
CodeRL: Mastering Code Generation through
Pretrained Models and Deep Reinforcement Learning

Supplementary

Anonymous Author(s)
Affiliation
Address
email

A Overview of Critic Model1

Figure 1 shows an overview of our critic model. In our CodeRL framework, besides the actor LM2

network θ, we introduce a critic model that is trained as an error predictor and parameterized as3

a neural network with parameters ϕ. The critic receives as inputs a problem description D and4

a corresponding synthetic program WS sampled from the actor. The critic is required to output5

a prediction of the unit test outcome of the input program. We define 4 possible outcomes u:6

CompileError, RuntimeError, FailedTest, and PassedTest. The critic model is trained by minimizing7

the following loss:8

Lcritic(ϕ) = − log pϕ(u|W s, D) (1)

The ground-truth outcome of a synthetic sample is obtained by passing it to the unit tests correspond-9

ing to the problem. Note that since our critic model is applied in a supervised learning environment10

with available ground truth, we also use the training samples from the original dataset with ground11

truth output u = PassedTest to train the critic.12

The learned hidden state representations of program tokens when passed through the critic are then13

used to measure their return estimates for our RL optimization objective. The return estimates are14

incorporated as intermediate returns at decoding steps to compute the expected gradient of the actor15

network∇θLrl(θ).16

B Critic Sampling Procedure17

Refer to Algorithm 1 for a step-by-step explanation of our critic sampling procedure.18

C Additional Experimental Setup Details19

Pretraining Setup. For CodeT5, we adopt the code-specific tokenizer as described by Wang et al.20

[2021]. Note that we employ 6 programming languages (PLs) in CodeSearchNet [Husain et al., 2019]21

(CSN) instead of 8 PLs in CodeT5 as C/C# datasets are not publicly available. We employ only the22

pretraining task of masked span prediction (MSP) in CodeT5 and hence, we do not have to parse23

programs into abstract syntax trees (ASTs) to obtain the identifier information. This preprocessing24

step was required in other original pretraining tasks like masked identifier prediction [Wang et al.,25

2021]. To further speed up training, we concatenate data samples to batch size 512 for pretraining26

with MSP and the resulting number of tokens is 1.1B.27

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Problem

Linear & Softmax

Sampled/Baseline/Ground-truth Programs

Sequence-to-Sequence Model

Unit
Tests

Return Estimation

Sample Test Results

Max Pooling

Baseline Test Results

Figure 1: Overview of our critic model: The critic receives problem specifications and pro-
grams as inputs. For each program, the critic predicts one of four possible test outcomes:
{CompileError,RuntimeError,FailedTest,PassedTest}. The learned hidden state representa-
tions are then used to estimate the returns of synthetic samples to finetune the actor network. To
improve and stabilize the training process, baseline programs are used to compute relative return
estimates.

APPS Benchmark. We follow the same preprocessing step as in [Hendrycks et al., 2021] to28

formulate the input sequences from problem descriptions. APPS consists of 10,000 coding prob-29

lems with a 50-50 train-test split. Each problem is accompanied by 23.2 correct Python programs30

and 21.2 unit tests on average. The average length per problem is 293.2 words and the average31

length per program is 18.0 lines. The dataset is categorized into three levels of difficulty: Introduc-32

tory (3639, train/test=2639/100), Interview (5000, train/test=2000/3000), and Competition (1361,33

train/test=361/1000). Similarly to [Hendrycks et al., 2021], we employ the strict accuracy metric to34

evaluate the functional correctness of a program, where it is counted as correct if it can pass all the35

unit tests corresponding to the problem.36

MBPP Benchmark. We additionally include another smaller and simpler Python program synthesis37

dataset called MBPP [Austin et al., 2021] (Mostly Basic Programming Problems) for evaluation. The38

dataset contains 974 instances with 374/90/500 instances for training/validation/testing respectively39

and 10 reserved for few-shot learning. The problems are typically short, usually one sentence of40

natural language descriptions each. Each problem is accompanied by 1 correct solution (6.8 lines41

of code on average) and 3 unit tests in the form of assert statements for validating the functional42

correctness. Unlike APPS, unit tests in MBPP are not hidden and are explicitly incorporated into43

the source sequences for program synthesis models. This might encourage models to be overfitting44

to these assert statements via hard-coding an if-expression very occasionally. However, for a45

fair comparison with the baselines, we construct the source sequences in the same way as in prior46

work. Specifically, we adopt the same prompt format as in [Austin et al., 2021] to prepare the input47

sequence as: problem descriptions + “Your code should satisfy these tests:” + 3 assert statements.48

