
CodeRL: Mastering Code Generation through
Pretrained Models and Deep Reinforcement Learning

Hung Le∗, Yue Wang∗, Akhilesh Deepak Gotmare, Silvio Savarese, Steven C.H. Hoi †

Salesforce Research
https://github.com/salesforce/CodeRL

Abstract

Program synthesis or code generation aims to generate a program that satisfies a
problem specification. Recent approaches using large-scale pretrained language
models (LMs) have shown promising results, yet they have some critical limitations.
In particular, they often follow a standard supervised fine-tuning procedure to train
a code generation model from natural language problem descriptions and ground-
truth programs only. Such paradigm largely ignores some important but potentially
useful signals in the problem specification such as unit tests, which thus results
in poor performance when solving complex unseen coding tasks. To address the
limitations, we propose “CodeRL”, a new framework for program synthesis tasks
through pretrained LMs and deep reinforcement learning (RL). Specifically, during
training, we treat the code-generating LM as an actor network, and introduce a
critic network that is trained to predict the functional correctness of generated
programs and provide dense feedback signals to the actor. During inference, we
introduce a new generation procedure with a critical sampling strategy that allows a
model to automatically regenerate programs based on feedback from example unit
tests and critic scores. For the model backbones, we extended the encoder-decoder
architecture of CodeT5 with enhanced learning objectives, larger model sizes and
better pretraining data. Our method not only achieves new SOTA results on the
challenging APPS benchmark, but also shows strong zero-shot transfer capability
with new SOTA results on the simpler MBPP benchmark.

1 Introduction

Considering program synthesis as a sequence-to-sequence task, pretrained language models (LMs)
[Hendrycks et al., 2021, Chen et al., 2021a, Austin et al., 2021] can be adapted to receive input
sequence as problem specification in natural language and generate a sequence of codes as the
output program (see Figure 1, right, for an example). While these models achieve promising results,
especially in basic programming tasks [Chen et al., 2021a, Austin et al., 2021], we observe that they
still fail to generate codes to solve complex problems [Hendrycks et al., 2021, Li et al., 2022].

There are two main limitations. First, current models are trained using a conventional next-token
prediction (NTP) objective which maximizes the next ground-truth token likelihood. As noted in NLP
domains [Bengio et al., 2015, Ranzato et al., 2016], training models only with next-token prediction
objective in a "teacher-forcing" manner often leads to accumulating errors during test time when
tokens are generated by conditioning on previously sampled tokens, not the ground-truth tokens. This
issue becomes more serious in the domain of program synthesis, where token-matching scores such
as BLEU [Papineni et al., 2002, Ren et al., 2020] are more appropriate in partial program synthesis
tasks (i.e. code completion) [Husain et al., 2019] but have failed to measure the functional correctness

∗Equal contribution.
†Corresponding authors: {hungle, shoi}@salesforce.com

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/salesforce/CodeRL

 Actor-Critic RL Finetuning with

Returns

Problem Specification
A string is a palindrome if it reads the same from the left to the right
and from the right to the left….If there is such a substring in s that
is not a palindrome, print the maximum length of such a substring….
Example Input and Output: Input: ‘hannah’ Output: 5

Solution Program

Unit Tests
 Input: wuffuw Output: 5
 Input: iiiiiii Output: 0…

Environment
Compiler

Policy
Pretrained LM (actor)

Action
Value Function

Critic
State Reward

Values

Problem Specification

Unit Tests I/O

Figure 1: An example program synthesis task (Right): Each task is defined by a problem specifica-
tion in natural language, often containing example input and output pairs. The expected output is a
program to be checked for functional correctness against some unit tests. A high-level overview of
our CodeRL framework for program synthesis (Left): we treat a pretrained code language model
(LM) as a stochastic policy, code generations as actions, and rewards can be estimated based on the
unit test results of output programs from the compiler (environment).

of complete programs [Hendrycks et al., 2021, Chen et al., 2021a]. Training only with NTP objective
is hence, not ideal to tackle full program generation to solve programming problems.

Secondly, current models fail to utilize the potential meaningful signals from unit tests, which directly
determine the model performance by the functional correctness of programs. Current approaches
neglect this important signal during model optimization as well as generation procedure. During
optimization, unit tests could be factored into learning objectives to match the final goal of generating
semantically correct programs. During inference, since unit tests are often parts of problem description
(i.e. example unit tests), they are potentially powerful to further improve output programs.

To address the above issues, we introduce “CodeRL”, a new framework to improve pretrained LMs
for program synthesis tasks through reinforcement learning (see Figure 1, left). Specifically, we
propose a training strategy that optimizes pretrained LMs for program synthesis tasks in an actor-critic
approach [Konda and Tsitsiklis, 1999, Sutton et al., 1999]. We treat the pretrained LM as an actor
network and synthetically sample sequences from this actor, including both correct and incorrect
programs. These program samples are passed to a critic model which is trained as an error predictor
to assess the functional correctness of these samples. We use the token-level hidden states extracted
from the learned critic model to estimate the values/scores of output tokens of these synthetic samples.
The actor network is then finetuned on these synthetic samples weighted by their critic scores. During
inference, we introduce a new generation procedure that involves example unit tests and a critic
model to filter and select sub-sequences. These sub-sequences are utilized as seeds that condition the
model to resample new tokens and obtain new output programs. This approach allows the model to
automatically refine output programs based on their functional correctness during test time.

We extend CodeT5 with better pretraining strategies as the foundation model for CodeRL. Our
comprehensive experiments show that our models can achieve SOTA performance on the challenging
APPS benchmark [Hendrycks et al., 2021]. Specifically, our models reach more than 2% pass@1,
6% pass@5, and 19% pass@1000. Since our RL method is model-agnostic, we apply it to various
large-scale models and achieve consistent performance gains. We further test its zero-shot transfer
ability on a simpler MBPP benchmark [Austin et al., 2021], where it sets a new SOTA result of 63.0%
pass@80 over a finetuned GPT-137B’s 61.4%. We release the improved CodeT5-large (770M) model
which outperforms many pretrained LMs of much larger sizes.

