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Abstract

More than twenty years after its introduction, Annealed Importance Sampling
(AIS) remains one of the most effective methods for marginal likelihood estima-
tion. It relies on a sequence of distributions interpolating between a tractable
initial distribution and the target distribution of interest which we simulate from
approximately using a non-homogeneous Markov chain. To obtain an importance
sampling estimate of the marginal likelihood, AIS introduces an extended target
distribution to reweight the Markov chain proposal. While much effort has been
devoted to improving the proposal distribution used by AIS, an underappreciated
issue is that AIS uses a convenient but suboptimal extended target distribution.
We here leverage recent progress in score-based generative modeling (SGM) to
approximate the optimal extended target distribution minimizing the variance of the
marginal likelihood estimate for AIS proposals corresponding to the discretization
of Langevin and Hamiltonian dynamics. We demonstrate these novel, differentiable,
AIS procedures on a number of synthetic benchmark distributions and variational
auto-encoders.

1 Introduction

Evaluating the marginal likelihood, also known as evidence, is of key interest in Bayesian statistics as
it allows not only model comparison but is also often used to select hyperparameters. A large variety
of Monte Carlo methods have been proposed to address this problem, including path sampling [19],
AIS [37] and related Sequential Monte Carlo methods [13]. An appealing feature of AIS is that it
provides an unbiased estimate of the marginal likelihood and can thus be used to define an evidence
lower bound (ELBO) or mutual information bounds; see e.g. [53, 51, 7].

AIS builds a proposal distribution using a Markov chain (xk)Kk=0 initialized at an easy-to-sample
distribution followed by a sequence of Markov chain Monte Carlo (MCMC) transitions targeting
typically annealed versions of the posterior. By proceeding this way, we obtain a proposal xK whose
distribution is expected to be a reasonable approximation to the target posterior. However, this
distribution is intractable as it requires integrating the joint proposal distribution over previous states
(xk)

K�1
k=0 . AIS bypasses this issue by instead using Importance Sampling (IS) on the whole path

(xk)Kk=0 through the introduction of an artificial extended target distribution whose marginal at time
K coincides with the posterior.

There has been much work devoted to improving AIS in machine learning and statistics but also
in physics where it was introduced independently in [29, 9]. A standard approach to improve AIS
is to modify the intermediate distributions [45, 21, 34] and corresponding transition kernels of the
proposal [10, 53, 18, 51, 54]. We here address a distinct problem. For a given proposal, it was shown
in [13] that the extended target distribution minimizing the variance of the evidence estimate is not
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Figure 1: Top: Samples Xt from an AIS proposal (red) obtained by sampling initially from a
Gaussian at t = 0 and diffusing through Langevin dynamics on intermediate targets ⇡t (white). The
intermediate marginals of the proposal, qt, approximated by the samples are such that qT ⇡ ⇡ for a
reasonably fast mixing diffusion. Bottom: Computing importance weights. The optimal extended
target used to compute the weights is the distribution obtained by initializing X̄0 exactly from ⇡ and
then following the reverse-time dynamics of the forward AIS proposal. This requires access to score
vectors of the marginals qt.

the one used by AIS but is instead defined through the time-reversal of the proposal. However, this
result is difficult to exploit algorithmically as the time-reversal is intractable for useful proposals.

In this paper, we show how one can combine this result with recent advances in SGM to obtain
improved, lower variance, AIS estimates. We concentrate on scenarios where we use unadjusted
overdamped Langevin [23, 53, 51] and unadjusted Hamiltonian proposals with partial momentum
refreshment (i.e. underdamped Langevin) [10, 53, 18, 54, 28] which correspond to time-discretized
diffusion processes. The first benefit of using such proposals is that, by omitting Metropolis–Hastings
steps, one obtains differentiable versions of the Evidence Lower Bound (ELBO) amenable to the
reparameterization trick. The second benefit of these proposals is that their time-reversal can be
approximated by adapting techniques developed for SGM [24, 48, 15] to our setup. We derive a
principled parameterization for an approximation of their time-reversal which we learn by maximizing
the ELBO. As for SGM, this ELBO coincides with a denoising score matching loss [27, 52, 24, 48].
This provides novel, optimized and differentiable, AIS estimators which we refer to as Monte Carlo
Diffusion (MCD). We demonstrate the benefits of this approach on synthetic benchmark distributions
and variational auto-encoders (VAEs) [31]. All proofs can be found in the Appendix. A preliminary
version of this work appeared in [16].

