, t], where t = T − t′. This allows us to directly compare random
variables with the forward integrator in Section 3.3.

First, we integrate
dx̄t = −M−1p̄tdt, dp̄t = −∇ log πT−t(x̄t)dt (56)

by using (x̃t+δ, p̃t+δ) = Φ−1
t (xt+δ, pt+δ) where Φ−1

t (x, p) = Φflip ◦ Φt ◦ Φflip(x, p) with
Φflip(x, p) = (x,−p). We then integrate

dx̄t = 0, dp̄t = 2ζ[Msθ(T − t, x̄t, p̄t) + p̄t]dt (57)

using (x̂t, p̂t) = (x̃t+δ, fθ(t + δ, x̃t+δ, p̃t+δ)) for fθ(t + δ, x̃t+δ, p̃t+δ) = p̃t+δ + 2δζ[Msθ(t +
δ, x̃t+δ, p̃t+δ) + p̃t+δ] and finally

dx̄t = 0, dp̄t = −ζp̄tdt+
√
2ζM1/2dB̄t (58)

using (xt, pt) = (x̂t, hp̂t +
√
1− h2ϵ) with ϵ ∼ N (0,M) for h = exp(−ζδ).

Note that the x variable only changes in ones of these steps so that xt = x̂t = x̃t+δ, allowing us to
eliminate the redundant terms. We can also eliminate p̂t by substitution. We therefore need only to
work in terms of the triple (xt, pt, p̃t+δ) at each combined time step. The conditional distribution for
these remaining random variables is then:

Bθ
k(xt, pt, p̃t+δ|xt+δ, pt+δ) = δΦ−1(xt+δ,pt+δ)(xt, p̃t+δ)N (pt;hfθ(t+ δ, xt, p̃t+δ), (1− h2)M)

(59)

where δΦ−1(xt+δ,pt+δ)(xt, p̃t+δ) is a Dirac-delta centred on Φ−1(xt+δ, pt+δ). From the main text we
note that the forward Hamiltonian integrator has the conditional distribution:

Fk+1(p̃t+δ, xt+δ, pt+δ|xt, pt) = δΦ(xt,p̃t+δ)(xt+δ, pt+δ)N (p̃t+δ;hpt, (1− h2)M). (60)
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We again transition to discretized notation with δ := T/K, and k = 0, ...,K. Bringing together all
the remaining random variables at each time step we have:

Q(x,p) = π0(x0)N (p0; 0,M)
∏K−1

k=0 Fk+1(xk+1, pk+1, p̃k+1|xk, pk),

Γθ(x,p) = γ(xK)N (pK ; 0,M)
∏K−1

k=0 Bθ
k(xk, pk, p̃k+1|xk+1, pk+1).

We are interested in the unnormalized importance weight wθ(x,p) = Γθ(x,p)/Q(x,p). We note that
the division of delta functions is in general ill-defined and in our case should be interpreted formally
in terms of the action of the volume preserving Leapfrog integrator flows ϕt, as we describe in the
main text. Further although the numerator and denominator in the definition of wθ(x,p) do not have
density with respect to Lebesgue measure, Γθ(x,p) has density with respect to Q(x,p) and therefore
wθ(x,p) may be interpreted as the resulting Radon-Nikodym derivative. The explicit expression for
logwθ(x,p) in equation (21) of the main text then follows.

We now show informally how maximizing the corresponding ELBO EQ[logwθ(x,p)] corresponds
approximately to minimizing the score matching loss given in Proposition 3 for δ ≪ 1. We restrict
the derivation to M = I for simplicity. For pedagogical reasons, it is beneficial here to get back to the
continuous time notations and recall that we use k corresponds to tk = kδ. From direct calculations,
maximizing the ELBO is equivalent to minimizing