2 Related Work

2.1 Program Synthesis

Program synthesis tasks can date back as early as the early adoption of machine learning research
[Waldinger and Lee, 1969, Manna and Waldinger, 1971]. Earlier tasks include problem specifications
in the form of input-output (IO) examples [Summers, 1977, Gulwani et al., 2012] and synthesis

2

methods are limited to probabilistic approaches [Liang et al., 2010] or simple programming concepts
[Joulin and Mikolov, 2015, Kurach et al., 2015]. As deep learning methods became popular, later
approaches adopt neural models to induce output programs, assuming an inductive bias given a
large number of program samples [Parisotto et al., 2016, Balog et al., 2016, Devlin et al., 2017].
More recently, we witnessed the emergence of program synthesis tasks in which output programs
are extended to general-purpose programming languages [Yin and Neubig, 2017, Xu et al., 2018,
Chen et al., 2021a] and program specifications are fully described in natural English text [Hendrycks
et al., 2021, Austin et al., 2021, Poesia et al., 2022]. These extensions have encouraged a rising
number of applications of pretrained language models (LMs) to program synthesis to exploit the
contextual representations learned from massive data of codes and natural languages [Feng et al.,
2020, Clement et al., 2020, Wang et al., 2021, Wang and Komatsuzaki, 2021, Chen et al., 2022].
Recently, Nijkamp et al. [2022] proposed a conversational program synthesis approach with large
pretrained language models. Despite impressive results in basic programming problems and initial
commercial deployment3, existing models still perform poorly against complex problems such as
those from programming competitions on Codeforces [Hendrycks et al., 2021, Li et al., 2022].

Program Synthesis in Visual Context. Another related line of research is program synthesis in
computer vision domains such as images and videos. Early papers such as [Kulkarni et al., 2015,
Yang et al., 2015] introduce inverse graphics networks to infer visual properties such as pose, shape,
and lighting, of visual objects. Wu et al. [2017], Liu et al. [2019], Ellis et al. [2018] study the problem
of image rendering, which transforms an image to structured and compact representations, i.e. scene
programs. Tian et al. [2019] extends the prior work to render 3D shapes from images through
shape programs, containing features to capture geometric and structural priors. Ganin et al. [2018]
introduces an RL-based approach to render realistic images through high-level graphics programs.
Sun et al. [2018]introduces program synthesis from demonstration synthetic videos to summarize the
behaviors of the objects in the videos.

While this line of research has remarkable impacts on applications such as image/video editing,
captioning, and extrapolating, these approaches are limited to programs of domain-specific languages
defined for visual objects. For instance, in [Sun et al., 2018], programming language contains
basic functions for object perception, action, and control flows. In our work, we focus on program
synthesis from natural language problem specifications and the output programs are in general-
purpose languages such as Python. This type of programming task can range from basic programming
problems to competition-level programming tasks that require a high level of problem-solving skills.

2.2 Reinforcement Learning for Sequence Generation

Related to the program synthesis tasks are research domains of sequence generation, in which RL
approaches have demonstrated remarkable achievements. In these domains, RL approaches are used
to exploit signals from non-differentiable metrics of the task at hand. Earlier work such as [Ranzato
et al., 2016] adopts this strategy with REINFORCE algorithm [Williams, 1992] to directly optimize
models for sequence-based test metrics such as BLEU [Papineni et al., 2002] and ROUGE [Lin,
2004] scores for translation models. In the same domain, Bahdanau et al. [2016] introduced an
actor-critic framework [Sutton, 1984, Konda and Tsitsiklis, 1999]. In visual captioning domains,
Rennie et al. [2017], Wang et al. [2018] proposed to use RL to optimize image captioning models
using variants of CIDEr scores [Vedantam et al., 2015]. Alternatively, Ren et al. [2017] derived a
new goal-oriented return estimate using visual-semantic embedding. Johnson et al. [2017], Trivedi
et al. [2021] introduce program generation as an auxiliary task to learn interpretable policies in
question-answering and synthetic navigation tasks.

Different from prior domains, in program synthesis, Austin et al. [2021], Chen et al. [2021a], Li et al.
[2022] demonstrated very low correlation between token-based similarity metrics and functional
correctness of programs. Hence, it is not trivial to define an appropriate optimization goal in this
domain. We propose to exploit unit test signals, which directly exhibit the functional correctness of
programs, during both - model optimization and test-time generation stages. More related to our work
are RL-based program synthesis [Guu et al., 2017, Bunel et al., 2018, Liang et al., 2018, Zhong et al.,
2018] and execution-guided synthesis approaches [Ellis et al., 2019, Chen et al., 2021b]. However,
these are limited to programming languages defined within a specific application domain only.

3https://copilot.github.com/

3

https://copilot.github.com/

Pretrained LM

Problem Solution
Program

Problem

 Actor-Critic RL Finetuning with

Solution
Program

Sampled
program

Returns

Unit
Tests

Actor
Network

Critic
Network

Finetuned
LM

Public
Code on
Github

pretraining

Figure 2: Overview of our actor-critic framework to optimize pretrained LMs for program
synthesis: We treat the LM as an actor network and sample synthetic samples from this actor.
Another neural network is trained as a critic model to evaluate these synthetic samples based on their
probabilities of passing unit tests. The returns are estimated based on critic scores and finally factored
into the learning objective Lrl to finetune the actor LM network using synthetic samples.