Finetuning Setup. Following [Bahdanau et al., 2016], since our RL method is applied in a su-49

pervised learning task, in addition to synthetic programs, we also use the ground-truth programs50

of training samples to train the critic. These samples are considered perfect programs and always51

have a label of PassedTest. To optimize the LM actor network, in practice, following previous work52

[Bahdanau et al., 2016, Rennie et al., 2017, Wang et al., 2018], in each training optimization step, we53

can simply approximate the expected gradient with a single sample Ws ∼ pθ:54

∇θLrl(θ) ≈ −(r(W s)− r(W b))
∑
t

q̂ϕ(w
s
t)∇θ log pθ(w

s
t |ws

1:t−1, D) (2)

Configurations. For pretraining, we perform our experiments on a Kubernetes with 16 A100-40G55

GPUs on Google Cloud Platform and the total pretraining duration is around 21 days. In the first56

pretraining stage with MSP, we employ a corruption rate of 15%, a peak learning rate (LR) of 2e-4,57

2

Algorithm 1: Critic sampling procedure to generate programs
Input: Problem D, Language model θ, Critic model ϕ
Output: A set of N generated solution programs

1 begin
/* step 1: generate program solutions by LM */

2 a set of output solutions S ←− ∅
3 for N times do

/* use sampling decoding to generate programs */

4 Program Ŵi ←− Sampling pθ(Wi|D)←− Sampling pθ(w
i
t|wi

1:t−1, D)

5 S ←− S ∪ {Ŵi}
/* step 2: extract example unit tests from problem */

6 example unit tests I ←− ExtractExampleInputOutput(D)
/* step 3: filter for passed programs and pass to the critic

model to select sub-sequences */
7 a set of filtered programs F ← ∅
8 for each generated program Ŵi ∈ S do
9 Testoutcomes ui ←− RunTests(Ŵi, I)

10 if ui = “PassedTest” then
11 F ←− F ∪ {Ŵi}

/* If no passed samples, return all current programs for
evaluation */

12 if |F| = 0 then return S
13 upsampling param N

′
= N/|F|

14 a set of output solutions S ′ ←− ∅
15 for each filtered program Ŵi ∈ F do
16 subsequence W sub

i ←− Sampling pϕ(ui = PassedTest|Ŵi, D)
17 ←− Sampling pϕ(ui = PassedTest|ŵ1:t−1, D)

/* step 4: subsequence as seeds to regenerate programs */
18 length of subsequence m←− |W sub

i |
19 for N

′
times do

20 Ŵj ←− Sampling pθ(Wj |W sub
i , D)←− Sampling pθ(w

j
t |w

j
m:t−1,W

sub
i , D)

21 S ′ ←− S ′ ∪ {Ŵj}

/* return the regenerated programs for evaluation */

22 return S ′

and a batch size of 2048. We pretrain on CSN for 150 epochs (10 days) and then on GCPY for58

10 epochs (5 days). For the second stage pretraining with NTP, we adopt a peak LR of 1e-4 and a59

batch size of 256, and pretrain for 10 epochs (6 days). We set the maximum length to 768 and 60060

for source and target sequences respectively for this objective. For all experiments, we employ an61

AdamW optimizer [Loshchilov and Hutter, 2019] with a 0.05 weight decay and a linear decay LR62

scheduler with a warmup step of 1000.63

For finetuning on APPS, we adopt a batch size of 64 and warmup LR from 0 to 2e-5 for the first 50064

steps and polynomially (power=0.5) decay to 1e-5 until the end of 10 epochs, which takes around 3065

hours on one A100 GPU. We set the maximum source and target sequence length to 600 and 51266

respectively.67

To train the critic model (either a GPT2-small or a CodeT5-base), we train the models with synthetic68

sampled programs for up to 10 epochs. We found that in this phase, the critic model usually converges69

quite earlier than the 10-epoch training limit. Once the critic model is trained, we continue to finetune70

3

Table 1: CodeT5 results on CodeXGLUE: Code-to-Text generation results (smoothed BLEU-4) of
CodeT5 pretrained with larger data, improved learning objectives, and larger model size