J(θ) =

K−1∑
k=0

EQ

[
||pkδ − hfθ(kδ, xkδ, p̃(k+1)δ)||2

]
where

EQ

[
||pkδ − hfθ(kδ, xkδ, p̃(k+1)δ)||2

]
= EQ

[
||pkδ − h

(
p̃(k+1)δ + 2δζ[sθ(kδ, xkδ, p̃(k+1)δ) + p̃(k+1)δ]

)
||2

]
Note that h = exp(−δζ) ≈ 1− δζ so we obtain

EQ

[
||pkδ − hfθ(kδ, xkδ, p̃(k+1)δ)||2

]
≈EQ

[
||pkδ − (1− δζ)

(
p̃(k+1)δ + 2δζ[sθ(kδ, xkδ, p̃(k+1)δ) + p̃(k+1)δ]

)
||2

]
≈EQ

[
||pkδ − (1 + δζ)p̃(k+1)δ − 2δζsθ(kδ, xkδ, p̃(k+1)δ)||2

]
by neglecting terms of order δ2. Now we try to further understand the asymptotic when δ → 0. We
have that

(xkδ, p̃(k+1)δ) = Φ−1
kδ (x(k+1)δ, p(k+1)δ).

Now as we use for Φkδ a leapfrog-type integrator, we do have

Φ−1
kδ (x

′, p′) = Φflip ◦ Φkδ ◦ Φflip(x
′, p′)

where Φflip(x, p) = (x,−p) and, for δ → 0, we have

Φkδ(x, p) ≈ (x+ δp, p− δ∇Ekδ(x)),

where πkδ(x) ∝ exp(−Ekδ(x)). So we have for

Φ−1
kδ (x

′, p′) = Φflip ◦ Φt ◦ Φflip(x
′, p′)

= Φflip ◦ Φkδ(x
′,−p′)

= Φflip(x
′ − δp′,−p′ − δ∇Ekδ(x

′))

= (x′ − δp′, p′ + δ∇Ekδ(x
′)).

It follows that

EQ

[
||pkδ − (1 + δζ)p̃(k+1)δ − 2δζsθ(kδ, xkδ, p̃(k+1)δ)||2

]
≈EQ

[
||pkδ − (1 + δζ)(p(k+1)δ + δ∇Ekδ(x(k+1)δ))− 2δζsθ(kδ, x(k+1)δ, p(k+1)δ)||2

]
≈EQ

[
||pkδ − p(k+1)δ − δ(ζp(k+1)δ +∇Ekδ(x(k+1)δ) + 2ζsθ(kδ, x(k+1)δ, p(k+1)δ))||2

]
.
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Now we have
1

4ζδ
EQ

[
||pkδ − p(k+1)δ − δ(ζp(k+1)δ +∇Ekδ(x(k+1)δ) + 2ζsθ(kδ, x(k+1)δ, p(k+1)δ))||2

]
=δζEQ

[
||sθ(kδ, x(k+1)δ, p(k+1)δ)−

1

2ζδ
(pkδ − p(k+1)δ − δ(ζp(k+1)δ +∇Ekδ(x(k+1)δ)))||2

]
≈δζEQ

[
||sθ(kδ, x(k+1)δ, p(k+1)δ)−

1

2ζδ
(pkδ − p(k+1)δ − δ(ζpkδ +∇Ekδ(xkδ)))||2

]
=δζEQ

[
||sθ(kδ, x(k+1)δ, p(k+1)δ)−∇p(k+1)δ) logF (p(k+1)δ|pkδ, xkδ)||2

]
, (61)

where F (p(k+1)δ|pkδ, xkδ) = N (p(k+1)δ; (1− δζ)pkδ − δ∇Ekδ(xkδ); 2ζδI) and the joint distribu-
tion F (x(k+1)δ, p(k+1)δ)|pkδ, xkδ) = δxkδ−δpkδ

(x(k+1)δ)F (p(k+1)δ|pkδ, xkδ) is an Euler approxi-
mation of the forward transition of the underdamped Langevin dynamics. Now we expect similarly
η(k+1)δ|kδ(x(k+1)δ, p(k+1)δ|xkδ, pkδ) ≈ η(k+1)δ|kδ(p(k+1)δ|xkδ, pkδ)η(k+1)δ|kδ(x(k+1)δ|xkδ, pkδ)
for δ ≪ 1 and (61) is thus an approximation of the score matching loss.