3 CodeRL

3.1 Program Synthesis Task

Following a sequence-to-sequence approach, the program synthesis task contains a problem descrip-
tion as an input sequence D and an output sequence of program Ŵ = (ŵ1, ..., ŵT), ŵt ∈ V 4 that
can solve the problem. The output at each decoding step t is a distribution over the vocabulary V ,
computed by the softmax function ŵt ∼ softmax(Linear(st)) where st is the contextual hidden
state at decoding step t. Conventionally, during train time, model parameters, θ, are learned by
maximizing the likelihood of the ground-truth reference programs. Denoting W = (w1, ...wT) as
the ground-truth program, the objective is to minimize the cross-entropy loss:

Lce(θ) = −
∑
t

log pθ(W |D) = −
∑
t

log[pθ(wt|w1:t−1, D)] (1)

where the conditional probability pθ is parameterized following the above softmax function. During
test time, models generate sequences of programs by autoregressively sampling token ŵt from the
distribution pθ(.|ŵ1:t−1, D). Models are evaluated against unit tests corresponding to the problem.
Each test includes a pair of input and ground-truth output. In real-world program synthesis tasks
[Hendrycks et al., 2021], example unit tests are often given as parts of the problem specification.

3.2 Pretraining Language Models on Code

We adopt Transformer models as the backbone of our program synthesis systems. Specifically, this
paper extends the CodeT5 model [Wang et al., 2021] as a foundation model for CodeRL.

CodeT5. CodeT5 [Wang et al., 2021] is a multi-lingual code-aware language model pretrained on
large-scale source code corpora curated from Github. With a unified encoder-decoder architecture,
CodeT5 achieves state-of-the-art performance in a wide range of code intelligence tasks in the
CodeXGLUE benchmark [Lu et al., 2021] including both code understanding and generation tasks.

Improving Pretraining Data. We enlarge the Python pretraining dataset using the recently released
large-scale Github Code dataset5. We have compiled public, non-personal information from GitHub
consisting of permissively licensed Python code (“mit”, “apache-2”, “bsd-3-clause”, “bsd-2- 126
clause”, “cc0-1.0”, “unlicense”, “isc”). The resulting Python dataset (GCPY) has 10.5B tokens and is
10x larger than the CodeSearchNet (CSN) corpus [Husain et al., 2019] used in the original CodeT5
[Wang et al., 2021].

4For simplicity, we use T as the notation of sequence length for all sequences which can actually be variable.
5https://huggingface.co/datasets/lvwerra/github-code

4

https://huggingface.co/datasets/lvwerra/github-code

Improving Pretraining Objective. While pretraining tasks in CodeT5 like masked span prediction
(MSP) benefit code understanding tasks, they have a large discrepancy with program synthesis
objectives. To mitigate this gap, we introduce a pretraining task of next-token prediction (NTP) into
CodeT5. Specifically, we uniformly sample a pivot location for each code sample, then pass the
content preceding the pivot to the encoder and the remaining to the decoder. To control the length of
input and output sequences, we restrict the pivot within 10% to 90% of the original sequence.

3.3 Program Synthesis as an RL Problem

We propose to formulate the Program Synthesis as an RL problem and apply an actor-critic RL
approach to improve the performance of a pretrained LM by exploiting the unit test signals in both
model optimization (see Figure 2) and generation procedure (see Figure 3).

More formally, we can view the learned parameters of an LM model, θ as a stochastic policy, which
decides an action as the prediction of each token. Following each action, an LM model updates its
hidden state representations which are used by the policy to determine the next action in the next
decoding step. At the end of the generation episode (i.e. an <endoftext> token is observed), the LM
model receives a return r measured by the functional correctness of the generated program. The goal
of RL finetuning is to minimize the expected return:

Lrl(θ) = −EW s∼pθ
[r(W s)] (2)

where W s = (ws
1, ..., w

s
T) is a synthetic sample in which each token ws

t is sampled by the LM model
at decoding time step t. Following the REINFORCE algorithm [Williams, 1992, Sutton and Barto,
2018] and policy gradient theorem [Sutton et al., 1999] we can define an estimate of the gradient
∇θL(θ) of the non-differentiable return r as:

∇θLrl(θ) ≈ −EW s∼pθ
[r(W s)∇θ log pθ(W

s|D)]

≈ −EW s∼pθ
[r(W s)

∑
t

∇θ log pθ(w
s
t |ws

1:t−1, D)] (3)

Defining Return by Unit Test Signals. For each sample sequence W s, the return r can be defined
heuristically by checking its functional correctness. We pass generated programs together with the
corresponding unit tests to a compiler. From the outputs of the tests, we can determine the return r:

r(W s) =


-1.0 , if W s cannot be compiled (i.e. compile error) (4)
-0.6 , if W s cannot be executed with unit tests (i.e. runtime error) (5)
-0.3 , if W s failed any unit test (6)
+1.0 , if W s passed all unit tests (7)

However, in related domains such as text-to-SQL research [Zhong et al., 2018, Xu et al., 2018], we
note that this approach to estimate returns can lead to an unstable training process with high variance
of the gradient estimate following Eq. (3) with mini-batches in training.

Return with a Baseline. In order to alleviate this variance, we adopt a “baseline” [Sutton and
Barto, 2018]. Specifically, we use a greedy decoding strategy as a baseline and any generated samples
that outperform this baseline are given positive return estimation, and negative return estimation
otherwise. This relative normalization technique allows models to explore imperfect programs, as
long as their returns are better than the baseline’s. Given a training sample, we denote the return of
the baseline r(W b) and the expected gradient is computed as:

∇θLrl(θ) ≈ −EW s∼pθ
[(r(W s)− r(W b))

∑
t

∇θ log pθ(w
s
t |ws

1:t−1, D)] (8)

Note that at each decoding step t, our greedy decoding baseline is independent from the action ws
t

and hence, the expected gradient term ∇θLrl(θ) from Eq. (3) remains the same in Eq. (8).