Model Ruby JavaScript Go Python Java PHP Overall
RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02 16.57
CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16 17.83
DOBF - - - 18.24 19.05 - -
PLBART 14.11 15.56 18.91 19.30 18.45 23.58 18.32
CoTexT 14.02 14.96 18.86 19.73 19.06 24.58 18.55
CodeT5-small 14.87 15.32 19.25 20.04 19.92 25.46 19.14
CodeT5-base 15.24 16.16 19.56 20.01 20.31 26.03 19.55
CodeT5-large 15.58 16.17 19.69 20.57 20.74 26.49 19.87

Table 2: CodeT5 results on CodeXGLUE: Text-to-Code generation results of CodeT5 pretrained
with larger data, improved learning objectives, and larger model size

Model EM BLEU-4 CodeBLEU
GPT-2 17.35 25.37 29.69
CodeGPT-2 18.25 28.69 32.71
CodeGPT-adapted 20.10 32.79 35.98
PLBART 18.75 36.69 38.52
CoTexT 20.10 37.40 40.14
UniXcoder 22.60 38.23 -
CodeT5-small 21.55 38.13 41.39
CodeT5-base 22.30 40.73 43.20
CodeT5-large 22.65 42.66 45.08

Table 3: CodeT5 results on CodeXGLUE: Code-to-Code generation results of CodeT5 pretrained
with larger data, improved learning objectives, and larger model size

Model Java to C# C# to Java Refine Small Refine Medium
BLEU-4 EM BLEU-4 EM BLEU-4 EM BLEU-4 EM

Naive copy 18.54 0.00 18.69 0.00 78.06 0.00 90.91 0.00
Roborta (code) 77.46 56.10 71.99 57.90 77.30 15.90 90.07 4.10
CodeBERT 79.92 59.00 72.14 58.00 77.42 16.40 91.07 5.20
GraphCodeBERT 80.58 59.40 72.64 58.80 80.02 17.30 91.31 9.10
PLBART 83.02 64.60 78.35 65.00 77.02 19.21 88.50 8.98
CoTexT - - - - 77.79 21.03 88.40 13.11
NSEdit - - - - 71.06 24.04 85.72 13.87
CodeT5-small 82.98 64.10 79.10 65.60 76.23 19.06 89.20 10.92
CodeT5-base 84.03 65.90 79.87 66.90 77.43 21.61 87.64 13.96
CodeT5-large 83.56 66.00 79.77 67.00 77.38 21.70 89.22 14.76

the actor language model for 10 more epochs using both the conventional NTP loss and RL-based71

loss.72

For MBPP, in finetuning experiments with CodeT5, due to its small training set, we finetune the73

models for 60 epochs with a constant LR of 2e-5 and a batch size of 32, which takes less than 3074

mins on one A100. We set its maximum source and target length to 382 and 306 respectively.75

Critic Sampling. Note that in CS, many rounds of regeneration can be run to keep improving the76

output programs. However, in practice, we found that one round of regeneration is sufficient to obtain77

good programs. In the initial generation, if no samples pass example unit tests, we do not apply critic78

sampling and simply use all available programs for evaluation.79

4

Table 4: Ablation results on MBPP: Ablation results of CodeRL with different CodeT5 model
variants with different sizes, pretraining data and objectives on MBPP. CodeT5† is finetuned on APPS
and evaluated on MBPP in a zero-shot setting.

Model Size Data Objective pass@80 pass@1000
GPT finetuned results

GPT 224M Web Doc LM 7.2 -
GPT 422M Web Doc LM 12.6 -
GPT 1B Web Doc LM 22.4 -
GPT 4B Web Doc LM 33.0 -
GPT 8B Web Doc LM 40.6 -
GPT 68B Web Doc LM 53.6 -
GPT 137B Web Doc LM 61.4 -

CodeT5 finetuned results
CodeT5 60M CSN MSP 19.2 36.2
CodeT5 220M CSN MSP 24.0 42.8
CodeT5 770M CSN MSP 32.4 47.8
CodeT5 770M +GCPY MSP 34.6 51.6
CodeT5 770M +GCPY +NTP 46.8 66.2

CodeRL zero-shot results
CodeT5† 770M +GCPY +NTP 60.2 78.4
+CodeRL 770M +GCPY +NTP 63.0 81.8

