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In the supplemental document, we will introduce below contents: 1) proof of Theorem 1 (unique
cholesky decomposition theorem) (Sec. A); 2) more details about Co-Speech Gesture GPT (Sec. B);
3) model architecture details (Sec. C); 4) analysis on the limitations and future work (Sec. D); 5)
analysis on the model’s generalization ability (Sec. E); 6) the standard deviation of use study results
(Sec. F); 7) the details of audio feature extraction (Sec. G); 8) analysis on extra input modality of text
information (Sec. H); 9) experimental results with error bars (Sec. I); 10) user study details (Sec. J);
11) ethical considerations with possible prevention measures against potential negative societal impact
(Sec. K); 12) discussions on the dataset consent and personally identifiable information (Sec. L); 13)
the licenses of existing assets involved in this paper (Sec. M);

A Proof of Theorem 1

In the main paper, to ease the constraint in the quantization process, we use the unique cholesky
decomposition theorem [13] to transform the covariance matrix C to factorial covariance L by
theorem:

Theorem 1. For any real symmetric positive definite matrix C ∈ Sn++, there exists a unique lower
triangular matrix L with positive diagonal entries, such that C = LLT.

Proof. As C is a symmetric positive definite matrix, it can be represented as C = PDPT, where D

is a diagonal matrix with positive diagonal entries and P is a unitary matrix. Suppose BT = D
1
2PT,

it can be factorized as the product of a unitary matrix Q and an upper triangular matrix R (according
to Matrix QR Decomposition), i.e., BT = QR. Thus, we have

C = PDPT = BBT = RTQTQR = RTR = LLT, (1)

where L = RT is a lower triangular matrix. Because C has the positive determinants, the diagonal
entries of L should be non-zero values. Therefore, there exists a lower triangular matrix L with
positive diagonal entries such that C = LLT.

Assume C = L1L
T
1 = L2L

T
2 where L1, L2 are two distinct lower triangular matrices with diagonal

positive entries, it shows that I = L−1
1 L2L

T
2L

−T
1 = (L−1

1 L2)(L
−1
1 L2)

T where I is the identity
matrix. It means that L−1

1 L2 = (L−1
1 L2)

−T which further shows that L−1
1 L2 should be a diagonal

matrix. Because I = (L−1
1 L2)

2, it demonstrates that L−1
1 L2 is a diagonal matrix with ±1 entries.

Since both L1, L2 have positive diagonal entries, it means L−1
1 L2 = I . Therefore, L1 = L2.

B More Details about Co-Speech Gesture GPT

The target of the Co-Speech Gesture GPT is to predict the quantized motion codes from the audio onset
features aonset. With the proposed vector quantization scheme of position-irrelevant representation,
we could transform the raw relative shift-translation ∆µ(1:T ) and relative factorial covariance change
∆L(1:T ) into corresponding quantized code sequence eq∆µ,(1:T ′) and eq∆L,(1:T ′). In this way, any
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co-speech gesture sequence can be represented by a sequence of quantized motion codes. The original
continuous audio-to-gesture prediction task is reframed as to select the proper motion code from the
codebooks D∆µ and D∆L according to the previous motion codes and current speech audio features.
The output of the GPT [10] model at the t-th time step is the probability of choosing each codebook
entry, where the entry with the largest probability serves as the predicted motion code of the next
time step.

In particular, given the quantized code sequence eq∆µ,(1:T ′) ∈ RT ′
and eq∆L,(1:T ′) ∈ RT ′