Intermediate Return by Critic as Error Predictor. We observe that the above gradient estimate
is only based on a final return at the end of the decoding process. However, programs often follow
fixed syntactical rules in which a single token such as an additional white-space character can
render a program erroneous. Therefore, Eq. (8) becomes too restrictive. A straightforward solution

5

Generated Solutions

Finetuned LM

Problem Example unit tests

Filter by example
unit test results

Hidden unit testsExtract example
input/output pairs

Seed1

if NUM(passed)==0

SeedM

…

Seed Sampling

Fail
PassSeed1

Sample
sub-sequences
by critic scoring

Seed1Seed1Seed
Seed1Seed1Seed1Seed

Seed1Seed1Seed1Seed

1
2

3b3a

4

Figure 3: Overview of our Critic Sampling (CS) approach: (1) For each test problem, we first use
finetuned LM to generate a set of solution programs. (2) From the problem description, we extract
example unit tests and test against generated solutions. (3) If there are any passed solutions, we pass
them to the critic model to sample sub-sequences. (4) The sub-sequences from (3) are used as seed
sequences to condition the LM to regenerate solution programs, repeating the steps from (1) onward.

is to use token-based similarity scores [Papineni et al., 2002, Ren et al., 2020]) between each
subsequence W s

1:t and the ground truth. However, code matching is not an ideal return measure
due to its poor correlation with program correctness [Hendrycks et al., 2021, Chen et al., 2021a,
Austin et al., 2021] which can only be measured against fully complete programs. Alternatively,
we introduce a critic model (see Appendix ?? for an overview). The critic model is parameterized
as a neural network with parameters ϕ that receives inputs as the problem description D and a
sampled program W s = {ws

1, . . . , w
s
T }. The critic is trained to infer the unit test outcome; one of

{CompileError,RuntimeError,FailedTest,PassedTest} as described in the return definitions in
Eq. (4) to (7). The training objective of the critic ϕ can be expressed as:

Lcritic(ϕ) = − log pϕ(u|W s, D) (9)

where u denotes the ground-truth unit test outcome given by the compiler. We use Transformer
models of smaller sizes than the actor model as the base architecture for the critic model. The
contextual hidden states of the program tokens (h1, . . . , hT) obtained from the critic model decoder
are max-pooled along the sequence length dimension hpool = Pooling(h1, . . . , hT). The critic’s
prediction on the unit test outcome is computed as û = softmax(Linear(hpool)).

Given a learned critic, we use the probability distribution v̂t = softmax(Linear(ht)) to estimate the
token-level value q̂ of ws

t in relation to the ground-truth unit test output (note that we use the token
level contextual representation ht here, before the pooling operation). Specifically, q̂ϕ(ws

t) = v̂t[u]
where v̂[.] denotes the probability of a specific unit test outcome from the four possible ones. We use
this estimate to train the actor LM model with intermediate returns:

∇θLrl(θ) ≈ −EW s∼pθ
[(r(W s)− r(W b))

∑
t

q̂ϕ(w
s
t)∇θ log pθ(w

s
t |ws

1:t−1, D)] (10)

Generating Programs with Example Unit Tests and Critic. We leverage the unit tests provided
in the input problem description to improve the generation procedure during inference too (see Figure
3 for an overview and Appendix ?? for step-by-step explanation). For each problem, we generate
N programs, out of which we only select programs that pass example tests (leading to a set F) and
filter out the rest. To improve sample quality, we perform another round of generation where we
use sub-sequences from these filtered samples as prompts (or “seed” sequences) to the actor LM.
We employ a separate critic model (ϕtest) to guide our choice of sub-sequences from these filtered
samples. This critic model is trained with a similar objective as Eq. (9), but in a binary classification
setup with {FailedTest,PassedTest} labels.

Let W filter = {w1, . . . , wT } denote a generated sample that passes the example unit tests. We
use the critic model to assign a value to each token q̂ϕtest(wt) = pϕtest(û = PassedTest|w1:t, D)
corresponding to the critic’s predicted probability of the sub-sequence till t passing the unit tests.
We split the sequence at position tmax corresponding to the highest critic assigned value and use

6

the left split as the seed for the next stage. If this seed sequence till tmax contains a token with
pϕtest(FailedTest) > pϕtest(PassedTest), we further chop it at this token by removing tokens on the
right. This is done to pick prompts that are likely to generate successful programs in the next round.

We use these seeds to initialize and condition the (actor) LM to resample new tokens till we encounter
the <endoftext> token. In this round, each seed sequence can be stacked N/|F| times for upsampling.
This results in the same number of output programs N . We call this generation procedure “Critic
Sampling” (CS). We use mini-batch generating to improve efficiency during inference and employ
nucleus sampling with a batch size of N = 200. While we do incur additional costs to re-sample
using the seed sequences, we are only required to generate partial programs in the re-generation stage,
making this stage less expensive than conventional generating procedures.

4 Experiments

4.1 Experimental Setups and Datasets

Pretraining Setup. We pretrain a CodeT5-large model (770M) from scratch following T5-large’s
architecture [Raffel et al., 2020]. We follow the pretraining setups in CodeT5 [Wang et al., 2021]
with the modifications as proposed in §3.2. We evaluate this new pretrained CodeT5 model on
CodeXGLUE [Lu et al., 2021] and achieve new SOTA results (see Appendix ??).

APPS Benchmark. We choose the challenging APPS program synthesis benchmark [Hendrycks
et al., 2021], as it has large coding problems of varying difficulties collected from multiple coding
websites. It includes training and test splits, each of which has 5000 samples of programming tasks
with diverse levels of difficulty, including “Introductory”, “Interview”, and “Competition” levels.
Each sample includes 20 unit tests on average to validate the functional correctness of programs.

Finetuning Setup. Due to the potential large number of trajectories (i.e. VT) to generate a sequence
and the unstable feedback loop between actor and critic [Lillicrap et al., 2015, Wang et al., 2018],
we applied imitation learning to first warm-start a pretrained LM model with Lce only for up to 10
epochs. We then sampled sequences of programs from this actor network to train the critic while
keeping the parameters of the actor network frozen. For experiments with CodeT5 actor models, we
use the CodeT5-small architecture for the critic model, and GPT2-small critic architecture when the
actor models are GPT variants. After training the critic, we then apply both Lce and Lrl with equal
weights to finetune the actor network.

Evaluation. We follow [Hendrycks et al., 2021, Chen et al., 2021a] and evaluate the models using
the pass@k metric, which is the percentage of problems solved by using k generated programs per
problem. We also follow Li et al. [2022] and use n@k metric which only considers a subset of n
candidates from k generated programs per problem. The subset of n candidates are typically selected
by a filtering method by passing generated programs through example tests given as part of the
problem description [Chen et al., 2021a, Li et al., 2022].