D Additional Experimental Results80

D.1 CodeXGLUE Benchmark Results81

To validate the effectiveness of our simplified pretraining strategies of CodeT5-large, we extensively82

evaluate it on a variety of generation tasks in CodeXGLUE [Lu et al., 2021], including code-to-text83

generation (i.e. summarization, see Table 1), text-to-code generation (see Table 2), and code-to-code84

generation (i.e., code translation and code refinement, see Table 3). Different from APPS [Hendrycks85

et al., 2021] and MBPP [Austin et al., 2021], we follow the default similarity-based evaluation86

metrics in the CodeXGLUE benchmark, including BLEU [Papineni et al., 2002] and CodeBLEU87

[Ren et al., 2020], and exact match (EM) scores. Table 1, 2, and 3 show that our simplified pretrained88

CodeT5-large sets new SOTA results on a large majority of the tasks, and hence, can be served as a89

better foundation model for other code-related generation tasks. Note that in these experiments, we90

employ the conventional finetuning objective with Lce and there might be potential to improve the91

performance further with our CodeRL framework.92

D.2 MBPP Benchmark Results93

Following Austin et al. [2021], we adopt temperature sampling to generate multiple candidate94

solutions. We empirically find that CodeT5 benefits from a higher temperature of 1.2 (less greedy95

decoding or more diverse) than their GPT’s temperature of 0.5 on this benchmark.96

Table 4 reports the pass@80 and pass@1000 results for both finetuned and zero-shot settings. For97

baselines, we compared with GPT models with sizes ranging from 224M to 137B [Austin et al.,98

2021], which are pretrained on 2.93B web documents (13.8M containing source code) using standard99

language modeling objective. Results of GPT models are obtained from the original authors. From100

the comparison among various CodeT5 variants, we again confirm that larger model sizes and101

pretraining data, and better pretraining objective of NTP all lead to a performance boost. Particularly,102

our CodeT5-770M yields a pass@80 of 46.8%, surpassing GPT-8B’s 40.6% with a much smaller103

model size. In addition, we find CodeT5 models finetuned on APPS can achieve a surprisingly good104

zero-shot performance on MBPP with a pass@80 of 60.2% and further improved to 63.0% with105

the help of CodeRL, which even outperforms the largest GPT-137B’s performance of 61.4%. This106

indicates APPS is a comprehensive program synthesis benchmark and CodeT5+CodeRL models107

trained on it are able to generalize to other simpler coding tasks. If we further increase the budget of108

5

Figure 2: Analysis of duplicated lines between MBPP and APPS: The overlap of data between
APPS and MBPP appears to be minimal, with only 12.6% MBPP programs with > 50% lines
duplicated in APPS training data.

attempts up to 1000, all models witness a consistent and significant boost in solving rate, especially109

our CodeT5+CodeRL yielding a new SOTA result of 81.8% pass@1000.110

A common concern about transfer learning is that the source (APPS) and target (MBPP) tasks might111

overlap in their training data, which could result in the source model tending to memorize these112

substantially similar data when applied to the target task. To address this concern, we analyze113

how many lines of code appear in both the training set of APPS and the programs of MBPP114

following Austin et al. [2021]. For this analysis, we discard code comments and normalize the115

whitespaces for each line, and then exclude lines that appear more than twice anywhere in MBPP, as116

these are likely to be common Python keywords such as return and break.117

Figure 2 illustrates the number of absolute duplicated lines (Left) and the relative fraction of duplicated118

lines (Right) in the MBPP programs. As can be seen, the overlap between APPS and MBPP seems to119

be minimal. Only 12.6% MBPP programs have more than half of their lines matched somewhere in120

the APPS training data. Besides, more than half (514 out of 974) of programs have a zero overlap and121

90.9% have only no more than 3 lines overlapping with the APPS training set. If we further require122

the lines to be consecutive, there are no more than 2 consecutive duplicated lines.123

D.3 APPS Benchmark Results on Competition-level Tasks124

Figure 3 shows the results of pass@k and n@k with k ranging from 1 to 200 and n = {1, 5}, for125

CodeRL+CodeT5 and CodeT5 only. We choose to investigate a subset of the APPS test split, which126

contains the test samples of the highest difficulty level (i.e. competition programming tasks). Since127

