
A Related work (expanded)

GNNs Recently, GNNs [Gilmer et al., 2017, Scarselli et al., 2009] emerged as the most prominent graph
representation learning architecture. Notable instances of this architecture include, e.g., [Duvenaud et al.,
2015, Hamilton et al., 2017, Veličković et al., 2018], which can be subsumed under the message-passing
framework introduced in [Gilmer et al., 2017]. In parallel, approaches based on spectral information were
introduced in, e.g., [Defferrard et al., 2016, Bruna et al., 2014, Kipf and Welling, 2017, Monti et al.,
2017]—all of which descend from early work in [Baskin et al., 1997, Kireev, 1995, Micheli and Sestito,
2005, Merkwirth and Lengauer, 2005, Micheli, 2009, Scarselli et al., 2009, Sperduti and Starita, 1997].
Recent extensions and improvements to the GNN framework include approaches to incorporate different
local structures (around subgraphs), e.g., [Abu-El-Haija et al., 2019, Flam-Shepherd et al., 2020, Jin et al.,
2019, Niepert et al., 2016, Xu et al., 2018], novel techniques for pooling vertex representations to perform
graph classification, e.g., [Bianchi et al., 2020, Cangea et al., 2018, Gao and Ji, 2019, Grattarola et al., 2021,
Ying et al., 2018, Zhang et al., 2018], incorporating distance information [You et al., 2019], non-Euclidean
geometry approaches [Chami et al., 2019], and more efficient GNNs, e.g., [Fey et al., 2021, Li et al., 2021].
Furthermore, recently, empirical studies on neighborhood aggregation functions for continuous vertex
features [Corso et al., 2020a], edge-based GNNs that leverage physical knowledge [Anderson et al., 2019,
J. Klicpera, 2020, Klicpera et al., 2021], studying over-smoothing and over-squashing phenomena [Alon
and Yahav, 2020, Bodnar et al., 2022, Addanki et al., 2021], and sparsification methods [Rong et al., 2020]
emerged. Surveys of recent advancements in GNN techniques can be found, e.g., in Chami et al. [2020],
Wu et al. [2019], Zhou et al. [2018].

Limits of GNNs and more expressive architectures Recently, connections of GNNs to Weisfeiler–Leman
type algorithms have been shown [Azizian and Lelarge, 2020, Barceló et al., 2020, Chen et al., 2019b,
Geerts et al., 2020, Geerts, 2020, Geerts and Reutter, 2022, Maehara and NT, 2019, Maron et al., 2019,
Morris et al., 2019, 2022, Xu et al., 2019]. Specifically, [Morris et al., 2019, Xu et al., 2019] showed that
the expressive power of any possible GNN architecture is limited by the 1-WL in terms of distinguishing
non-isomorphic graphs.

Triggered by the above results, a large set of papers proposed architectures to overcome the expressivity
limitations of 1-WL. Morris et al. [2019] introduced k-dimensional GNNs which rely on a message-passing
scheme between subgraphs of cardinality k. Similar to [Morris et al., 2017], the paper employed a local,
set-based (neural) variant of the 1-WL. Later, this was refined in [Azizian and Lelarge, 2020, Maron et al.,
2019] by introducing k-order folklore graph neural networks, which are equivalent to the folklore or
oblivious variant of the k-WL [Grohe, 2021, Morris et al., 2021] in terms of distinguishing non-isomorphic
graphs. Subsequently, Morris et al. [2020b] introduced neural architectures based on a local version of the
k-WL, which only considers a subset of the original neighborhood, taking sparsity of the underlying graph
(to some extent) into account. Chen et al. [2019b] connected the theory of universal approximations of
permutation-invariant functions and the graph isomorphism viewpoint and introduced a variation of the
2-WL. Geerts and Reutter [2022] introduced a higher-order message-passing framework that allows us to
obtain upper bounds of extension of GNNs in terms of k-WL.

Recent works have extended the expressive power of GNNs, e.g., by encoding vertex identifiers [Murphy
et al., 2019, Vignac et al., 2020], using random features [Abboud et al., 2020, Dasoulas et al., 2020, Sato
et al., 2020], homomorphism and subgraph counts [Barceló et al., 2021, Bouritsas et al., 2020, NT and
Maehara, 2020], spectral information [Balcilar et al., 2021], simplicial and cellular complexes [Bodnar
et al., 2021b,a], persistent homology [Horn et al., 2021], random walks [Tönshoff et al., 2021], graph
decompositions [Talak et al., 2021], or distance [Li et al., 2020] and directional information [Beaini et al.,
2020]. See Morris et al. [2021] for an in-depth survey on this topic.

Differentiating through discrete structures Recently, numerous papers have aimed to combine discrete
random variables and (continuous) neural network components and addressed the resulting gradient
estimation problem. Most existing approaches used various types of relaxation of discrete distributions. For
instance, Maddison et al. [2017] and Jang et al. [2017] proposed the Gumbel-softmax distribution to
relax categorical random variables. REBAR [Tucker et al., 2017] combined the Gumbel-softmax trick
with the score-function estimator but is tailored to categorical distributions. Recent work on relaxed
gradient estimators derived several extensions of the softmax trick [Paulus et al., 2020]. However, the
Gumbel-softmax distribution is only directly applicable to categorical variables. For more complex
distributions, one has to come up with tailor-made relaxations or use the straight-through or score function
estimators, see, e.g., Grover et al. [2019], Kim et al. [2016]. Further, Grathwohl et al. [2018], Tucker et al.