D Diffusion processes: SGM, Langevin and AIS

We provide here a more detailed discussion between the similarities and differences between the
diffusion process considered for SGM and the proposed approach. We first recall some basic elements
of diffusion processes. Consider the diffusion (xt)t∈[0,T ] on Rd

dxt = f(t, xt)dt+
√
2dBt, x0 ∼ q0, (62)

where (Bt)t∈[0,T ] is standard multivariate Brownian motion and q0 is the initial distribution. The law
qt of xt induced by this diffusion satisfies the Fokker–Planck–Kolmogorov equation

∂qt(x)

∂t
= −∇ · [f(t, x)qt(x)] + ∆qt(x) (63)

where ∇ · [f(t, x)qt(x)] =
∑d

i=1
∂[fi(t,x)qt(x)]

∂xi
and ∆qt(x) =

∑d
i=1

∂2qt(x)
∂x2

i
denote the divergence

and Laplacian operators; see e.g. [32].

For SGM, we define the following Ornstein–Ulhenbeck process on Rd which corresponds to using

fOU(t, x) = −x (64)

where (Bt)t∈[0,T ] is standard multivariate Brownian motion and q0 is the data distribution. This
is also known in the SGM literature as the variance preserving diffusion [48]. This process adds
noise progressively to the complex data distribution and converges geometrically fast to its invariant
distribution which is the standard multivariate Gaussian πOU(x) = N (x; 0, I) (see e.g. [12]) verifying
indeed that the r.h.s. of (63) satisfies

−∇ · [fOU(t, x)πOU(x)] + ∆πOU(x) = 0.

More generally, a time-homogeneous Langevin diffusion to sample from a target distribution π is of
the form

fLgv(t, x) = ∇ log π(x). (65)
It is easily check that π is indeed an invariant distribution as the r.h.s. of (63) satisfies

−∇ · [fLgv(t, x)π(x)] + ∆π(x) = 0,

so that qt = π for all t if q0 = π. Moreover, qt converges to π whatever being π0; see e.g.
[42]. However, obtaining sharp quantitative bounds for complex π is a more difficult task than for
πOU(x) = N (x; 0, I) in general.

In the context of this paper, the “forward” diffusion process we define is a time-inhomogeneous
Langevin algorithm

fAIS(t, x) = ∇ log πt(x), (66)
with q0 = π0 an easy-to-sample distribution and (πt)t∈[0,T ] a non-constant curve of distributions
such that πT = π. So, contrary to SGM, which starts from a complex distribution and moves
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towards a simple distribution, we start here from a simple distribution and moves towards a complex
distribution.

In this scenario, even in q0 = π0 then we do not have qt = πt as the diffusion always lags behind its
stationary distribution at time t. However, quantitative results measuring the discrepancy between
the law of xT and π for such annealed diffusions have been obtained; see e.g. [20, 17, 50]. For this
discrepancy to be small, one requires πt to vary slowly over time.

E Experimental Details

In all experiments, we sweep over diffusion time, number of steps, step-sizes and whether to learn
them, and the annealing schedule. We identify the best parameters for each sampler individually on a
validation set and then re-run these methods using 5 different seeds to obtain error bars on test set
performance. All experiments were executed on 8 GPUs for parallelized training and a single instance
of our most expensive experiment (VAE) takes under 3 hours including evaluation. Experiments are
implemented in JAX [6] using the DeepMind JAX ecosystem [4].

E.1 Sampler parameterization

For all models, the step size was learned via a function ϵθ(t) which is a 2-layer neural network with
32 hidden units, followed by a scaled sigmoid function which constrains ϵθ(t) < 0.25. As in prior
work [18] we found this alleviated some instabilities in training.