CodeRL is model-agnostic, we also integrate it with GPT-J [Wang and Komatsuzaki, 2021] and report128

the results. To focus on the impact of our RL optimization, during test time, we compare models129

using only nucleus sampling and without the CS procedure. Figure 3 shows that the performance130

gains are quite consistent on both GPT-J and CodeT5. In particular, as k increases, the performance131

gain of CodeRL is more significant on both GPT-J and CodeT5 models. We attribute these gains to132

the CodeRL learning objective Lrl that encourages models to explore code solutions drawn from the133

model’s sampling distribution. During test time with an increasing k sampling budget, models are134

allowed to generate diverse code solutions and the impact of Lrl becomes more significant.135

D.4 CodeT5 Ablation by Training Epochs136

Figure 4 shows the performance of CodeT5 model variants by finetuning epochs and by difficulty137

levels of programming tasks. Note that in these experiments, we only need to compare among138

CodeT5 model variants by pretraining strategies, and hence, only engage Lce (imitation learning) in139

6

Figure 3: Results on APPS competition-level test samples: We investigate the most challenging
programming problem tasks, i.e. competition level, in the APPS benchmark. Integrating CodeRL
with both CodeT5 and GPT-J, we observe good performance improvement across pass@k and n@k
metrics, with increasing performance gains as k increases.

Figure 4: Ablation results by finetuning epochs: We report the finetuning progress of CodeT5-770M
models that are pretrained on different configurations by pretraining data and pretraining tasks. CSN:
CodeSearchNet, GCPY: Github Code Python, MSP: Masked Span Prediction, NTP: Next Token
Prediction. All models are finetuned only with Lce on APPS.

the finetuning stage on APPS. Consistent with our prior analysis (see Section ?? of the main paper),140

enhancing both pretraining data (with larger data of GCPY) and pretraining objectives (with NTP141

objective) improves model performance across training epochs in general. Moreover, as noted by our142

analysis of learning objectives, only using Lce often leads to overfitting performance, typically after143

epoch 10 in our case. Hence, to further finetune large-scale LMs, we recommend adopting our RL144

objective Lrl to utilize synthetic training samples and avoid overfitting models.145

D.5 Impacts of CodeRL on Program Quality by Unit Test Signals146

Figure 5 demonstrates the average percentages of generated programs by their test signals. Specifically,147

we use CodeT5 or CodeRL+CodeT5 to generate programs and randomly select 200 generated148

programs per test sample in the APPS test split. We pass programs to either example unit tests or149

hidden unit tests corresponding to the problem and group the output programs by their output signals,150

including CompileError, RuntimeError, FailedTest, and PassedTest. We observe that integrating151

CodeRL can increase the likelihood that a program can pass unit tests, and reduces the likelihood152

that it fails one or more unit tests, or whether it contains compiling or runtime errors. However, we153

note that there are significant gaps in performance by test signals between example unit tests and154

hidden unit tests. This observation suggests that example tests are not as comprehensive as hidden155

7

Figure 5: Qualitative results of CodeT5 and CodeT5+CodeRL: We generate 200 programs per
test sample and report the % programs per sample by their unit test signals, including CompileError,
RuntimeError, FailedTest, and PassedTest.

tests and hence, applying our CS procedure might lead to false positive samples for regeneration. We156

recommend additional methods to improve example unit tests, such as through data augmentation by157

mutating input/output pairs [Austin et al., 2021].158

D.6 Example Generated Programs and Qualitative Analysis159

Figure 6 to 8 show examples of programming problems from the APPS benchmark and corresponding160

programs generated by CodeT5 variants. Specifically, based on the same foundation pretrained161

CodeT5 (pretrained with GCPY data and NTP objective), we compare the CodeT5 model that is162

finetuned by Lce only and another model that follows our CodeRL framework. In CodeRL+CodeT5,163

we further show programs before and after applying the CS procedure. The example programs164

show that applying CodeRL can improve the quality of generated programs and the CS procedure165

further improves the functional correctness of the programs. For instance, in Figure 8, CodeT5 model166

misunderstands the problem and focuses on finding the greatest common divisor between a and b167

only. Instead, the CodeRL model avoids this mistake and tackles the problem based on the factorials168

of a and b. In Figure 7, we note that the CS procedure improves the program by reordering the elif169

code blocks. The resulting program is more correct and is able to pass all hidden unit tests.170