17

[2017] developed parameterized control variates based on continuous relaxations for the score-function
estimator. In this work, we have to sample and select sparse, discrete, and complex substructures of a
given input graph. Due to the resulting exponential number of possible substructures, we cannot use the
Gumbel-softmax trick for categorical distributions. On the other hand, the requirement to sample sparse and
discrete substructures does not allow us to utilize relaxations. Therefore, we use I-MLE, a recently
proposed general-purpose framework to combine neural and discrete components [Niepert et al., 2021].

B Weisfeiler–Leman algorithm (expanded)

Due to the shortcomings of the 1-WL or color refinement in distinguishing non-isomorphic graphs, several
researchers [Babai, 1979, 2016, Immerman and Lander, 1990], devised a more powerful generalization of
the former, today known as the k-dimensional Weisfeiler-Leman algorithm (k-WL).6,7

Intuitively, to surpass the limitations of the 1-WL, the algorithm colors ordered subgraphs instead of a
single vertex. More precisely, given a graph G, it colors the tuples from V (G)k for k ≥ 1 instead of the
vertices. By defining a neighborhood between these tuples, we can define a coloring similar to the 1-WL.
Formally, let G be a graph, and let k ≥ 2. In each iteration i ≥ 0, the algorithm, similarly to the 1-WL,
computes a coloring Ck

i : V (G)k → N. In the first iteration, i = 0, the tuples v and w in V (G)k get the
same color if they have the same atomic type, i.e., Ck

0 (v) := atp(v). Now, for i > 0, Ck
i+1 is defined by

Ck
i+1(v) := RELABEL

(
Ck

i (v),Mi(v)
)
,

with Mi(v) the multiset

Mi(v) := {{(Ck
i (ϕ1(v, w)), . . . , C

k
i (ϕk(v, w))) | w ∈ V (G)}}

and where
ϕj(v, w) := (v1, . . . , vj−1, w, vj+1, . . . , vk).

That is, ϕj(v, w) replaces the j-th component of the tuple v with the vertex w. Hence, two tuples are
adjacent or j-neighbors, with respect to a vertex w, if they are different in the jth component (or equal, in
the case of self-loops). Again, we run the algorithm until convergence, i.e.,

Ck
i (v) = Ck

i (w) ⇐⇒ Ck
i+1(v) = Ck

i+1(w),

for all v and w in V (G)k holds, and call the partition of V (G)k induced by Ck
i the stable partition. For

such i, we define Ck
∞(v) = Ck

i (v) for v in V (G)k. Hence, two tuples v and w with the same color in
iteration (i−1) get different colors in iteration i if there exists a j in [k] such that the number of j-neighbors
of v and w, respectively, colored with a certain color is different. We set Ck

∞(v) := Ck
∞(v, . . . , v) and

refer to this as the color of the vertex v.

To test whether two graphs G and H are non-isomorphic, we run the k-WL in “parallel” on both graphs.
Then, if the two graphs have a different number of vertices colored c in N, the k-WL distinguishes the
graphs as non-isomorphic. By increasing k, the algorithm becomes more powerful in distinguishing
non-isomorphic graphs, i.e., for each k ≥ 1, there are non-isomorphic graphs distinguished by (k+1)-WL
but not by k-WL [Cai et al., 1992].

The Weisfeiler–Leman hierarchy and permutation-invariant function approximation The Weisfeiler–
Leman hierarchy is a purely combinatorial algorithm for testing graph isomorphism. However, the
graph isomorphism function, mapping non-isomorphic graphs to different values, is the hardest to
approximate permutation-invariant function. Hence, the Weisfeiler–Leman hierarchy has strong ties to
GNNs’ capabilities to approximate permutation-invariant or equivariant functions over graphs. For
example, Morris et al. [2019], Xu et al. [2019] showed that the expressive power of any possible GNN
architecture is limited by 1-WL in terms of distinguishing non-isomorphic graphs. Azizian and Lelarge
[2020] refined these results by showing that if an architecture is capable of simulating k-WL and allows
the application of universal neural networks on vertex features, it will be able to approximate any

6In [Babai, 2016] László Babai mentions that he first introduced the algorithm in 1979 together with Rudolf
Mathon from the University of Toronto.

7In this paper k-WL corresponds to original version [Babai, 1979, 2016, Immerman and Lander, 1990] which is
sometimes referred to as the “folklore” version in the literature. It corresponds to the “oblivious” (k + 1)-WL version
often used in the graph learning community [Grohe, 2021].

18

permutation-equivariant function below the expressive power of k-WL; see also Chen et al. [2019b].
Hence, if one shows that one architecture distinguishes more graphs than another, it follows that the
corresponding GNN can approximate more functions. These results were refined in Geerts and Reutter
[2022] for color refinement and taking into account the number of iterations of k-WL.