of temporal

length T ′, two embedding layers map them to learnable features f∆µ ∈ RT ′×ℓ and f∆L ∈ RT ′×ℓ,
respectively. The onset audio features aonset are also passed through an embedding layer to obtain
audio features fa ∈ RT ′×ℓ. After the concatenation over the temporal dimension and supplement
the position embedding information, we get the latent input features of shape (3× T ′)× ℓ. Then,
12 Transformer layers with channel dimension of 768 and 12 attention heads of dropout probability
0.1 are utilized to encode the cross-attention information. Finally, a linear and softmax layer map
the encoded latent features to normalized motion probabilities of p ∈ R(3×T ′)×M , where M is the
codebook size. Notably, pt,m denote the probability of motion code d∆µ,m and d∆L,m predicted
at the time step t+ 1 for relative shift-translation ∆µ and relative factorial covariance change ∆L,
respectively. During the implementation, the probabilities at the audio feature indexes p(1:T ′) are
discarded, while the probabilities at the ∆µ and ∆L indexes represent the corresponding motion
probabilities, i.e., p∆µ = p(T ′+1:2T ′) and p∆L = p(2T ′+1:3T ′) [12]. The attention layer can be
formulated as:

Attention(Q,K,V,M) = softmax(
QKT +M√

ℓ
)V, (2)

where Q,K,V are the query, key and value matrix from input, M denote the mask, ℓ is the channel
dimension and T is the matrix transpose operation. To encode the cross-conditional features of audio
features, relative shift-translation features and relative covariance change features, the mask M is set
as a 3× 3 repeated block matrix with the lower triangular matrix as its element.

The Co-Speech GPT is trained via cross-entropy loss as a classification problem. Specifically,
the motion codes of eq∆µ,(1:11), e

q
∆L,(1:11) are used as input, while eq∆µ,(2:12), e

q
∆L,(2:12) serve as

supervision labels. The overall loss function is:

LCE =
1

T ′

T ′∑
t=1

{
CrossEntropy

[
p(∆µ,t), e

q
(∆µ,t+1)

]
+ CrossEntropy

[
p(∆L,t), e

q
(∆L,t+1)

]}
,

(3)

where CrossEntropy denotes the cross-entropy loss function; p(∆µ,t), p(∆L,t) are the predicted
probability of ∆µ, ∆L terms at the t-th time step, respectively; the eq(∆µ,t+1), e

q
(∆L,t+1) are the

vector quantized code of ∆µ and ∆L at the (t+ 1)-th time step, respectively.

C Architecture Details

VQ-Motion Extractor Encoder and Decoder. The encoders E∆µ, E∆L and the decoders D∆µ,
D∆µ are 1D temporal convolution networks. In particular, the encoders have three convolution layers,
with each layer’s kernel size of 3, padding of 1 and stride of 2. In this way, the downsampling scale
of the encoder is 8, which will compress the temporal contextual information. For the decoder, the
structure is similar, with three convolution layers of kernel size 3, padding 1 and stride 1, and three
upsample layers of upsample scale 2 to reconstruct the latent features.

Motion Estimator and Image Generator. For the motion estimator, we follow MRAA [11] that uses
a region predictor to extract the articulated human body information. Specifically, we similarly use
the U-Net architecture with five “convolution - batch norm - ReLU - pooling” blocks in
the encoder and five “upsample - convolution - batch norm - ReLU” blocks in the decoder
for both the region predictor and pixel-wise flow predictor. Note that since it is inappropriate to infer
the background motion from speech audio cues, we remove the original background motion predictor.
In terms of the image generator, it is based on the Johnson architecture [5], with two down-sampling
blocks, six residual-blocks, and two up-sampling blocks. The skip connections are added to warp and
weight the confidence maps.
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Table 1: Detailed structure of audio encoder. †Note that in the table, Conv2d (cin, cout, k, s,
p) means the conv2d operation of input channel dimension cin, the output channel dimension of
cout, the kernel size of k, the stride of s and the padding of p; MaxPool2d (k, (sh, sw)) means
the MaxPool2d operation of kernel size k, h direction stride of sh and w direction stride of sw;
Linear (cin, cout) means the linear layer with input feature of dimension cin and output feature of
dimension cout; ReLU means the ReLU operation on the input feature.