We also found that CodeRL can improve the efficiency of the programs, an important quality in171

complex programming problems. For instance, in the interview-level programs in Figure 8, we note172

that without applying CS, the generated program is functionally correct but fails during execution due173

to a timeout error. Applying the CS procedure can condition models on parts of the prior program and174

(re)generates new tokens to produce a more efficient program. Hence, the resulting final program is175

able to pass all hidden unit tests (including tests with extremely large values) without timeout errors.176

References177

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,178

Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,179

2021.180

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An181

actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086, 2016.182

8

Input: 3 4 5
Output: 6

QUESTION:
There is a right triangle ABC with ∠ABC=90°.
Given the lengths of the three sides, |AB|,|BC| and |CA|,
find the area of the right triangle ABC.
It is guaranteed that the area of the triangle ABC is an
integer.

-----Constraints-----
 - 1 \leq |AB|,|BC|,|CA| \leq 100
 - All values in input are integers.
 - The area of the triangle ABC is an integer.

-----Input-----
Input is given from Standard Input in the following format:
|AB| |BC| |CA|

-----Output-----
Print the area of the triangle ABC.

-----Sample Input-----
3 4 5

-----Sample Output-----
6

This triangle has an area of 6.
Use Standard Input format

ANSWER:

Input Problem

CodeT5 Output Program

CodeRL+CodeT5 Output Program (after CS)

CodeRL+CodeT5 Output Program (before CS)

Example Unit Tests

Ground-truth Program

Input: 5 12 13
Output: 30

Input: 24 7 25
Output: 84
...

Hidden Unit Tests

PASSED
TESTS

FAILED
TESTS

FAILED
TESTS

Example tests: Passed
Hidden tests: Passed

Example tests: Failed
Hidden tests: Failed

Example tests: Passed
Hidden tests: Failed

Figure 6: An example synthesis task from the APPS benchmark and corresponding programs
generated by CodeT5 variants: Without the CS generation procedure, CodeRL+CodeT5 model can
generate programs that pass all example tests but fail hidden tests. With the CS generation procedure,
the model can condition on prior programs and generate a better program that passes all hidden tests.

D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He,183

D. Song, and J. Steinhardt. Measuring coding challenge competence with apps. NeurIPS, 2021.184

H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt. Codesearchnet challenge:185

Evaluating the state of semantic code search. CoRR, abs/1909.09436, 2019.186

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In ICLR (Poster). OpenRe-187

view.net, 2019.188

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain, D. Jiang,189

D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan,190

S. K. Deng, S. Fu, and S. Liu. Codexglue: A machine learning benchmark dataset for code191

understanding and generation. In NeurIPS Datasets and Benchmarks, 2021.192

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine193

translation. In Proceedings of the 40th annual meeting on association for computational linguistics,194

pages 311–318. Association for Computational Linguistics, 2002.195

S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou, A. Blanco, and S. Ma.196

Codebleu: a method for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297,197

2020.198

9

Input: 125
Output: 3

Input: 43
Output: 5
...

QUESTION:
Allen has a LOT of money. He has n dollars in the bank.
For security reasons, he wants to withdraw it in cash (we
will not disclose the reasons here). The denominations for
dollar bills are 1, 5, 10, 20, 100. What is the
minimum number of bills Allen could receive after
withdrawing his entire balance?

-----Input-----

The first and only line of input contains a single integer n
($1 \le n \le 10^9$).

-----Output-----

Output the minimum number of bills that Allen could
receive.

-----Examples-----
Input
125

Output
3

Input
43

Output
5

Input
1000000000

Output
10000000

-----Note-----

In the first sample case, Allen can withdraw this with a
100 dollar bill, a 20 dollar bill, and a 5 dollar bill.
There is no way for Allen to receive 125 dollars in one or
two bills.

In the second sample case, Allen can withdraw two 20
dollar bills and three 1 dollar bills.

In the third sample case, Allen can withdraw 100000000
(ten million!) 100 dollar bills.
Use Standard Input format

ANSWER:

Input Problem

CodeT5 Output Program

CodeRL+CodeT5 Output Program
(after CS)

CodeRL+CodeT5 Output Program
(before CS)

Example Unit Tests

Ground-truth Program

Input: 74
Output: 8

Input: 82655
Output: 830
...