C Datasets, details on the experiments, and additional experimental results

In the following, we outline details on the experiments.

Additional details on the upstream model When sampling multiple subgraphs with I-MLE, they tend
to have similar structures. In other words, I-MLE learns similar distributions in different channels of the
neural network. This phenomenon is not in our favor as we need to cover the original full graph as much as
possible. To mitigate this issue, we propose an auxiliary loss for the diversity of subgraphs. We calculate
the KL-divergence between the selected vertex or edge masks and an all-one vector and try to minimize the
value. We tune the weight for the auxiliary loss on the log scale, e.g., 0.1, 1, 10, and so on.

Downstream and baseline models For the larger molecular regression tasks ALCHEMY, QM9, and
ZINC, we closely followed the hyperparameters found in Chen et al. [2019a], Gilmer et al. [2017],
and Dwivedi et al. [2020] respectively, and used GIN layers. That is, for ZINC, we used four GIN layers
with a hidden dimension of 256 followed by batch norm and a 4-layer MLP for the joint regression of the
target after applying ESAN mean pooling. Moreover, we report results on ZINC dataset with PNA model
architecture. We mainly follow the configurations of [Corso et al., 2020b] and the official implementation
of [Fey and Lenssen, 2019]. For the number of hidden dimensions, where we used 128 instead of 75. For
ALCHEMY and QM9, we used six layers with 64 (hidden) features and a set2seq layer [Vinyals et al.,
2016] for graph-level pooling, followed by a 2-layer MLP for the joint regression of the twelve targets.
Moreover, following [Chen et al., 2019a, Gilmer et al., 2017], we normalized the targets of the training
split to zero mean and unit variance and report re-normalized testing scores. We used a single model to
predict all targets and report (mean) MAE. For the GNN baseline for the QM9 dataset, we computed
edge-wise ℓ2 distances based on the 3D coordinates and concatenated them to the edge features. We note
here that our intent is not the beat state-of-the-art, physical knowledge-incorporating architectures, e.g.,
DimeNet [J. Klicpera, 2020] or Cormorant [Anderson et al., 2019], but to solely show the benefits of
data-driven subgraph-enhanced GNNs. Further, to compare to ESAN, we used the same architecture
as Bevilacqua et al. [2021]. For the EXP dataset, we processed the raw dataset following Abboud et al.
[2020] and used six GIN layers, each with a hidden dimension of 32, followed by mean pooling and one
linear layer immediately after mean pooling. For the OGBG-MOLESOL and OGBG-MOLBACE datasets, we
followed OGB’s [Hu et al., 2020] official GIN model architecture without virtual vertices, i.e., five GIN
layers each with 300 hidden dimensions, and mean pooling as the final layer. For the PROTEINS dataset, we
followed the DS-GNN setting of ESAN paper, i.e., using 32 hidden dimensions, 4 hidden layers, and mean
pooling as the last layer.

Sampling subgraphs Since the number of unordered k-vertex subgraphs is considerably smaller than
the number of ordered k-vertex subgraphs, we opted to consider unordered k-vertex subgraphs; see
also Appendix F.1. Further, since vertex-subgraph k-OSANs, see Appendix E, are easier to implement
efficiently and are closer to ESAN [Bevilacqua et al., 2021], we opted to use them for the empirical
evaluation. In addition, we used a simple GNN architecture for the upstream model to compute initial
features for the subgraphs for ease of implementation. We experimented with selecting and deleting a
various number of vertices, edges, and subgraphs induced by k-hop neighborhoods (k-Ego) for all datasets.
We outline the subgraph sampling methods for each dataset below.

For ALCHEMY, we opted for learning to delete three vertices or edges. We also looked at sampling three
subgraphs on five vertices or edges. Finally, we looked at sampling three 3-hop neighborhood subgraphs.
For QM9, we opted for learning to delete one vertex or edge, learning to select three subgraphs with ten
vertex or edges, and sampling ten 3-hop neighborhood subgraphs. For the OGBG-MOLESOL dataset, we
looked at learning to delete one vertex three and ten times, two vertices one time, two subgraphs on five
vertices, and one subgraph on ten vertices. Further, we looked at deleting one edge ten times and three
2-hop neighborhood subgraphs. For ZINC, we opted to learn to delete vertices three and ten times. In
addition, we investigated deleting two vertices three times. We also investigated learning to delete edges
three and ten times. Further, we looked at selecting three subgraphs on 20 vertices or edges. Finally, we

19

Table 2: Additional experimental results on large-scale regression datasets and comparison to non-data-
driven ESAN [Bevilacqua et al., 2021].