Audio Encoder
Feature Feature Shapes Operations
Input 1× 28× 12 Conv2d (1, 64, 3, 1, 1)

Layer-1 64× 28× 12 Conv2d (64, 128, 3, 1, 1)
Layer-2 128× 28× 12 MaxPool2d (3, (1, 2))
Layer-3 128× 26× 5 Conv2d (128, 256, 3, 1, 1)
Layer-4 256× 26× 5 Conv2d (256, 256, 3, 1, 1)
Layer-5 256× 26× 5 Conv2d (256, 512, 3, 1, 1)
Layer-6 512× 26× 5 MaxPool2d (3, (2, 2))
Flatten 512× 12× 2 flatten
Layer-7 12288 Linear (12288, 2048), ReLU
Layer-8 2048 Linear (2048, 256), ReLU
Layer-9 256 Linear (256, 128), ReLU

Per-frame Audio Feature 128 -

Motion Refinement Network. The motion refinement network maps the audio mfcc features to the
residual terms to complement the subtle rhythmic movements of the co-speech gesture. Concretely,
the audio mfcc features amfcc ∈ R28×12 are first pre-extracted with the window size of 10 ms. Then a
convolution based audio encoder with a series of linear layers is used to encode the per-frame audio
features into fmfcc

a ∈ R128. The detailed structure is listed in Table 1.

We first follow the pipeline of MRAA [11] to pretrain the motion estimator and image generator via
self-reconstruction. Then, the motion estimator module is freezed and serves as supervision in VQ-
Motion Estimator training, i.e., we train the VQ-VAE model to reconstruct the motion representation
from pretrained MRAA motion estimator.

D Analysis on Limitations and Future Work

As an early work towards audio-driven co-speech video generation without structural prior, we notice
that our method fails for some challenging cases. For example, if the source image is in a large pose,
it is hard to generalize well in such out-of-domain data.

Notably, since our work does not involve any structural human body prior, it is of high freedom
without any human skeleton physical constraint. Therefore, for some cases of large pose, the model
may generate too large motion field and lead to failure case results. We will explore how to develop a
model with higher generalization ability in future work.

Generalizing co-speech gesture avatars to more complex and general settings like social conversation
is a promising idea of great practical usage. Currently, the biggest bottleneck could be the lack of
high-quality conversational dataset. Although CMU Panoptic contains the multi-view conversation
videos, the image quality is poor for co-speech image animation. Besides, since the social co-speech
gesture is more diverse, some model designs like VQ codebook size should be well studied. We will
delve into this interesting problem in future work.

Besides, since our frames are preprocessed to resolution of 256× 256, the scale and resolution of
facial regions are rather small. We leverage Wav2Lip [8] to sync the lip shape in the demo video
for better visualization. Note that such process substantially differs from the post-processing step
of [4, 9] that trains an extra pose2image generator: 1) The focus of co-speech gesture generation task
is to synthesize coherent upper body poses that are aligned to speech audio, while the lip-sync is not
the focus in this work. We merely implement it for better visualization. 2) We could directly use
the off-the-shelf Wav2Lip [8] to sync the lip shape without any preprocessing step, post-processing
step or re-training. Therefore, it is in essence different from an additional pose2image generator

3



Table 2: Experiment results when generalize to unseen audio.

Methods FGD ↓ BC ↑ Diversity ↑
ANGIE (Novel Audio) 1.46 0.69 48.5

ANGIE (Ours) 1.35 0.72 49.4

Table 3: The standard deviation of the user study results. The rating scale is 1-5, with the larger
the better. We compare the Realness, Synchrony and Diversity to baselines [4, 6, 9, 15].

Methods GT S2G [4] HA2G [6] SDT [9] TriCon [15] ANGIE (Ours)
Realness 0.492 0.413 0.293 0.206 0.385 0.312

Synchrony 0.480 0.574 0.214 0.265 0.350 0.345
Diversity 0.252 0.629 0.471 0.313 0.221 0.287

that requires tedious re-training. 3) The task of simultaneously generating audio-consistent upper
body gestures and lip shapes is challenging and remains unsolved. The difficulty lies in a) the
low-resolution of mouth regions in the large-scale upper body image makes it hard to capture the
fine-grained lip-sync information; b) the mouth shape only depends on the phoneme, while the
co-speech gesture correlates to the semantic meanings. We will explore this problem in future work.