For more details of the experimental setup, please refer to Appendix ??.

4.2 Experimental Results on APPS

Baselines. As reported by Hendrycks et al. [2021], we compared our models with several baselines,
including GPT2 [Radford et al., 2019], GPT-Neo [Black et al.], and GPT3 [Brown et al., 2020]. We
also compare the results with Codex [Chen et al., 2021a] and AlphaCode [Li et al., 2022]. Note that
by default, results of pretrained LMs (except for Codex and GPT3) are from models finetuned on
APPS using the standard loss Lce only. In our ablations, since CodeRL is model-agnostic, we can
also integrate it with GPT variants such as GPT-J [Wang and Komatsuzaki, 2021] and GPT-Neo.

Overall Results. Firstly, Table 1a shows that the CodeRL with the CodeT5 model can achieve
significant performance gains, outperforming many pretrained LMs of much larger sizes. Specifically,
our approach achieved new SOTA results of 2.57% pass@1, 6.21% pass@5, and 19.36% pass@1000.
Table 1b shows that when evaluating on a subset of filtered code samples, our CodeRL+CodeT5 can
achieve SOTA results of 7.83% 1@k and 11.61% 5@k. Note that while CodeRL incurs additional
computation cost during inference with CS, our approach only requires much lower k to achieve
comparable performance with other models. Specifically, with k = 1000 only, our model performance
is as good as AlphaCode with a much larger generation budget of k = 50000.

7

Table 1: Results on APPS: Overall, CodeRL can bring the performance gains on CodeT5 models
and achieves new SOTA on both pass@k and n@k metrics. “Intro”: introductory, “Inter”: interview,
“Comp”: competition-level tasks.

(a) Performance by pass@k with k = {1, 5, 1000}
pass@1 pass@5 pass@1000Model Size Intro Inter Comp All Intro Inter Comp All Intro Inter Comp All

Codex 12B 4.14 0.14 0.02 0.92 9.65 0.51 0.09 2.25 25.02 3.70 3.23 7.87
AlphaCode 1B - - - - - - - - 17.67 5.24 7.06 8.09
GPT3 175B 0.20 0.03 0.00 0.06 - - - - - - - -
GPT2 0.1B 1.00 0.33 0.00 0.40 2.70 0.73 0.00 1.02 - - - -
GPT2 1.5B 1.30 0.70 0.00 0.68 3.60 1.03 0.00 1.34 25.00 9.27 8.80 12.32
GPT-Neo 2.7B 3.90 0.57 0.00 1.12 5.50 0.80 0.00 1.58 27.90 9.83 11.40 13.76
GPT-J 6B 5.60 1.00 0.50 1.82 9.20 1.73 1.00 3.08 35.20 13.15 13.51 17.63
CodeRL+CodeT5 770M 6.77 1.80 0.69 2.57 15.27 4.48 2.36 6.21 38.10 14.33 15.70 19.36

(b) Performance by n@k with k up to 50000 and n = {1, 5}

1@k 5@kModel Size k Intro Inter Comp All Intro Inter Comp All
Codex 12B 1000 22.78 2.64 3.04 6.75 24.52 3.23 3.08 7.46
AlphaCode 1B 1000 - - - - 14.36 5.63 4.58 7.17
AlphaCode 1B 10000 - - - - 18.18 8.21 6.65 9.89
AlphaCode 1B 50000 - - - - 20.36 9.66 7.75 11.42
CodeRL+CodeT5 770M 1000 16.52 6.16 4.15 7.83 24.49 8.58 7.82 11.61

Table 2: Ablation results with variants of return estimates: CodeT5 model that is trained with
return estimates using a baseline (Wb) and a critic-based return estimates (q̂θ) can achieve the best
performance. “dist.” indicates a rule-based approach that estimates returns following a linear decay
by token positions from t = 1 to t = T .

W b q̂ϕ
pass@1 pass@5

Intro Inter Comp All Intro Inter Comp All
A ✓ - 4.60 1.10 0.20 1.62 7.10 1.57 0.40 2.44
B - ✓ 4.00 0.87 0.20 1.36 5.60 1.30 0.20 1.94
C ✓ dist. 4.90 1.03 0.20 1.64 7.80 1.60 0.30 2.58
D ✓ ✓ 6.20 1.50 0.30 2.20 9.39 1.90 0.42 3.10

4.3 Ablation Studies

In this section, for a fair comparison between variants of return estimates and learning objectives, we
report the results of pass@k where k = {1, 5} with beam search decoding. For larger k, we report
the results with and without the CS procedure.

Impacts of Return Estimates. Table 2 show the results of CodeT5-770M trained by different
approaches to estimate returns of code samples. Overall, we report that the CodeRL objective with
relative token-level return estimates by our critic model (Model D) can achieve the best performance
on pass@1 and pass@5. Secondly, we note that using absolute returns without a baseline (Model B)
could lead to the most performance drop, as this approach heavily penalizes all incorrect samples
(even though they might still be better than a naive baseline). Thirdly, without a critic model, simply
assigning identical rewards to all tokens in a code sample (Model A) is disadvantageous as these return
estimates are too restrictive to be used as feedback signals for RL training. Finally, we experimented
with a distance-based critic which assumes that token values decay linearly from t = 1 to t = T
(Model C). The lower performance suggests the benefit of training a critic network to compute the
returns rather than relying on rule-based approaches.

Impacts of Learning Objectives. Table 3 shows the results with different combinations of Lce

and Lrl. We experiment with using only Lrl and note the problem of vanishing gradients during
finetuning [Ranzato et al., 2016, Bahdanau et al., 2016]. Secondly, we note that by using only Lce for
further finetuning, despite improvement in losses during training time, the model performance indeed
degrades during test time. We expect these models are overfitting to the training data. Interestingly,
a naive approach of Lce with synthetic samples W s, all of which are treated as correct codes with
r(W s) = 1, still leads to some performance improvement with GPT-Neo on pass@5 (but not in

8

Table 3: Ablation results with different learning objectives: We experiment with both CodeT5
and GPT-Neo with different combinations of cross-entropy loss Lce and reinforcement learning loss
Lrl. Note that these losses are applied on models that are already warm-started with conventional
cross-entropy losses for up to 10 epochs.