(a) Results for the QM9 dataset

Method MAE ↓
Baseline 21.92 ±4.37

OPERAT. TYPE # # SUBG.
Random Delete Vertex 1 3 15.46 ±1.05

I-MLE 9.14 ±0.60

Random Delete Vertex 3 3 22.29 ±4.07

I-MLE 9.30 ±0.32

Random Delete Vertex 3 10 24.81 ±2.01

I-MLE 12.43 ±0.12

Random Delete Vertex 5 3 30.12 ±1.27

I-MLE 11.35 ±0.41

Random Select Vertex 10 3 22.69 ±3.05

I-MLE 11.88 ±0.52

Random Delete Edge 3 3 14.85 ±0.35

I-MLE 9.72 ±0.23

Random Delete Edge 5 3 13.69 ±0.28

I-MLE 10.08 ±0.36

Random Select Edge 10 3 14.02 ±0.99

I-MLE 11.58 ±0.46

Random Delete 1-Ego – 3 22.20 ±3.01

I-MLE 21.19 ±1.38

Random Select 3-Ego – 5 64.76 ±5.74

I-MLE 27.28 ±5.30

Random Select 3-Ego – 10 19.64 ±1.38

I-MLE 14.93 ±0.83

Random Select 5-Ego – 3 39.67 ±0.22

I-MLE 34.98 ±1.52

(b) I-MLE with ESAN on the ZINC dataset.

Method MAE ↓ Time in s
OPERAT. TYPE # # SUBG.

ESAN
Delete Vertex

All Vertexs 0.171 ±0.010 11.86 ±0.110

I-MLE 1 2 0.177 ±0.016 3.449 ±0.082

Random 0.214 ±0.007 2.910 ±0.071

ESAN
Delete Edge

All edges 0.172 ±0.008 12.260 ±0.120

I-MLE 1 3 0.222 ±0.003 3.425 ±0.070

Random 0.214 ±0.008 2.842 ±0.063

ESAN
Delete Edge

All edges – –
I-MLE 2 3 0.171 ±0.009 4.538 ±0.091

Random – –

ESAN
Select 3-Ego

All 3-ego nets 0.126 ±0.006 6.825 ±0.021

I-MLE – 10 0.181 ±0.010 3.907 ±0.015

Random 0.188 ±0.004 4.502 ±0.043

looked at sampling three 7-hop neighborhood subgraphs. For the EXP dataset, we learned to delete three
vertices or edges.

Comparison to ESAN To investigate how our data-driven sampling approaches compares to state-of-the-art
architectures, we integrated I-MLE-based subgraph sampling into ESAN [Bevilacqua et al., 2021]
(DS-GNNs)), and compared to ESAN using all subgraphs of a given size on the ZINC dataset. In addition,
we also compared to a simple random model sampling subgraphs uniformly and at random, using the same
configurations as the data-driven ones. To compare computation time between our method and ESAN,
we measured the time on the test set. The timing consisted of data batch retrieval, subgraph sampling,
downstream model forward propagation, upstream model forward propagation (in our method), and loss
calculation. Like ESAN, we repeated the inference five times and voted for the majority.

Additional experimental details For ZINC, we used the subset of 12 000 graphs provided in [Dwivedi
et al., 2020]. For ALCHEMY and QM9, we used a subset of 12 000 graphs sampled uniformly at random,
we used the splits provided in [Morris et al., 2020b]. All of the above datasets consists of a training split of
10 000 graphs, and a validation and test split of 1 000 graphs, respectively. For the other datasets, we used
the officially provided splits.

We repeated all experiments five times and report average scores and standard deviations. All experiments
were conducted on a workstation with one GPU card with 32GB of GPU memory.

We used two separate instances of an Adam optimizers [Kingma and Ba, 2015] for the upstream and
downstream models, both with default hyper-parameters and no weight decay. For the upstream model, we
did not use learning rate decay. For the ZINC, ALCHEMY and QM9 datasets, we trained for at least
700 epochs and leveraged early stopping with a patience of 100 afterwards. The learning rate for the
downstream model decays twice by 0.316 at the 400 and 600 epochs. For the EXP dataset, we trained for
350 epochs with a decay rate of 0.5 every 50 epochs, following the setup of ESAN [Bevilacqua et al.,
2021]. For the OGBG-MOLESOL and OGBG-MOLBACE datasets, we trained for 100 epochs, following the
default setting of [Hu et al., 2020]. For the PROTEINS dataset, we trained for 400 epochs, decaying the
learning rate by 0.316 twice at 150 and 300 epoch.

Additional experimental results In addition to the results already shown in the main paper, we exhibit
some additional results for different datasets and training settings. See Table 3 for results on PROTEINS. We
sampled by deleting one and three vertices three times, and deleting three edges three times. See Table 4 for
results on EXP. We examine the accuracy by selecting three subgraphs with one node or edge deletion.
See Table 5 for results on ZINC using a GIN model. See Table 6 for results using PNA. See Table 7
for results on OGBG-MOLBACE. For ease of implementation, we use unordered subgraph aggregation
by default. Here, we show results for additional experimental results comparing between ordered and