E Analysis on Generalization Ability

As shown in previous studies [2, 4], the co-speech gesture motions and styles vary a lot for different
speakers, which is termed as “individual speaking style” [4]. Therefore, it is suitable to train a
separate co-speech gesture generation model for each person following the experiment settings
of baselines [2, 4, 9]. However, we explore a more challenging task of co-speech gesture video
generation in a unified framework without structural prior and achieve superior performance. Even
for a single-person subset, it is non-trivial to animate non-rigid human body in image space by speech
audio, especially with the interference of complex background scenes.

It is hard to generalize to speakers that are not in the training data with currently available co-speech
gesture image datasets. In particular, the commonly used datasets are TED Gesture [15] and
PATS [2, 4]. TED Gesture is based on TED Talk videos, while PATS contains 25 speakers of talk
shows, lectures, etc. Due to the frequent camera movements and viewpoint shift in TED videos, there
lacks clear co-speech gesture clips for image generation. Hence we narrow down the experiments to
PATS dataset in this work. A dataset with high-quality co-speech gesture image frames of multiple
speakers is needed to learn a model of novel (unseen) person generalization ability. We will strive for
this in future work.

We verify the potential generalization ability of our approach: a) We could animate different
appearances of a speaker with speech audio (as shown in codebook analysis part of the demo
video, we could animate Oliver’s different appearances), while previous studies [9, 4] that resort to
off-the-shelf pose2img generator only support a single appearance. b) We additionally implement the
experiments of animating with novel (unseen) audio. The evaluated results are reported in Table 2.
It shows that the model’s performance is still effective with the input of unseen audio. With the
proposed vector quantize design, each codebook entry corresponds to a reasonable co-speech gesture
pattern. In contrast to directly mapping to the continuous coordinate space, such technical design
guarantees the valid gesture even when generalizing to the unseen audio.

F The Standard Deviation of User Study

We additionally provide the standard deviation of user study results in Table 3, which shows that the
agreement among participants is highly consistent.
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Table 4: Experiment results of concatenating text features.

Methods FGD ↓ BC ↑ Diversity ↑
ANGIE (Extra Text Concat) 1.30 0.73 49.8

ANGIE (Ours) 1.35 0.72 49.4

G Details on Audio Feature Extraction

Audio Onset Strength Feature. The audio onset strength feature of T frames is of shape (T, 426),
where T is the temporal dimension (frame number) and 426 is the feature channel dimension. It
is the concatenation of constant-Q chromagram, tempogram, onset beat, onset tempo and onset
strength. Most features are derived from the audio onset strength/envelope and the channel dimension
is summed up to 426. We utilize the librosa onset functions to extract the features. The audio sample
rate is 16000, the time lag for computing differences is 1, the hop length is 512 and the window
length is 384.

Audio MFCC Feature. The original audio mfcc was calculated as 12 mfccs which has the dimension
of (T ′, 12) where T ′ is the original audio frame number. In our implementation, we use a 28-dim
sliding window to further unfold the mfcc feature into a final shape of (T, 28, 12), where T denotes
the final temporal dimension (video frame number), 28 denotes the size of sliding window and 12
is the mfcc feature dimension. MFCC feature is extracted with a sample rate of 16000, window
length of 25 ms, window step of 10 ms, cepstrum number of 13, filters number of 26 and FFT block
size of 512. In the motion refinement module, we use the a certain frame’s mfcc feature of shape
(28, 12) and forward a series of convolution and linear layers to extract the per-frame audio feature of
dimension 128.

H Analysis on Extra Input Modality of Text Information

Our main focus and technical contributions are how to animate the co-speech gesture in the image
domain, but not on the influence of input modality. We choose the audio-driven setting mainly
for two reasons: a) We generally follow the problem setting of baselines [2, 4, 9], where all the
compared methods take only the speech audio as input modality for fair comparison. b) We have
to pre-process the raw transcripts to be temporally aligned with audio using tools like Gentle. To
prevent the potential alignment inaccuracy in the pre-processing step, and to simplify the problem
setting for better focusing on audio-driven co-speech gesture image animation, we do not involve the
text input in this work.