Lce Lrl
pass@1 pass@5

Intro Inter Comp All Intro Inter Comp All
GPT-Neo

- - 3.90 0.57 0.00 1.12 5.50 0.80 0.00 1.58
✓ - 2.70 0.90 0.10 1.10 5.00 1.43 0.30 1.92

✓(+W s) - 2.90 0.80 0.30 1.12 5.20 1.57 0.40 2.06
- ✓ 3.30 0.80 0.20 1.18 5.30 1.57 0.20 2.04
✓ ✓ 4.70 0.73 0.30 1.44 6.58 1.54 0.18 2.28

CodeT5-770M
- - 6.60 1.03 0.30 2.00 8.80 1.67 0.70 2.90
✓ - 4.60 0.93 0.10 1.50 7.00 1.37 0.20 2.26

✓(+W s) - 5.10 1.10 0.40 1.76 8.30 1.43 0.70 2.66
- ✓ 5.00 0.90 0.50 1.64 7.60 1.53 0.60 2.56
✓ ✓ 6.20 1.50 0.30 2.20 9.39 1.90 0.42 3.10

Table 4: Ablation results of Critic Sampling (CS): Overall, using CS can lead to higher passing
rates as program generations are conditioned on seed sequences filtered by their test results.

Metric Approach Intro Inter Comp All

pass@200 without CS 26.79 8.73 7.60 12.12
with CS 29.10 9.67 9.50 13.52

pass@1000 without CS 35.30 13.33 13.60 17.78
with CS 38.10 14.33 15.70 19.36

1@1000 without CS 16.27 6.00 4.27 7.71
with CS 16.52 6.16 4.15 7.83

other cases). Finally, we found that using both Lce and Lrl results in a more consistent performance
improvement overall on pass@1 and pass@5 for the GPT-Neo and CodeT5 models.

Impact of Critic Sampling . Table 4 shows the ablation results of critical sampling (CS) during
inference. Overall, we found positive impact of CS for improving pass@200 and pass@1000 metrics.
In addition, the positive impacts of critic sampling on pass@1 and pass@5 are indicated by comparing
the results of Table 1a and Table 2 (row D, in which we only used conventional beam search decoding
without critic sampling). We can observe that, using critic sampling, model performance increases
from 2.2% pass@1 (3.1% pass@5) to 2.57% pass@1 (6.21% pass@5). Interestingly, from Table 4,
we observe that CS does not provide a significant gain on the n@k metric. Note that n@k measures
the solving rate among the subset F filtered from k samples. As CS will technically increase the size
of this subset, the n@k metric will consider an exponentially larger number of options of n samples
than before. This will normalize n@k by a larger pool of n candidate set, resulting in less impact of
CodeRL on the results. We recommend additional post-processing steps such as candidate ranking
[Cobbe et al., 2021] to improve the n@k performance.

Impacts of Pretraining Approaches for CodeT5. Table 5 reports the results of CodeT5 with
different configurations of model sizes, pretraining data, and pretraining objectives. For a fair
comparison, all models are only finetuned with Lce on APPS. As observed in prior work [Chen et al.,
2021a, Austin et al., 2021], scaling up the number of model parameters or the size of the pretraining
data can significantly improve the model performance of downstream synthesis tasks. We also find
that enhancing the pretraining objectives with next token prediction (NTP) is vital for generation
tasks, surpassing just masked span prediction (MSP) from the original CodeT5.

4.4 Zero-shot Evaluation on MBPP Benchmark

Finally, we test the zero-shot transfer ability of CodeRL on another smaller and simpler program
synthesis benchmark MBPP [Austin et al., 2021].

9

Table 5: Ablation results of CodeT5 pretrained model variants: We report the results of models
pretrained on different configurations by model size, pretraining data, and pretraining task. CSN:
CodeSearchNet, GCPY: Github Code Python, MSP: Masked Span Predition, NTP: Next Token
Prediction. For a fair comparison, all models are finetuned only with Lce on APPS.

Size Data Task pass@1 pass@5
Intro Inter Comp All Intro Inter Comp All

60M CSN MSP 1.40 0.67 0.00 0.68 2.60 0.87 0.10 1.06
220M CSN MSP 2.50 0.73 0.00 0.94 3.30 1.10 0.10 1.34
770M CSN MSP 3.60 0.90 0.20 1.30 4.30 1.37 0.20 1.72
770M +GCPY MSP 4.30 1.10 0.20 1.56 5.60 1.47 0.30 2.06
770M +GCPY +NTP 6.60 1.03 0.30 2.00 8.80 1.67 0.70 2.90

Table 6: Results on MBPP: we test the zero-shot
transfer ability of CodeRL. CodeRL+CodeT5 (ZS)
which was trained on APPS with Lrl and evalu-
ated on MBPP [Austin et al., 2021] in a zero-shot
setting, achieves new SOTA.

Model Size pass@80
GPT 224M 7.2
GPT 422M 12.6
GPT 1B 22.4
GPT 4B 33.0
GPT 8B 40.6
GPT 68B 53.6
GPT 137B 61.4
CodeRL+CodeT5 (ZS) 770M 63.0

Table 6 reports the results of our
CodeRL+CodeT5 on MBPP benchmark
compared with finetuned GPT models of up
to 137B size. Our CodeRL+CodeT5 (ZS) was
trained on APPS and then evaluated on MBPP
in a zero-shot setting. We observe that CodeRL
with CodeT5 of a much smaller model size
yields surprisingly good zero-shot performance,
setting a new SOTA result of 63.0% pass@80
over GPT-137B’s 61.4% pass@80. This
validates the strong zero-shot transfer ability of
CodeRL for unseen tasks.