20

Table 3: Results for the PROTEINS dataset.
Method ROCAUC ↑
Baseline 0.775 ±0.034

GIN [Xu et al., 2019] 0.762 ±0.028

GIN + ID-GNN [You et al., 2021] 0.754 ±0.027

DropEdge [Rong et al., 2020] 0.735 ±0.045

PPGN [Maron et al., 2019] 0.772 ±0.047

CIN [Bodnar et al., 2021a] 0.770 ±0.043

OPERAT. TYPE # # SUBG.
Random Delete Vertex 1 3 0.760 ±0.011

I-MLE 0.775 ±0.014

Random Delete Vertex 3 3 0.769 ±0.019

I-MLE 0.783 ±0.012

Random Delete Edge 3 3 0.764 0.024

I-MLE 0.780 0.013

Table 4: Results for the EXP dataset.
Method Accuracy ↑
Baseline 0.522 ±0.003

GIN [Xu et al., 2019] 0.511 ±0.021

GIN + ID-GNN [You et al., 2021] 1.000 ±0.000

OPERAT. TYPE # # SUBG.
Random Delete Vertex 1 3 0.943 ±0.002

I-MLE 1.000 ±0.000

Random Delete Edge 1 3 0.946 ±0.002

I-MLE 0.999 ±0.001

unordered aggregation methods. Table 8 and Table 9 show results for OGBG datasets, while Table 10 and
Table 11 show results for ZINC. To show the auxiliary loss described in Appendix C makes a difference,
we carry out ablations studies using no auxiliary loss; see Table 12, Table 13 for results.

Finally, we designed more sophisticated subgraph selection methods. For vertices, we solve an Integer
Linear Programming problem (ILP). The objective goal is to select subgraphs, maximizing the sum of the
corresponding weights, while the constraints are that each vertex in the original graph much be selected at
least once. We compare this combinatorial-optimization-based selection method with unordered I-MLE.
For edges, we grow a Maximum Spanning Tree (MST) on each graph. We repeat this several times to get
different subgraph instances. We compare this method to MST-based selection strategy using uniformly
sampled edge weights; see Table 14 and Table 15 for results.

D k-OSWL and k-OSAN: Omitted proofs

In the following, we outline the proofs from the main paper.

D.1 Equivalence k-OSWL and k-OSAN

Let G be the set of all vertex-labeled graphs and F be a set of permutation-invariant functions over G, e.g.,
the functions expressible by some GNN architecture. Then, following Azizian and Lelarge [2020], we
define an equivalence relation ρ where for graphs G and H in G

(G,H) ∈ ρ(F) ⇐⇒ for all f ∈ F, f(G) = f(H)

holds. When F is replaced by an architecture’s name, we mean the set of function expressible with that
architecture.

Proposition 7 (Proposition 1 in the main text). For all k ≥ 1, it holds that

ρ(k-OSANs) = ρ(k-OSWL).

To show the above result, we show the inclusions ρ(k-OSANs) ⊆ ρ(k-OSWL) and ρ(k-OSWL) ⊆
ρ(k-OSANs) in Lemma 8 and Lemma 9, respectively.

Lemma 8. For all k ≥ 1, it holds that

ρ(k-OSWL) ⊆ ρ(k-OSANs).