Hidden Unit Tests

PASSED
TESTS

FAILED
TESTS

FAILED
TESTS

Example tests: Failed
Hidden tests: Failed

Example tests: Passed
Hidden tests: Failed

Example tests: Passed
Hidden tests: Passed

Example tests: Passed
Hidden tests: Passed

Figure 7: An example synthesis task from the APPS benchmark and corresponding programs
generated by CodeT5 variants: Without the CS generation procedure, CodeRL+CodeT5 model can
generate programs that pass all example tests but fail hidden tests, especially those of corner cases.
With the CS generation procedure, the model can condition on prior programs and refine the code.
Specifically, we observe the model can simply reorder the elif blocks between line 11 and 15 to fix
the error. The resulting program is functionally correct and passes all hidden tests.

S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training for image199

captioning. In Proceedings of the IEEE conference on computer vision and pattern recognition,200

pages 7008–7024, 2017.201

B. Wang and A. Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.202

https://github.com/kingoflolz/mesh-transformer-jax, May 2021.203

X. Wang, W. Chen, J. Wu, Y.-F. Wang, and W. Y. Wang. Video captioning via hierarchical rein-204

forcement learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern205

Recognition, pages 4213–4222, 2018.206

Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi. Codet5: Identifier-aware unified pre-trained207

encoder-decoder models for code understanding and generation. In EMNLP (1), pages 8696–8708.208

10

https://github.com/kingoflolz/mesh-transformer-jax

Input: 4 3
Output: 6

QUESTION:
Holidays have finished. Thanks to the help of the hacker
Leha, Noora managed to enter the university of her dreams
which is located in a town Pavlopolis. It's well known that
universities provide students with dormitory for the period of
university studies. Consequently Noora had to leave
Vičkopolis and move to Pavlopolis. Thus Leha was left
completely alone in a quiet town Vičkopolis. He almost
even fell into a depression from boredom!

Leha came up with a task for himself to relax a little. He
chooses two integers A and B and then calculates the
greatest common divisor of integers "A factorial" and "B
factorial". Formally the hacker wants to find out GCD(A!,
B!). It's well known that the factorial of an integer x is a
product of all positive integers less than or equal to x. Thus
x! = 1·2·3·...·(x - 1)·x. For example 4! = 1·2·3·4 = 24. Recall
that GCD(x, y) is the largest positive integer q that divides
(without a remainder) both x and y.

Leha has learned how to solve this task very effective. You
are able to cope with it not worse, aren't you?

-----Input-----

The first and single line contains two integers A and B (1 ≤
A, B ≤ 10^9, min(A, B) ≤ 12).

-----Output-----

Print a single integer denoting the greatest common divisor
of integers A! and B!.

-----Example-----
Input
4 3

Output
6

-----Note-----

Consider the sample.

4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common
divisor of integers 24 and 6 is exactly 6.
Use Standard Input format

ANSWER:

Input Problem

CodeT5 Output Program

CodeRL+CodeT5 Output Program (after CS)

CodeRL+CodeT5 Output Program (before CS)

Example Unit Tests

Ground-truth Program

Input: 10 399603090
Output: 3628800

Input: 5 5
Output: 120
...

Hidden Unit Tests

PASSED
TESTS

RUNTIME
ERROR

(timeout)

FAILED
TESTSExample tests: Failed

Hidden tests: Failed

Example tests: Passed
Hidden tests: RuntimeError (TimeOut)

Example tests: Passed
Hidden tests: Passed

Figure 8: An example interview-level APPS programming task and programs generated
by CodeT5 variants: The program generated by CodeT5 model fails all unit tests while
CodeRL+CodeT5 (without CS generation) can generate a functionally correct program. How-
ever, this program leads to runtime errors in extreme test cases. After applying the CS generation
procedure, the program is improved and able to pass all hidden unit tests.

Association for Computational Linguistics, 2021.209

11

	Overview of Critic Model
	Critic Sampling Procedure
	Additional Experimental Setup Details
	Additional Experimental Results
	CodeXGLUE Benchmark Results
	MBPP Benchmark Results
	APPS Benchmark Results on Competition-level Tasks
	CodeT5 Ablation by Training Epochs
	Impacts of CodeRL on Program Quality by Unit Test Signals
	Example Generated Programs and Qualitative Analysis