For additional experiments, analysis, and qual-
itative results, please refer to Appendix ??.

5 Limitations and Broader Impacts

One limitation of our approach is the computation cost of training critic model to estimate returns in
addition to the original LM (actor network). However, in practice, we found that training a good critic
model does not require large-scale models to attain a decent performance. For instance, a finetuned
critic model initialized from a pretrained GPT-2 (small) can achieve over 75% error prediction
accuracy on synthetic samples.

Program synthesis can lead to substantial positive social impacts, e.g., transforming future software
developing tools, increasing the productivity of developers, and improving the accessibility and
quality of programming courses. Yet, some risks and bias issues are still worth considering before
deploying such models at scale. For example, training data from public GitHub code repos may
contain vulnerabilities and the resulting synthesis models may generate programs with weak security
measures [Hammond Pearce et al., 2021].

6 Conclusion

We present CodeRL, a novel framework for program synthesis, using deep reinforcement learning
to improve pretrained LMs, by exploiting unit test signals in both training and inference stages.
Specifically, we introduce an actor-critic training approach to optimize pretrained LMs with dense
feedback signals on synthetic code samples. During inference, we propose a new generation procedure
with critical sampling, which enables the model to automatically regenerate programs based on
feedback from unit tests and critic scores. We integrate CodeRL with the improved CodeT5-large
model (770M) and achieve new SOTA results on both the APPS and MBPP benchmarks, surpassing
the prior SOTA by massive pretrained LMs of much larger model sizes. Our comprehensive analysis
shows that CodeRL achieved consistent improvement upon the conventional pretrained LMs for code
generation tasks. CodeRL is a general framework that integrates pretrained LMs and RL holistically
for program synthesis, and can be extended and improved in various ways. For example, it can
be easily integrated with other better pretrained LMs and can be improved with more fine-grained
feedback from the environment, such as feedback received from a static code analyzer.

10

References
J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,

Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021.

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An
actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086, 2016.

M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deepcoder: Learning to write
programs. arXiv preprint arXiv:1611.01989, 2016.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction with
recurrent neural networks. Advances in neural information processing systems, 28, 2015.

S. Black, G. Leo, P. Wang, C. Leahy, and S. Biderman. Gpt-neo: Large scale autoregressive language
modeling with mesh-tensorflow, march 2021. URL https://doi. org/10.5281/zenodo, 5297715.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

R. Bunel, M. Hausknecht, J. Devlin, R. Singh, and P. Kohli. Leveraging grammar and reinforcement
learning for neural program synthesis. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=H1Xw62kRZ.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021a.

Q. Chen, J. Lacomis, E. J. Schwartz, G. Neubig, B. Vasilescu, and C. Le Goues. VarCLR: Variable
semantic representation pre-training via contrastive learning. In International Conference on
Software Engineering, ICSE ’22, 2022.

X. Chen, D. Song, and Y. Tian. Latent execution for neural program synthesis beyond domain-specific
languages. Advances in Neural Information Processing Systems, 34, 2021b.

C. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sundaresan. PyMT5: multi-mode
translation of natural language and python code with transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9052–9065,
Online, Nov. 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.
728. URL https://aclanthology.org/2020.emnlp-main.728.

K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed, and P. Kohli. Robustfill: Neural
program learning under noisy i/o. In International conference on machine learning, pages 990–998.
PMLR, 2017.

K. Ellis, D. Ritchie, A. Solar-Lezama, and J. Tenenbaum. Learning to infer graphics programs from
hand-drawn images. Advances in neural information processing systems, 31, 2018.

K. Ellis, M. Nye, Y. Pu, F. Sosa, J. Tenenbaum, and A. Solar-Lezama. Write, execute, assess: Program
synthesis with a repl. Advances in Neural Information Processing Systems, 32, 2019.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, and
M. Zhou. CodeBERT: A pre-trained model for programming and natural languages. In Findings
of the Association for Computational Linguistics: EMNLP 2020, pages 1536–1547, Online, Nov.
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139.
URL https://aclanthology.org/2020.findings-emnlp.139.

Y. Ganin, T. Kulkarni, I. Babuschkin, S. A. Eslami, and O. Vinyals. Synthesizing programs for
images using reinforced adversarial learning. In International Conference on Machine Learning,
pages 1666–1675. PMLR, 2018.

11

https://openreview.net/forum?id=H1Xw62kRZ
https://aclanthology.org/2020.emnlp-main.728
https://aclanthology.org/2020.findings-emnlp.139

S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using examples. Communica-
tions of the ACM, 55(8):97–105, 2012.

K. Guu, P. Pasupat, E. Liu, and P. Liang. From language to programs: Bridging reinforcement
learning and maximum marginal likelihood. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1051–1062, Vancouver,
Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1097. URL
https://aclanthology.org/P17-1097.

B. A. Hammond Pearce, B. Tan, B. Dolan-Gavitt, and R. Karri. An empirical cybersecurity evaluation
of github copilot’s code contributions. arXiv preprint arXiv:2108.09293, 2021.

D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He,
D. Song, and J. Steinhardt. Measuring coding challenge competence with apps. NeurIPS, 2021.

H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt. Codesearchnet challenge:
Evaluating the state of semantic code search. CoRR, abs/1909.09436, 2019.

J. Johnson, B. Hariharan, L. Van Der Maaten, J. Hoffman, L. Fei-Fei, C. Lawrence Zitnick, and
R. Girshick. Inferring and executing programs for visual reasoning. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2989–2998, 2017.

A. Joulin and T. Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets.
Advances in neural information processing systems, 28, 2015.

V. Konda and J. Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional inverse graphics
network. Advances in neural information processing systems, 28, 2015.

K. Kurach, M. Andrychowicz, and I. Sutskever. Neural random-access machines. arXiv preprint
arXiv:1511.06392, 2015.

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gi-
meno, A. D. Lago, et al. Competition-level code generation with alphacode. arXiv preprint
arXiv:2203.07814, 2022.