21

Table 5: Results for the ZINC dataset with GIN model.
Method MAE ↓

PNA [Corso et al., 2020a] 0.188 ±0.004

Baseline 0.207 ±0.006

PNA [Corso et al., 2020b] 0.188 ±0.004

DGN [Beaini et al., 2020] 0.168 ±0.003

GIN [Xu et al., 2019] 0.252 ±0.017

HIMP [Fey et al., 2020] 0.151 ±0.006

GNS [Bouritsas et al., 2022] 0.108 ±0.018

CIN [Bodnar et al., 2021a] 0.094 ±0.004

OPERAT. TYPE # # SUBG.
Random Delete Vertex 1 1 0.378 ±0.004

I-MLE 0.287 ±0.015

Random Delete Vertex 1 3 0.283 ±0.003

I-MLE 0.194 ±0.007

Random Delete Vertex 1 10 0.234 ±0.005

I-MLE 0.217 ±0.003

Random Delete Vertex 3 3 0.265 ±0.003

I-MLE 0.184 ±0.006

Random Delete Vertex 3 10 0.275 ±0.010

I-MLE 0.240 ±0.003

Random Delete Vertex 10 10 0.210 ±0.006

I-MLE 0.204 ±0.004

Random Delete Edge 3 1 0.382 ±0.004

I-MLE 0.325 ±0.019

Random Delete Edge 3 3 0.192 ±0.002

I-MLE 0.176 ±0.006

Random Delete Edge 3 10 0.187 ±0.002

I-MLE 0.180 ±0.006

Random Delete Edge 10 3 0.173 ±0.007

I-MLE 0.162 ±0.002

Random Delete Edge 10 10 0.169 ±0.013

I-MLE 0.155 ±0.004

Random Select Vertex 20 3 0.384 ±0.011

I-MLE 0.313 ±0.016

Random Select Edge 20 3 0.274 ±0.012

I-MLE 0.261 ±0.014

Random Delete 1-Ego – 3 0.330 ±0.002

I-MLE 0.208 ±0.010

Random Delete 1-Ego – 10 0.285 ±0.006

I-MLE 0.260 ±0.041

Random Select 7-Ego – 3 0.464 ±0.023

I-MLE 0.257 ±0.004

Table 6: Results for the ZINC dataset with PNA model.
Method MAE ↓

PNA [Corso et al., 2020a] 0.188 ±0.004

GIN [Xu et al., 2019] 0.252 ±0.017

DGN [Beaini et al., 2020] 0.168 ±0.003

Baseline 0.174 ±0.003

OPERAT. TYPE # # SUBG.
Random Delete Vertex 1 3 0.260 ±0.001

I-MLE 0.168 ±0.005

Random Delete Vertex 1 10 0.227 ±0.004

I-MLE 0.154 ±0.008

Random Delete Vertex 3 3 0.226 ±0.007

I-MLE 0.172 ±0.001

Random Delete Vertex 3 10 0.255 ±0.004

I-MLE 0.164 ±0.001

Random Delete Edge 3 3 0.180 ±0.007

I-MLE 0.159 ±0.008

Random Delete Edge 10 3 0.174 ±0.009

I-MLE 0.161 ±0.003

Random Delete 1-Ego – 3 0.325 ±0.001

I-MLE 0.167 ±0.005

Proof. We show that if k-OSWL does not distinguish two vertices v and w in a graph G, then any
k-OSAN will also not distinguish them. That is, any k-OSAN will compute the same feature for the two
vertices, which implies the result.

22

Table 7: Results for the OGBG-MOLBACE dataset.
Method ROCAUC ↑
Baseline 0.714 ±0.058

OPERAT. TYPE # # SUBG.
Random Delete Vertex 1 10 0.719 ±0.039

I-MLE 0.723 ±0.066

Random Delete Vertex 3 3 0.742 ±0.025

I-MLE 0.771 ±0.038

Random Delete Vertex 3 5 0.730 ±0.026

I-MLE 0.763 ±0.030

Random Delete Vertex 3 10 0.716 ±0.032

I-MLE 0.757 ±0.019

Random Delete Vertex 10 3 0.761 ±0.026

I-MLE 0.791 ±0.008

Random Delete Edge 1 3 0.724 ±0.056

I-MLE 0.735 ±0.046

Random Delete Edge 5 3 0.732 ±0.026

I-MLE 0.756 ±0.041

Random Delete Edge 10 3 0.772 ±0.028

I-MLE 0.777 ±0.024

Random Delete Edge 10 10 0.754 ±0.018

I-MLE 0.784 ±0.022

Random Delete 1-Ego – 3 0.709 ±0.023

I-MLE 0.757 ±0.023

Random Select 5-Ego – 3 0.768 ±0.039

I-MLE 0.777 ±0.027

Table 8: Results for the OGBG-MOLESOL dataset using ordered and unordered subgraphs.
Method RSMSE ↓
Baseline 1.193 ±0.083

OPERAT. TYPE # # SUBG.
Random

Delete Vertex 1 3
1.215 ±0.095

I-MLE unordered 1.053 ±0.080

I-MLE ordered 0.835 ±0.079

Random
Delete Vertex 2 3

1.132 ±0.020

I-MLE unordered 1.081 ±0.021

I-MLE ordered 0.850 ±0.106

Random
Delete Vertex 5 3

0.992 ±0.115

I-MLE unordered 1.115 ±0.076

I-MLE ordered 0.853 ±0.043

Table 9: Results for the OGBG-MOLBACE dataset using ordered and unordered subgraphs.
Method AUCROC ↑
Baseline 0.714 ±0.058

OPERAT. TYPE # # SUBG.
Random

Delete Vertex 3 3
0.742 ±0.025

I-MLE unordered 0.771 ±0.038

I-MLE ordered 0.761 ±0.011

Random
Delete Vertex 3 10

0.716 ±0.032

I-MLE unordered 0.757 ±0.019

I-MLE ordered 0.776 ±0.032

Table 10: Results for the ZINC dataset using ordered and unordered subgraphs.
Method MAE ↓
Baseline 0.207 ±0.006

OPERAT. TYPE # # SUBG.
Random

Delete Vertex 1 3
0.283 ±0.003

I-MLE unordered 0.194 ±0.007

I-MLE ordered 0.187 ±0.004

Let us make precise what we will show. Let v and w ∈ V (G) such that C(v) = C(w). We recall that
C(v) := RELABEL

(
{{C∞(v,g) | g ∈ Gk}}

)
and C(w) := RELABEL

(
{{C∞(w,g) | g ∈ Gk}}

)
.

For C(v) = C(w) to hold, we therefore need that

Ci(v) := {{Ci(v,g) | g ∈ Gk}} = {{Ci(w,g) | g ∈ Gk)}} =: Ci(w) (6)

for all iterations i of the k-OSWL.