2 Annealed Importance Sampling

2.1 Setup and algorithm

Consider a probability density ⇡ on Rd of the form

⇡(x) =
�(x)

Z
, Z =

Z

Rd

�(x)dx, (1)

where �(x) can be evaluated pointwise. We want to approximate the intractable normalizing constant
Z. In a Bayesian framework, �(x) = p(x)p(D|x) is the joint density of parameter x and data D,
⇡(x) = p(x|D) the corresponding posterior and Z = p(D) the evidence.

To estimate Z, AIS introduces the intermediate distributions (⇡k)Kk=1 bridging smoothly from a
tractable distribution ⇡0 to the target distribution ⇡K = ⇡ of interest. One typically uses ⇡k(x) /
�k(x) with �k(x) = ⇡0(x)1��k�(x)�k for 0 = �0 < �1 < · · · < �K = 1 but other choices are
possible [21]. The IS proposal used by AIS is then obtained by running a Markov chain (xk)Kk=0
such that x0 ⇠ ⇡0(·), and then xk ⇠ Fk(·|xk�1) for k � 1 where Fk is a MCMC kernel invariant
w.r.t. ⇡k. The proposal is thus given by

Q(x0:K) = ⇡0(x0)
QK

k=1 Fk(xk|xk�1). (2)
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Denote by qk the marginal distribution of xk under Q satisfying qk(xk) =R
qk�1(xk�1)Fk(xk|xk�1)dxk�1 for k � 1 and q0 = ⇡0, it is typically intractable for k � 1. As

qK cannot be evaluated in complex scenarios, the marginal IS estimate wmar(xK) = �(xK)/qK(xK)
of Z is intractable.

One can bypass this issue by introducing an extended target distribution

P (x0:K) =
�(x0:K)

Z
, �(x0:K) = �(xK)

K�1Y

k=0

Bk(xk|xk+1), (3)

where (Bk)
K�1
k=0 are backward Markov transition kernels, i.e.

R
Bk(xk|xk+1)dxk = 1 for any xk+1,

so that by construction xK ⇠ ⇡ under P . For any selection of backward kernels such that the ratio
�/Q is well-defined, we then have

EQ[w(x0:K)] = Z, for w(x0:K) =
�(x0:K)

Q(x0:K)
, (4)

i.e. w(x0:K) is an unbiased estimate of Z for x0:K ⇠ Q.

The AIS estimate of the evidence is a specific instance of the estimator (4) relying on the back-
ward kernels B

ais
k (xk|xk+1) = ⇡k+1(xk)Fk+1(xk+1|xk)/⇡k+1(xk+1). This yields the following

expression for logw(x0:K):

logwais(x0:K) =
PK

k=1 log
�
�k(xk�1)/�k�1(xk�1)

�
. (5)

2.2 Limitations of AIS

While designing P in (3) by using the backward Markov kernels (Bais
k )K�1

k=0 is convenient, it is also sub-
optimal in terms of variance. For example, consider the ideal scenario where Fk(xk|xk�1) = ⇡k(xk).
This scenario has been used many times in the literature to provide some guidelines on AIS, see
e.g. [37, 21]. In this case, varQ[logwais(x0:K)] =

PK
k=1 var⇡k�1 [log(�k(xk�1)/�k�1(xk�1))] > 0

while varqK [wmar(xK)] = var⇡[wmar(xK)] = 0.

Figure 2: Comparing logZ estimates as
a function of K using AIS and MCD.
Both estimates use the same forward
kernels but reweight samples in a differ-
ent way using distinct backward kernels.
Initial distribution ⇡0 is 20-dimensional
N (0, I) and progressively shifts to the
target ⇡ = ⇡K = N (10, I). The MCD
estimate is much closer to the ground
truth (logZ = 0) than AIS.

Another illustration of the suboptimality of AIS is to con-
sider a scenario where the proposal is a homogeneous
MCMC chain, i.e. x0 ⇠ ⇡0 and xk ⇠ F (·|xk�1) for
F a ⇡-invariant MCMC kernel; i.e. use Fk = F and
⇡k = ⇡ for k = 1, ...,K. If F is reasonably well-
mixing, then qK ⇡ ⇡ for K large enough and the evi-
dence estimate wmar(xK) = �(xK)/qK(xK) should have
small variance. However, it is easy to check that we have
wais(x0:K) = �(x0)/⇡0(x0) for the exact same proposal;
i.e. the AIS estimate does not depend on the MCMC sam-
ples x1:K and boils down to the IS estimate of Z using the
proposal ⇡0.