As proved in Automatic Speech Recognition (ASR) [16, 14] and recent co-speech gesture studies [6],
the speech audio actually contains some high-level semantic information. Such implicit semantic
information in the speech audio could guide the model to capture some specific co-speech gesture
patterns like metaphorics [6]. Besides, as shown in the Kubinec chemistry lecture setting, our model
manages to synthesize deictic gestures of pointing to the screen by learning such implicit audio-
gesture correlations. We would like to respectfully claim that the generated gestures of our model are
not only limited to the beat gestures, but some semantic gestures could also be synthesized.

Typically, language model/text information contains rich semantics, which are beneficial to the
learning of semantics relevant gestures like iconics, metaphorics, and deictics. Previous study [15]
has also verified the influence of each input modality on co-speech gesture, including audio, text and
speaker identity, etc. Therefore, we additionally complement an experiment of using text feature: we
encode the Gentle aligned transcripts by TextTCN [3] and further concatenate with audio features.
The combined audio text features are fed to Co-Speech GPT with Motion Refinement network to
predict the quantized code as well as motion residuals. The results are reported in Table 4, which
suggest that the text feature could indeed facilitate the co-speech gesture generation.

As an early attempt exploring audio-driven co-speech video generation, this work could serve as a
baseline for further studies in the research community. However, how to effectively fuse the multiple
modality information (including audio and text) and better map to the implicit motion representation
remains an open problem. We will explore this in future work.
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Table 5: Randomness of the Diversity metric on the Oliver subset.

Group 1 2 3 4 5

Diversity 53.29 52.88 53.62 53.59 53.36

Table 6: Licenses of existing assets we have used in this work.
Asset License Link

MRAA [11] https://github.com/snap-research/articulated-animation/blob/main/LICENSE.md
Librosa [7] https://github.com/librosa/librosa/blob/main/LICENSE.md
Bailando [12] https://github.com/lisiyao21/Bailando/blob/main/LICENSE
PATS [1, 2, 4] https://github.com/chahuja/pats

I Experimental Results with Error Bars

Since the Diversity metric involves randomness, which may fluctuate due to different sampling clips.
Therefore, we randomly sample 400 pairs to get robust evaluation results. To verify the steadiness,
we conduct the evaluation 5 times (create random samples 5 times with different random seeds).
The results are listed in Table 5. We can see that the fluctuation is rather small, which shows the
robustness of such evaluation.

J User Study Details

The study involves 18 participants of 9 females and 9 males. In particular, the users are unaware
of which generated result corresponds to which method for a fair comparison. Before they rate the
quality of synthesized results, the participants will first be shown what the Ground Truth (original
raw video) is to help them make accurate scoring. The participants are asked to judge the three
perspectives of the generated portraits: (1) Realness; (2) Synchrony; (3) Diversity. All participants
are paid for 15 USD for about 40− 60 minutes’ rating process. We use the Fleiss’s-Kappa statistic
to measure the participants’ scoring disagreement, which is a statistical measure for assessing the
reliability of agreement between a fixed number of raters when assigning categorical ratings to a
number of items or classifying items.

K Ethical Considerations

Our method could synthesize co-speech gesture images, which is envisioned to facilitate extensive
applications like digital human and human-machine interaction. On the other hand, however, such
techniques could be misused for malicious purposes such as forgery generation. As part of our
responsibility, we strongly advocate all safeguarding measures against malicious use of co-speech
gesture images and feel obliged to share our generated results with the deepfake detection community
to improve the method’s robustness. We believe that the proper use of this technique will enhance
positive societal development in both machine learning research and human’s daily entertainment.

L Discussions on Dataset Consent and Information

The PATS Image Dataset is collected and preprocessed based on the PATS dataset. We download the
YouTube videos by the provided video links, shared under the “CC BY - NC - ND4.0 International”
license. This license allows for non-commercial use. Since all our code, data, models and results are
kept for academic use only, hence despite of the contained personally identifiable information in the
collected data, we will use them for research use only and will not allow any commercial use.

M Assets License

In the Table 6, we list the licenses of all the existing assets we have used in this work.
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