23

Table 11: Results for the ZINC dataset using ordered and unordered subgraphs with PNA model.
Method MAE ↓

OPERAT. TYPE # # SUBG.
Random

Delete Vertex 1 3
0.260 ±0.001

I-MLE unordered 0.168 ±0.005

I-MLE ordered 0.182 ±0.005

Random
Delete Vertex 1 10

0.227 ±0.004

I-MLE unordered 0.154 ±0.008

I-MLE ordered 0.181 ±0.010

Random
Delete Vertex 3 3

0.226 ±0.007

I-MLE unordered 0.172 ±0.008

I-MLE ordered 0.186 ±0.003

Random
Delete Vertex 3 10

0.255 ±0.004

I-MLE unordered 0.164 ±0.001

I-MLE ordered 0.175 ±0.008

Table 12: Results for the OGBG-MOLESOL dataset, auxiliary loss ablation.
Method RSMSE ↓
Baseline 1.193 ±0.083

OPERAT. TYPE # # SUBG.
Random

Delete Vertex 1 3
1.215 ±0.095

I-MLE 1.053 ±0.080

I-MLE ablation 1.120 ±0.092

Random
Delete Vertex 2 3

1.132 ±0.020

I-MLE 1.081 ±0.021

I-MLE ablation 1.137 ±0.146

Random
Delete Vertex 5 3

0.992 ±0.115

I-MLE 1.115 ±0.076

I-MLE ablation 1.247 ±0.126

Table 13: Results for the ZINC dataset, auxiliary loss ablation.
Method MAE ↓
Baseline 0.207 ±0.006

OPERAT. TYPE # # SUBG.
Random

Delete Vertex 1 3
0.283 ±0.003

I-MLE 0.194 ±0.007

I-MLE ablation 0.194 ±0.004

Random
Delete Vertex 3 3

0.265 ±0.003

I-MLE 0.184 ±0.006

I-MLE ablation 0.184 ±0.004

Random
Delete Edge 3 3

0.192 ±0.002

I-MLE 0.176 ±0.006

I-MLE ablation 0.178 ±0.008

Random
Delete Edge 10 10

0.169 ±0.013

I-MLE 0.155 ±0.004

I-MLE ablation 0.162 ±0.001

Table 14: Results for the OGBG-MOLESOL dataset using different selection methods.
Method RSMSE ↓
Baseline 1.193 ±0.083

OPERAT. TYPE # # SUBG.
Random

Delete Vertex 1 3
1.215 ±0.095

I-MLE unordered 1.053 ±0.080

I-MLE covered 1.074 ±0.115

Random
Delete Vertex 2 3

1.132 ±0.020

I-MLE unordered 1.081 ±0.021

I-MLE covered 1.081 ±0.068

Random
Delete Vertex 5 3

0.992 ±0.115

I-MLE unordered 1.115 ±0.076

I-MLE covered 0.946 ±0.058

Random MST Edge – 3 1.095 ±0.021

I-MLE 1.070 ±0.005

We next turn to k-OSANs. Let us denote by h
(i)
v,g the vertex feature of v for g ∈ Gk computed in layer i

of a k-OSAN. We define

h(i)
v := SAGG

(
{{h(i)

v,g | g ∈ Gk s.t. πππv,g ̸= 0}}
)
.

We now show

Ci(v) = Ci(w) =⇒ h(i)
v = h(i)

w , (7)

for i ≥ 0. To do so, we first show the following result.

24

Table 15: Results for the OGBG-MOLBACE dataset using different selection methods.
Method AUCROC ↑
Baseline 0.714 ±0.058

OPERAT. TYPE # # SUBG.
Random

Delete Vertex 3 3
0.742 ±0.025

I-MLE unordered 0.771 ±0.038

I-MLE covered 0.765 ±0.032

Random MST Edge – 3 0.740 ±0.034

I-MLE 0.758 ±0.025

Random MST Edge – 10 0.741 ±0.025

I-MLE 0.763 ±0.027

Table 16: Dataset statistics and properties for graph-level prediction tasks, †—Continuous vertex labels
following Gilmer et al. [2017], the last three components encode 3D coordinates.

Dataset
Properties

Number of graphs Number of classes/targets ∅ Number of vertices ∅ Number of edges Vertex labels Edge labels

ALCHEMY 202 579 12 10.1 10.4 ✓ ✓
QM9 129 433 12 18.0 18.6 ✓(13+3D)† ✓(4)
ZINC 249 456 1 23.1 24.9 ✓ ✓
EXP 1 200 2 44.5 55.2 ✓ ✗
OGBG-MOLESOL 1 128 1 13.3 13.7 ✓ ✓
OGBG-MOLBACE 1 513 2 34.1 36.9 ✓ ✓
PROTEINS 1 113 2 39.1 72.8 ✓ ✗

Claim 1. It holds that

Ci(v,g) = Ci(w,g
′) =⇒ h(i)

v,g = h
(i)
w,g′ and πππv,g = πππw,g′ (8)

for all g and g′ ∈ Gk and i ≥ 0.

Proof. We proof the result by induction on the number of iterations or layers i. The base case, i = 0,
follows by definition of the initial coloring of the k-OSWL and the initial features of k-OSANs, that is,
both are dictated solely by the atomic type. The same holds for πππv,g and πππw,g′ , which remain unchanged
for layers i > 0.

Assume Equation (8) holds for the first i iteration and further assume Ci+1(v,g) = Ci+1(w,g
′) holds.

Hence, Ci(v,g) = Ci(w,g
′) and {{Ci(u,g) | u ∈ □}} = {{Ci(u,g

′) | u ∈ □}}. We now define the
multi-sets

M (i+1)
v,g := {{h(i)

u,g | u ∈ □}} and M
(i+1)
w,g′ := {{h(i)

u,g′ | u ∈ □}}.