These two examples illustrate that it would be preferable
to use wmar(xK) rather than wais(x0:K). In Appendix A,
we provide a detailed comparison of both estimates in a
scenario where their variance can be computed analytically.
We propose in the next section an unbiased estimate of
the evidence (MCD) approximating wmar(xK) based on
a different choice of backward kernels. As illustrated in
Figure 2, significant gains can be achieved.

3 Optimized Annealed Importance Sampling

We show here that the optimal extended target distribution P minimizing the variance of the evidence
estimate (4) is defined through the time-reversal of the proposal Q. By exploiting a connection to
SGM, we can approximate this reversal using score matching when the proposal is obtained through
an unadjusted overdamped or underdamped Langevin algorithm.
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3.1 Optimal Extended Target Distribution via Time Reversal

We summarize here Proposition 1 of [13]; see also [46, 5].
Proposition 1. For a proposal Q of the form (2), the extended target P of the form (3) minimizing both

the Kullback–Leibler divergence DKL(Q||P ) and the variance of the evidence estimate w(x0:K) =
�(x0:K)/Q(x0:K) for x0:K ⇠ Q is given by P

opt(x0:K) = �opt(x0:K)/Z where

�opt(x0:K) = �(xK)
K�1Y

k=0

B
opt
k (xk|xk+1), B

opt
k (xk|xk+1) =

qk(xk)Fk+1(xk+1|xk)

qk+1(xk+1)
. (6)

In particular, one has

wmar(xK) =
�(xK)

qK(xK)
=

�opt(x0:K)

Q(x0:K)
, and DKL(Q||P

opt) = DKL(qK ||⇡). (7)

This result follows simply from the chain rule and the law of total variance which yield

DKL(Q||P ) = DKL(qK ||⇡) + EqK

h
DKL(Q(·|xK)||P (·|xK))

i
, (8)

varQ[w(x0:K)] = varqK [wmar(xK)] + EqK [varQ(·|xK)[w(x0:K)]]. (9)

Both quantities are clearly minimized by selecting P (x0:K�1|xK) = Q(x0:K�1|xK).

We emphasize that Proposition 1 applies to any forward kernels (Fk)Kk=1 including MCMC kernels,
unadjusted Langevin kernels or even deterministic maps2. It shows that P opt is the distribution of
a backward process initialized at ⇡ which then follows the time-reversed dynamics of the forward
process Q. If we had qK = ⇡, then we would have P

opt = Q as then P
opt would correspond to the

backward decomposition of Q.

3.2 Time reversal, Score matching and ELBO for unadjusted overdamped Langevin

We concentrate here on the case where (Fk)Kk=1 correspond to a time-inhomogeneous unadjusted
(overdamped) Langevin algorithm (ULA) as used in [23, 53, 51]; that is we consider Fk(xk|xk�1) =
N (xk;xk�1 + �r log ⇡k(xk�1), 2�I) where � > 0 is a stepsize. Let � := T/K then, as K ! 1,
the proposal Q converges to the path measure Q of the following inhomogeneous Langevin diffusion
(xt)t2[0,T ] defined by the stochastic differential equation (SDE)

dxt = r log ⇡t(xt)dt+
p
2dBt, x0 ⇠ ⇡0, (10)

where (Bt)t2[0,T ] is standard multivariate Brownian motion and we are slightly abusing notation from
now on as ⇡t for t = tk = k� corresponds to ⇡k in discrete-time. Many quantitative results measuring
the discrepancy between the law of xT and ⇡T = ⇡ for such annealed diffusions have been obtained;
see e.g. [17, 50]. From [22] , it is known that the time-reversed process (x̄t) = (xT�t)t2[0,T ] is also
a diffusion given by

dx̄t =
�
�r log ⇡T�t(x̄t) + 2r log qT�t(x̄t)

 
dt+

p
2dB̄t, x̄0 ⇠ qT , (11)

where (B̄t)t2[0,T ] is another multivariate Brownian motion. The continuous-time version of P opt

is the path measure P
opt defined by the diffusion (11) but initialized at x̄0 ⇠ ⇡ rather than qT as

noted in [5]; see Figure 1 for an illustration. This shows that approximating (Bopt
k )K�1

k=0 requires
approximating the so-called scores (r log qt(x))t2[0,T ]. This can be derived heuristically through
the fact that a Taylor expansion yields the following approximation of the optimal backward kernels,
B

opt
k (xk|xk+1) ⇡ N (xk;xk+1 � �r log ⇡k+1(xk+1) + 2�r log qk+1(xk+1), 2�I), which indeed

corresponds to a Euler discretization of (11); see e.g. [12, Section 2.1].