When learning the annealing schedule, we parameterize an increasing sequence of T steps using
unconstrained parameters bt (initialized to the same constant). We map these to our annealing
schedule with

βt =

∑
t′≤t σ(bt′)∑T
t′=1 σ(bt′)

(67)

where we fix β0 = 0 and σ is the sigmoid function. This ensures that β0 = 0, βK = 1, and βt < βt′

when t < t′.

For UHA [18], we also learn the momentum refreshment parameter η ∈ (0, 1). We parameterize this
with a parameter u and define η = .98σ(u) + .01 to keep the values in the range (.01, .99) which we
found alleviated sone training instabilities.

E.2 Score model parameterization

We parameterize our score model sθ(t, x) using an MLP residual network. We first project the x to
dim dh using a linear layer and embed discrete time steps t to dim dt using a learned embedding map.
We then apply k residual blocks.

Each block begins with a layer norm [3] operation followed by a nonlinearity. We project the hidden
representation to dim 2 ·dh using a linear layer, project the embedding of t to dim 2 ·dh using another
linear map and add them together. We then apply another nonlinearity and then project the back to
dh using another linear layer. We use the swish nonlinearity [40] throughout.

To ensure our ELBO is initialized to a reasonable value we warm start it so that at initialization, the
score model outputs the standard AIS backward kernels. For the ULA version of our approach we
do this by defining a score model s̃θ(t, x) as explained above (but set the final layer weights to 0 at
initialization) and define:

sθ(t, x) = s̃θ(t, x) +∇x log γt(x). (68)

For the UHA version we parameterize a score model s̃θ(t, x, p) and define:

sθ(t, x, p) = s̃θ(t, x, p)−M−1p. (69)

In both cases we found this led to much faster convergence and better results overall.
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E.3 Hyper-parameters

In all experiments we use k = 3 residual blocks in our score network. For our Gaussian experiments
we set dh = 512 and dt = 16. All models are trained with the Adam optimizer [30] with learning
rates 0.001 and 0.0001 and up to 300k iterations with a batch size of 128. For static targets, we
produce an estimate of logZ using 16,384 importance samples. As these methods produce a stochastic
lower-bound on logZ we report the result from the hyper-parameter setting which gives the largest
logZ estimate.

The VAE experiment uses architectures described in [8], which consists of encoder and decoder MLPs
with two hidden layers with 200 units each, tanh activations, and 50 latent dimensions. In contrast to
[18], we found this architecture work better than the one described in [18], especially when trained
for more iterations. We chose the best performing models and their hyperparameters by monitoring
validation performance during training. We report performance of the best combination on the full
test set, for each model respectively. The best performance were reached with a matched the number
of sampler steps between ULA/ULA-MCD and UHA/UHA-MCD – 64 and 32 respectively.

F Additional Results

F.1 Static Targets

Here we present additional results on a N (10, I) target, a N (0, 0.1I) target, and a Laplace(0, I)
target. Results can be found in Tables 4, 5, and 6.

Sampler ULA UHA ULA-MCD UHA-MCD
# steps 64 256 64 256 64 256 64 256

Dim-20 -46.75
± 0.69

-6.23
± 0.91

0.0002
± 0.0008

0.0002
± 0.0004

-0.017
± 0.020

0.0034
± 0.0055

-0.0005
± 0.0007

0.0000
± 0.0005

Dim-200 -752.25
± 2.43

-160.60
± 2.03

0.0003
± 0.0026

-0.0005
± 0.0007

-4.74
± 1.20

-0.019
± 0.047

0.0008
± 0.0032

0.0060
± 0.0084

Dim-500 -1999.40
± 18.49

-455.20
± 7.90

0.0006
± 0.0007

-0.0008
± 0.0012

-21.62
± 1.64

-0.29
± 0.16

0.0030
± 0.0063

0.0099
± 0.0050

Table 4: logZ estimates for a N (10, I) target. Averages and standard errors over 3 seeds.