C. Liang, M. Norouzi, J. Berant, Q. V. Le, and N. Lao. Memory augmented policy optimization for
program synthesis and semantic parsing. Advances in Neural Information Processing Systems, 31,
2018.

P. Liang, M. I. Jordan, and D. Klein. Learning programs: A hierarchical bayesian approach. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 639–646,
2010.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. Text Summarization Branches
Out, 2004.

Y. Liu, J. Wu, Z. Wu, D. Ritchie, W. T. Freeman, and J. B. Tenenbaum. Learning to describe
scenes with programs. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=SyNPk2R9K7.

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain, D. Jiang,
D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan,
S. K. Deng, S. Fu, and S. Liu. Codexglue: A machine learning benchmark dataset for code
understanding and generation. In NeurIPS Datasets and Benchmarks, 2021.

Z. Manna and R. J. Waldinger. Toward automatic program synthesis. Communications of the ACM,
14(3):151–165, 1971.

12

https://aclanthology.org/P17-1097
https://openreview.net/forum?id=SyNPk2R9K7

E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong. A conversa-
tional paradigm for program synthesis. arXiv preprint arXiv:2203.13474, 2022.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting on association for computational linguistics,
pages 311–318. Association for Computational Linguistics, 2002.

E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli. Neuro-symbolic program
synthesis. arXiv preprint arXiv:1611.01855, 2016.

G. Poesia, A. Polozov, V. Le, A. Tiwari, G. Soares, C. Meek, and S. Gulwani. Synchromesh: Reliable
code generation from pre-trained language models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=KmtVD97J43e.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res., 21:140:1–140:67, 2020.

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level training with recurrent neural
networks. In Y. Bengio and Y. LeCun, editors, 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.06732.

S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou, A. Blanco, and S. Ma.
Codebleu: a method for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297,
2020.

Z. Ren, X. Wang, N. Zhang, X. Lv, and L.-J. Li. Deep reinforcement learning-based image captioning
with embedding reward. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 290–298, 2017.

S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training for image
captioning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 7008–7024, 2017.

P. D. Summers. A methodology for lisp program construction from examples. Journal of the ACM
(JACM), 24(1):161–175, 1977.

S.-H. Sun, H. Noh, S. Somasundaram, and J. Lim. Neural program synthesis from diverse demonstra-
tion videos. In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 4790–
4799. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/sun18a.
html.

R. S. Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, University of
Massachusetts Amherst, 1984.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. Advances in neural information processing systems, 12,
1999.

Y. Tian, A. Luo, X. Sun, K. Ellis, W. T. Freeman, J. B. Tenenbaum, and J. Wu. Learning to infer and
execute 3d shape programs. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rylNH20qFQ.

D. Trivedi, J. Zhang, S.-H. Sun, and J. J. Lim. Learning to synthesize programs as interpretable and
generalizable policies. Advances in Neural Information Processing Systems, 34:25146–25163,
2021.

13

https://openreview.net/forum?id=KmtVD97J43e
http://arxiv.org/abs/1511.06732
https://proceedings.mlr.press/v80/sun18a.html
https://proceedings.mlr.press/v80/sun18a.html
https://openreview.net/forum?id=rylNH20qFQ

R. Vedantam, C. Lawrence Zitnick, and D. Parikh. Cider: Consensus-based image description
evaluation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4566–4575, 2015.

R. J. Waldinger and R. C. Lee. Prow: A step toward automatic program writing. In Proceedings of
the 1st international joint conference on Artificial intelligence, pages 241–252, 1969.

B. Wang and A. Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

X. Wang, W. Chen, J. Wu, Y.-F. Wang, and W. Y. Wang. Video captioning via hierarchical rein-
forcement learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4213–4222, 2018.

Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. In EMNLP (1), pages 8696–8708.
Association for Computational Linguistics, 2021.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

J. Wu, J. B. Tenenbaum, and P. Kohli. Neural scene de-rendering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

X. Xu, C. Liu, and D. Song. SQLNet: Generating structured queries from natural language without re-
inforcement learning, 2018. URL https://openreview.net/forum?id=SkYibHlRb.

J. Yang, S. E. Reed, M.-H. Yang, and H. Lee. Weakly-supervised disentangling with recurrent
transformations for 3d view synthesis. Advances in neural information processing systems, 28,
2015.

P. Yin and G. Neubig. A syntactic neural model for general-purpose code generation. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 440–450, Vancouver, Canada, July 2017. Association for Computational Linguistics.
doi: 10.18653/v1/P17-1041. URL https://aclanthology.org/P17-1041.

V. Zhong, C. Xiong, and R. Socher. Seq2SQL: Generating structured queries from natural lan-
guage using reinforcement learning, 2018. URL https://openreview.net/forum?id=
Syx6bz-Ab.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 3 and 4
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix
?? and code at https://github.com/salesforce/CodeRL

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix ??.

14

https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=SkYibHlRb
https://aclanthology.org/P17-1041
https://openreview.net/forum?id=Syx6bz-Ab
https://openreview.net/forum?id=Syx6bz-Ab
https://github.com/salesforce/CodeRL

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] As it is very expensive to experiment with large-scale
language models, we did not try different random seeds due to the limitation of compu-
tation resources.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] See the configurations in
Appendix ??.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix ??.
(b) Did you mention the license of the assets? [Yes] See Appendix ??.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We do not curate any new dataset in this paper. We will release the code and models.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] All datasets evaluated in our experiments are publicly available
for use.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The data we are using are code samples
from public programming competitions which do not include personally identifiable
information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

	Introduction
	Related Work
	Program Synthesis
	Reinforcement Learning for Sequence Generation

	CodeRL
	Program Synthesis Task
	Pretraining Language Models on Code
	Program Synthesis as an RL Problem

	Experiments
	Experimental Setups and Datasets
	Experimental Results on APPS
	Ablation Studies
	Zero-shot Evaluation on MBPP Benchmark

	Limitations and Broader Impacts
	Conclusion