In SGM [48], one gradually adds noise to data using an Ornstein–Ulhenbeck diffusion to transform
the complex data distribution into a Gaussian distribution and the generative model is obtained by
approximating the time-reversal of this diffusion initialized by Gaussian noise. Practically, the time-
reversal approximation is obtained by estimating the scores of the noising diffusion using denoising

2The case of deterministic maps corresponds to normalizing flow components, where the inverse flow is the
optimal and only valid reversal, see e.g. [2] which includes a detailed literature review.
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score matching [52]. While in our setup, the diffusion (10) instead goes from a simple distribution to
a complex one (see Appendix D for a discussion), we can still use score matching ideas. We define a
path measure P✓ approximating P

opt using a neural network s✓(T � t, x̄t) in place of r log qT�t(x̄t)
in (11), i.e. we consider

dx̄t =
�
�r log ⇡T�t(x̄t) + 2s✓(T � t, x̄t)

 
dt+

p
2dB̄t, x̄0 ⇠ ⇡. (12)

We would like to learn ✓ by minimizing DKL(Q||P✓) over ✓, i.e. equivalently we maximize a
continuous-time ELBO. Note that it is neither easily feasible to minimize DKL(Popt

||P✓) (as one
cannot sample from ⇡) nor it is desirable as the evidence estimate is computed using samples from Q.
Hence we want the scores to be well-approximated in regions of high-probability mass under Q.

In practice, the diffusions corresponding to Q and P✓ have to be discretized, so a more direct route
adopted here is to simply take inspiration from (11) and to consider the parameterized backward
kernels B✓

k(xk|xk+1) = N (xk;xk+1 � �r log ⇡k+1(xk+1) + 2�s✓(k + 1, xk+1), 2�I) to obtain a
parameterized extended target P✓ and corresponding unnormalized target �✓. We then learn ✓ by
minimizing DKL(Q||P✓) where

Q(x0:K) = ⇡0(x0)
QK�1

k=0 Fk+1(xk+1|xk), P✓(x0:K) = ⇡(xK)
QK�1

k=0 B
✓
k(xk|xk+1).

This is obviously equivalent to maximizing the ELBO EQ[logw✓(x0:K)] where w✓(x0:K) =
�✓(x0:K)/Q(x0:K). We note that it has previously been proposed to learn parameterized back-
ward kernels for general AIS proposals [44, 26]. However, the parameterization adopted therein,
B

✓
k(xk|xk+1) = N (xk;µ✓(xk+1),⌃✓(xk+1)), does not leverage the structure of the true reversal

and performs poorly experimentally [51, Section 4.2].

As established in the next proposition, the continuous and discrete time approaches coincide for
� ⌧ 1. Once ✓ is learned, we then obtain an unbiased estimate of Z through w✓(x0:K) for x0:K ⇠ Q.
Proposition 2. Under regularity conditions, we have

DKL(Q||P✓) = EQ

h Z T

0
||s✓(t, xt)�r log qt(xt)||

2dt
i
+ C1 (13)

=
KX

k=1

Z tk

tk�1

EQ
⇥
||s✓(t, xt)�r log qt|tk�1

(xt|xtk�1)||
2
⇤
dt+ C2, (14)

where tk = k�, K = T/�, qt|s(x
0
|x) is the density of xt = x

0
given xs = x under Q and C1, C2

constants independent of ✓. Let L(✓) = �
PK

k=1 EQ

⇥
||s✓(k, xk)�r logFk(xk|xk�1)||2

⇤
denote a

discrete-time approximation of this loss. We have rDKL(Q||P✓) = rL(✓) + ✏(✓) for some function

✏ satisfying limK!1 ✏(✓) = 0.

Equation (13) shows that DKL(Q||P✓) corresponds to a score matching loss as for SGM [47]. It
is possible to rewrite this loss as (14) so as to replace the intractable score term r log qt(xt) by
the easy to approximate gradients of the log-transitions r log qt(xt|xtk�1) [52]. In practice, as
mentioned above, we simply learn ✓ by minimizing the discrete-time KL discrepancy DKL(Q||P✓).
This formulation is also very convenient as we can additionally learn potential parameters � of a
Q� using the same criterion. Note from equation (8) that the KL divergence decomposes as firstly a
term penalizing the difference in the approximating measure and the fixed target at the final time and
secondly another term which can be reduced by optimization of both Q� and P✓ conditioned on xT ;
see e.g. [1].