Sampler ULA UHA ULA-MCD UHA-MCD
# steps 64 256 64 256 64 256 64 256

Dim-20 -1.58
± 0.42

-0.27
± 0.13

-4.46
± 0.93

-0.41
± 0.51

0.0095
± 0.0155

0.0057
± 0.0052

0.0038
± 0.0273

0.0002
± 0.0120

Dim-200 -166.23
± 5.15

-58.33
± 1.99

-228.79
± 3.64

-74.62
± 1.60

-4.53
± 0.96

-0.67
± 0.33

-4.10
± 0.98

-1.47
± 0.57

Dim-500 -545.77
± 5.55

-207.15
± 5.73

-704.96
± 7.30

-247.11
± 4.83

-27.36
± 2.23

-10.11
± 1.17

-29.20
± 3.46

-5.14
± 1.50

Table 5: logZ estimates for a N (0, 0.1I) target. Averages and standard errors over 3 seeds.

Sampler ULA UHA ULA-MCD UHA-MCD
# steps 64 256 64 256 64 256 64 256

Dim-20 0.31
± 0.45

0.40
± 0.63

-0.0086
± 0.1314

-0.0077
± 0.1340

0.092
± 0.235

-0.23
± 0.02

0.0003
± 0.1573

-0.020
± 0.141

Dim-200 -5.40
± 0.53

-4.54
± 0.96

-5.27
± 0.18

-5.28
± 0.19

-5.08
± 0.52

-4.31
± 0.66

-5.30
± 0.15

-5.39
± 0.09

Dim-500 -17.67
± 1.91

-17.25
± 0.85

-17.91
± 0.78

-17.91
± 0.78

-17.64
± 1.98

-15.52
± 1.26

-18.11
± 0.70

-18.11
± 0.72

Table 6: logZ estimates for a Student-T target. Averages and standard errors over 3 seeds.
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F.2 Normalizing Flow

In this experiment we train NICE [14] flows which are fitted on downsampled variants of the MNIST
dataset at resolutions 7× 7, 14× 14, and 28× 28. All models are trained for 100K steps with a batch
size of 128 and then logZ is estimated using 4096 importance samples.

Results can be seen in Table 7. In the largest setting we can see that UHA outperforms ULA, but our
method outperforms both. We note that a Sequential Monte Carlo sampler or AIS with Metropolis-
Hastings corrections would be capable of estimating logZ very close to the true value of 0. We
have found that unadjusted samplers required for building a differentiable evidence lower-bound
have difficulties sampling from this target distribution. As discussed in the Limitations section of the
main paper, we hypothesize that this is due to the fact that we are limited to using a relatively small
number of transitions, since backpropagating through these repeated updates can be unstable. We
believe this is a limitation of this approach to inference and will impact any approach which utilizes
an unadjusted forward sampler. Still, we note that our approach to learning an optimized reversal
(MCD) leads to improvements over the standard AIS reversals. We believe addressing these issues to
be a key area for future research to focus.

Dimension ULA UHA MCD (ours)
7× 7 0.14 0.17 0.11
14× 14 13.24 15.04 6.25
28× 28 141.29 82.16 23.10

Table 7: logZ estimate absolute error for Normalizing flows.

F.3 Score Network Ablation

We include additional results exploring the impact of various score-network architectures on perfor-
mance. We re-run our Gaussian Mixture experiments in dimension 200 using 1) an MLP with residual
connections and 2) a standard MLP, both with 1, 2, and 3 layers. We run these experiments with 64
and 128 sampling steps. Results can be seen in Figure 4. We see that more expressive architectures
lead to better performance in general. Further, we find that with more sampling steps, the impact of a
more expressive score network diminishes. This aligns with intuition as, when using more steps we
will use a smaller step size, and the standard AIS reversal becomes a better approximation to the true
reversal.

Figure 4: Score network architecture ablation on Gaussian mixture target (main results can be found
in Table 1). Left: results with 64 sampling steps, right: results with 128 sampling steps.
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