Pseudo-code for our approach (with a comparison to the AIS algorithm proposed in [23, 53, 51]) can
be found in Algorithm 1.

3.3 Incorporating Hamiltonian dynamics via the underdamped Langevin equation

We now consider a proposal defined on an extended space which arises from the time-discretization
of a time-inhomogeneous underdamped Langevin dynamics; see e.g. [33, Chapter 6]. In this scenario,
we first focus on continuous-time as the development of suitable numerical integrators is much more
involved than for overdamped Langevin diffusions. We consider the diffusion (xt, pt)t2[0,T ] where
pt 2 Rd is a momentum variable

dxt = M
�1

ptdt, dpt = r log ⇡t(xt)dt� ⇣ptdt+
p
2⇣M1/2dBt (15)
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Algorithm 1 Unadjusted Langevin AIS/MCD – red instructions for AIS and blue for MCD
Require: Unnormalized target �(x), initial state proposal ⇡0(x), number steps K, stepsize �, an-

nealing schedule {�k}
K
k=0, score model s✓(k, x)

Sample x0 ⇠ ⇡0(x0)
Set logw = � log ⇡0(x0)
for k = 1 to K do

Define log �k(·) = �k log �(·) + (1� �k) log ⇡0(·)
Define Fk(xk|xk�1) = N (xk;xk�1 + �r log �k(xk�1), 2�I)
Sample xk ⇠ Fk(·|xk�1)
Define Bk�1(xk�1|xk) = Fk(xk�1|xk) . AIS
Define Bk�1(xk�1|xk) = N (xk�1;xk � �r log �k(xk) + 2�s✓(k, xk), 2�I) . MCD
Set logw = logw + logBk�1(xk�1|xk)� logFk(xk|xk�1)

end for
Set logw = logw + log �(xK)

initialized at x0 ⇠ ⇡0, p0 ⇠ N (0,M) defining the path measure Q. Here M is a positive definite
mass matrix, ⇣ > 0 a friction coefficient and (Bt)t2[0,T ] a multivariate Brownian motion. If ⇡t

was not time-varying, e.g. ⇡t = ⇡, the invariant distribution of this diffusion would be given by
⇡̄(x, p) = ⇡(x)N (p; 0,M). Intuitively, in the time varying case the SDE will have enough time
to approximate each intermediate ⇡̄t(x, p) = ⇡t(x)N (p; 0,M) if we change the target sufficiently
slowly. We can think of underdamped Langevin as a continuous-time version of Hamiltonian
dynamics with continuous stochastic partial momentum refreshment [25].

From [22], the time-reversal of the diffusion (15) is also a diffusion process (x̄t, p̄t)t2[0,T ] =
(xT�t, pT�t)t2[0,T ] given by (x̄0, p̄0) ⇠ ⌘T and

dx̄t = �M
�1

p̄tdt, (16)

dp̄t = �r log ⇡T�t(x̄t)dt+ ⇣p̄tdt+ 2⇣Mrp̄t log ⌘T�t(x̄t, p̄t)dt+
p

2⇣M1/2dB̄t,

where ⌘t denotes the density (xt, pt) under (15). In this case, the continuous-time version of Popt is
the path measure Popt defined by the diffusion (16) but initialized at x̄0 ⇠ ⇡, p̄0 ⇠ N (0,M) rather
than ⌘T . We will approximate it by the path measure P✓ using a neural network s✓(T � t, x̄t, p̄t) in
place of r log ⌘T�t(x̄t, p̄t) in (16), i.e. we consider

dx̄t = �M
�1

p̄tdt, (17)

dp̄t = �r log ⇡T�t(x̄t)dt+ ⇣p̄tdt+ 2⇣Ms✓(T � t, x̄t, p̄t)dt+
p
2⇣M1/2dB̄t.

As for overdamped Langevin, we could also learn ✓ by minimizing DKL(Q||P✓) over ✓. This again
corresponds to minimizing a score matching loss albeit of a form slightly different from (13).
Proposition 3. Under regularity conditions, we have

DKL(Q||P✓) = ⇣EQ

h Z T

0
||s✓(t, xt, pt)�rpt log ⌘t(xt, pt)||

2dt
i
+ C1 (18)

= ⇣

KX

k=1

Z tk

tk�1

EQ
⇥
||s✓(t, xt, pt)�rpt log ⌘t|tk�1

(xt, pt|xtk�1 , ptk�1)||
2
M

⇤
dt+ C2,

where ||x||M := u
T
Mu, tk = k�, K = T/�, C1, C2 are constants independent of ✓ and

⌘t|s(x
0
, p

0
|x, p) is the density of (xt, pt) = (x0

, p
0) given (xs, ps) = (x, p) under Q.

While the continuous-time perspective shed light on how to parameterize an approximation to the time-
reversal, this does not lead directly to an implementable discrete-time algorithm for underdamped
Langevin. Contrary to overdamped Langevin, we cannot indeed simply use an Euler discretization of
(15) defining Q and (17) defining P✓ to obtain some discrete-time forward and backward kernels
and then compute w✓(x0:K , p0:K) = �✓(x0:K , p0:K)/Q(x0:K , p0:K). This is because this ratio is
not well-defined due to the lack of noise on the position component in both (15) and (17).

The integrator we use for the forward equation (15), consists in alternating partial momentum
refreshments and deterministic leapfrog steps (see e.g [33, 38]) giving

p̃t+� ⇠ N (hpt, (1� h
2)M), (xt+�, pt+�) = �t(xt, p̃t+�), (19)
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Algorithm 2 Unadjusted Hamiltonian AIS/MCD – red instructions for AIS and blue for MCD
Require: Unnormalized target �(x), initial state proposal ⇡0(x), number steps K, stepsize ⌘, an-

nealing schedule {�k}
K
k=0, damping coefficient h, mass matrix M , score model s✓(k, x, p)

Sample x0 ⇠ ⇡0(x0) and p0 ⇠ N (p0; 0,M)
Set logw = � log ⇡0(x0)� logN (p0; 0,M)
for k = 1 to K do

Define log �k(·) = �k log �(·) + (1� �k) log ⇡0(·)
Sample p̃k ⇠ N (hpk�1, (1� h

2)M)
Set µq = pk�1

Set µp = p̃k . UHA reversal mean
Set µp = p̃k � 2 log(h)[Ms✓(k, xk�1, p̃k) + p̃k] . MCD reversal mean
Set logw = logw + logN (pk�1;hµp, (1� h)2M)� logN (p̃k;hµq, (1� h)2M)
Run leapfrog integrator on �k and set (xk, pk) = �(xk�1, p̃k)

end for
Set logw = logw + log �(xK) + logN (pK ; 0,M)

with h = exp{�⇣�} and �t is the leapfrog integrator for ⇡t. The resulting forward sampler is similar
to the one proposed by [18], except we do not flip the momentum after the leapfrog step3. This
integrator may be interpreted as a splitting method for equation (15); see e.g [33, Chapter 7].

We need the integrator for the reversal to fulfill two criteria. First, by definition, as the time step
� ! 0 it must recover the SDE (17). Second, the importance weight of the forward sampler to
the reversal must be well defined. Since the leapfrog integrator is a diffeomorphism (or flow) the
only possible way to get a well defined reversal for these steps is to take the inverse ��1

t . As the
transformation is also volume preserving, the contribution from the deterministic forward and reverse
terms will then exactly cancel in the importance weight. The required form of the reverse integrator is

(xt, p̃t+�) = ��1
t (xt+�, pt+�), pt ⇠ N (hf✓(t+ �, xt, p̃t+�), (1� h

2)M), (20)

where f✓(t+ �, xt, p̃t+�) := ept+� + �2⇣[Ms✓(t, xt, ept+�) + ept+�]. In Appendix C we show that as
� ! 0 this can indeed be interpreted as a valid split integrator for the reverse SDE (17). The crucial
point of algorithmic difference from [10, 18, 54] arises from our necessary form for the mean of the
reverse momentum refreshment. These works use hp̃t+� as the mean instead of hf✓(t+ �, xt, p̃t+�).
We again transition to discretized notation with � := T/K, and k = 0, ...,K. In this case, the log
importance weight, corresponding to the log evidence estimate, satisfies

logw✓(x, p) = log
�(xK)N (pK ; 0,M)

⇡0(x0)N (p0; 0,M)
+

KX

k=1

log
N (pk�1;hf✓(k, xk�1, p̃k), (1� h

2)M)

N (p̃k;hpk�1, (1� h2)M)
, (21)

where (x, p) denote all the variables introduced by our integration scheme. We can show informally
that minimizing DKL(Q||P✓), i.e. maximizing the ELBO given EQ[logw✓(x, p)], again corresponds
to minimizing a score matching type loss (18) when � ⌧ 1; see Appendix C. Pseudo-code for our
approach can be found in Algorithm 2.

4 Experiments

We run a number of experiments estimating normalizing constants to validate our approach, MCD
and compare to differentiable AIS with ULA [53, 51] and Unadjusted Hamiltonian Annealing
(UHA) [18, 54]. We first investigate the performance of these approaches on static target distributions
using the same, fixed initial distribution and annealing schedule. Finally, we explore the performance
of the methods for VAEs. Here, being the most expensive of our experiments, we include runtime
comparisons of our method compared to baselines. Additional results on a Normalizing Flow target
can be found in Appendix F.2. Full experimental details, chosen hyper-parameters, and model
architectures can be found in Appendix E.

Our score model is parameterized by an MLP with residual connections that is conditioned on
integration time t, and on the momentum term for the Hamiltonian case (see Algorithm 2). For an
ablation on various network architectures we refer the reader to Appendix F.3.

3[18] were not attempting to discretize an underdamped Langevin dynamics.
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4.1 Static Targets

We estimate the normalizing constants of five simple distributions with known normalizing constants
equal to logZ = 0; N (10, I), N (0, 0.1I), a Gaussian mixture with 8 components whose means are
drawn from N (3, I) where each component has variance 1, a standard Laplace distribution and a
Student’s T distribution with 3 degrees of freedom. We use N (0, I) as our initial distribution for
all targets except for the Gaussian mixture and N (0, 0.1I) which both use N (0, 32I). We run each
method using K 2 {64, 256} steps and use a fixed, linear annealing schedule. For all methods,
sampling step-sizes per-timestep are tuned to via gradient descent to maximize the ELBO and the
diagonal mass matrix is learned for the Hamiltonian samplers. Gaussian Mixture and Student-T
results can be found in Tables 1 and 2, respectively. Additional results can be found in Appendix F.1.

Sampler ULA UHA ULA-MCD UHA-MCD
# steps 64 256 64 256 64 256 64 256

Dim-20 -0.47
± 0.22

-0.13
± 0.07

-0.03
± 0.18

0.015
± 0.03

0.01
± 0.02

0.01
± 0.01

0.01
± 0.02

-0.01
± 0.01

Dim-200 -85.62
± 2.01

-21.98
± 1.35

-8.20
± 1.84

-1.26
± 0.35

-0.25
± 0.03

0.08
± 0.122

0.20
± 0.49

-0.05
± 0.04

Dim-500 -304.06
± 5.48

-83.50
± 7.88

-44.45
± 3.24

-8.60
± 1.69

-2.61
± 1.26

1.01
± 0.99

-1.74
± 1.25

-1.02
± 0.03

Table 1: logZ estimates for a Gaussian mixture target. Averages and standard errors over 3 seeds.

On average and as expected, UHA outperforms ULA on most targets. Further our approximation to
the optimal backward kernels can yield considerable improvements – enabling the ULA sampler to
produce better results than UHA (using the standard AIS backward kernels). Additionally, we see
that our approximation to the optimal backward kernels improves the performance of UHA as well.

We further emphasize that often ULA-MCD and UHA-MCD with 64 steps outperform or is on-par
with ULA and UHA with 256 steps, a difference of factor 4 in terms of target gradient evaluations.
As we show below in Table 3, the additional computational costs of fitting the score model of our
method are only roughly twice that of the baselines.

Sampler ULA UHA ULA-MCD UHA-MCD
# steps 64 256 64 256 64 256 64 256

Dim-20 -0.09
± 0.02

-0.02
± 0.01

-0.04
± 0.02

-0.02
± 0.01

-0.06
± 0.02

-0.00
± 0.01

-0.03
± 0.04

-0.01
± 0.01

Dim-200 -1.63
± 0.23

-0.88
± 0.15

-0.36
± 0.34

-0.10
± 0.10

-0.82
± 0.28

-0.30
± 0.38

-0.48
± 0.20

-0.10
± 0.07

Dim-500 -5.43
± 0.78

-3.10
± 0.07

-2.86
± 0.36

-1.03
± 0.13

-4.00
± 0.51

-2.23
± 0.18

-2.03
± 0.18

0.06
± 0.30

Table 2: logZ estimates for a Student-T target. Averages and standard errors over 3 seeds.

4.2 Application to Amortized Inference

Next, we explore the application of our method to amortized inference, in the context of VAEs
[31, 41]. These models are trained to infer latent representations using an inference neural network
that consumes an input and produces parameters of an approximation to the true posterior distribution
of the underlying generative model. In particular, this posterior distribution is different for each input.
When applying AIS to VAE inference [51, 18, 54], the output of the inference network parameterizes
the initial distribution of the annealing sequence to the true posterior. By training this end-to-end,
we effectively learn the initial distribution for the diffusion process. Consequently, the diffusion
marginals and their score vectors r log qt are different for every input, and we need to condition our
score model s✓ on the inputs to reflect that. We achieve this by projecting the last hidden layer of the
inference network into a summary vector that is concatenated to the other conditioning inputs of s✓.

We train a VAE on the binarized MNIST dataset [43], re-using architectures proposed in [18, 8] (two-
layer MLP encoder/decoder, Bernoulli likelihood). All generative models use the same architecture
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and hyper-parameters. We compare standard amortized variational inference with annealed ULA
and UHA with standard AIS backward transition kernels, as well as ULA and UHA with our MCD
transition kernels. We match the number of sampler steps between ULA/ULA-MCD and UHA/UHA-
MCD to 64 and 32 respectively. ELBO and log-likelihood values on the test set are presented in
Table 3.

Sampler VI ULA UHA ULA-MCD UHA-MCD
ELBO -96.32 ± 0.40 -90.41 ± 0.17 -88.58 ± 0.51 -90.10 ± 0.10 -88.08 ± 0.07

Log-lik. -69.35 ± 0.36 -62.43 ± 0.25 -61.05 ± 1.84 -61.83 ± 0.42 -58.58 ± 0.34
Iteration time 0.024s 0.055s 0.050s 0.101s 0.098s

Total time 3263.40s 4694.52s 5072.19s 11304.36s 11345.59s

Table 3: Test set performance for MNIST VAE. Averages and standard errors over 5 seeds. We
additionally report runtimes for a single training iteration, and total experiment time.

We see that, as reported in prior works [18, 51, 54], Monte Carlo based inference methods provide a
significant benefit over standard amortized variational inference. In addition, our learned backward
kernels lead to improved performance of both ULA and UHA, with the difference being more distinct
for the latter. We also note that UHA has significantly larger error bars than all other methods, but
UHA-MCD does not appear to inherit this. We further provide a runtime comparison in Table 3, both
for a single training iteration, and total experiment time (including evaluation). We find that fitting
the score models of our method results in roughly twice as much runtime (recall we fixed the number
of sampler steps).

5 Limitations

While we have demonstrated that our optimized backward kernels can lead to large improvements
over standard AIS backward kernels, our proposed approach has a number of limitations. First,
since our method relies upon unadjusted Langevin or Hamiltonian sampling, we inherit many of
the issues with these approaches. Using unadjusted samplers enables a fully-differentiable ELBO
estimate which can in theory be used to tune the many parameters of the sampler. However, these
samplers require repeated gradient steps as an inner-loop which can lead to divergence dynamics
and numerical instability, making optimization difficult. Next, our proposed training procedure has
a notable increase in memory consumption as we store the entire sampling trajectory in memory
to train our neural network. We further note that it is possible to compute our importance weights
online using O(1) memory. We could utilize this with Monte Carlo sub-sampling of the timestep (as
with SGM [24]) to derive a constant memory training procedure for our approximate time-reversal at
the cost of increased variance but we leave exploring this to future work. Finally, we observed that,
without mitigation, parameterized forward samplers Q� sometimes dropped modes during training.
Since this is a known challenge of using reverse KL, this might be improved by using alternative
optimization objectives [35, 36].

6 Discussion

In this work we have explored AIS using unadjusted Langevin and Hamiltonian dynamics. We
have demonstrated that the backward transition kernels typically used are suboptimal and we have
presented the form of the optimal variance-minimizing backward kernels. We have further shown
how an approximation to these kernels can be learned using score matching and that this objective
corresponds to maximizing the ELBO in the limit of infinitesimally small time-discretization step-
sizes. We have illustrated the benefit of using our proposed optimized backward kernels on a number
of inference problems including fixed targets and amortized tasks with model learning.
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