By the above, we know that M (i+1)
v,g = M

(i+1)
w,g′ and h

(i)
v,g = h

(i)
w,g′ . Therefore, regardless of the concrete

choice of UPD(i+1) and AGG(i+1), h(i+1)
v,g = h

(i+1)
w,g′ .

We are now ready to show Equation (7). Hence, we assume Ci(v,g) = Ci(v,g
′) for i ≥ 0 holds. Hence,

by assumption, the two multisets of Equation (6) are (element-wise) equal. Hence, there exists a bijection
θ : {(v,g) | g ∈ Gk} → {(w,g) | g ∈ Gk} such that C0(v,g) = C0(θ(v,g)). By leveraging Claim
1, we now construct a bijection φ with the same domain and co-domain as θ such that h(i)

v,g = h
(i)
φ(v,g),

implying Equation (7).

We construct the bijection φ as follows. Take (v,g) ∈ V (G) × Gk, let θ(v,g) = (w,g′), and set
φ(v,g) = θ(v,g) = (w,g′). Since Ci(v,g) = Ci(θ(v,g)), Claim 1 implies that h(i)

v,g = h
(i)
φ(v,g) and

πππv,g = πππφ(v,g). Hence, by the existence of the bijection φ, we have that

{{h(i)
v,g | g ∈ Gk s.t. πππv,g ̸= 0}} = {{h(i)

w,g | g ∈ Gk s.t. πππw,g ̸= 0}}.

Hence, the feature vector hv is equal to hw.

Lemma 9. For all k ≥ 1, it holds that

ρ(k-OSANs) ⊆ ρ(k-OSWL).

Proof. We argue that there exists a canonical k-PMPMN that can simulate the k-OSWL. By setting UPD
to the identity function and a constant, non-zero function, we can simulate the initial labeling of the

25

k-OSWL. For the other iterations, we need to show that there exist instances of UPD(i), AGG(i) for
i > 0, and SAGG that are injective, faithfully distinguishing non-equal multisets. The existence of such
instances follows directly from the proof of Theorem 2 in [Morris et al., 2019].

The above two lemmas directly imply Proposition 1.

D.2 Separation results

Theorem 10 (Theorem 3 in the main text). For all k ≥ 1 it holds that

ρ(k + 1-OSANs) ⊊ ρ(k-OSANs).

Proof. First, ρ(k + 1-OSANs) ⊆ ρ((k)-OSANs), is a direct consequence of the results in [Geerts and
Reutter, 2022] showing that (k + 1)-MPNNs are bounded by (k + 1)-WL and that k-OSANs are a
restricted class of (k + 1)-MPNNs. The strictness follows by Proposition 1 and Theorem 14.

Construction of Fürer grid-graphs We restate the following construction due to Fürer [2001]. Let h
and n be fixed positive integers such that n >> h+ 1. Fix a global graph Gh

n, defined to be a h× n grid
graph. Define a graph X(Gh

n) as follows.

1. For each vertex v ∈ V (Gh
n),

• let degree of v be d,
• let Ev be the set of edges incident to v,
• replace v by a vertex cloud Cv of 2d−1 vertices of the form (v, S) such that S is an even

subset of Ev .

2. For each edge e = {u, v} ∈ E(Gh
n),

• for each (u, S) ∈ Cu and (v, T) ∈ Cv , add an edge between (u, S) and (v, T) if
– both S and T contain e, or
– both S and T do not contain e.

The graph Y (Gh
n) is defined exactly as X(Gh

n), with the following exception. Fix an edge {u∗, v∗} of the
global graph Gh

n. In the second step above (Item 2), we use a different rule for this edge {u∗, v∗},

• for each (u∗, S) ∈ Cu∗ and (v∗, T) ∈ Cv∗ , add an edge between (u∗, S) and (v∗, T) if

– exactly one out of S and T contains e

The edge {u∗, v∗} is said to be twisted. Equivalently, Y (Gh
n) is the graph obtained from the graph X(Gh

n)
by performing a bipartite-complement operation on the bipartite graph between the vertex clouds Cu∗ and
Cv∗ .

For a vertex v in Xk or Yk, let v̄ denote the vertex x in Gh
n such that v ∈ Cx (also called a meta-vertex in

[Fürer, 2001]). We assign a fresh color say cv to the the vertex cloud Cv for each v ∈ V (Gh
n), imposing

an initial coloring on the graphs X(Gh
n) and Y (Gh

n). It is easy to see that this coloring is stable under
Color Refinement.

Construction and Properties of Xk and Yk To ease notation, we set B = Gk+1
n as our base graph

where n >> k + 1. For k ∈ N, we set Xk = X(B) and Yk = Y (B). Fürer showed that the graphs
Xk and Yk are non-isomorphic yet k-WL-indistinguishable. It was also shown that (k + 1)-WL can
distinguish these graphs after at least n rounds. The proof technique relies on trapping the twist using
k + 2 pebbles in a Spoiler-Duplicator game [Immerman and Lander, 1990].

Moreover, let Z be a graph obtained by twisting some ℓ distinct edges of B, similar to how Yk is obtained
from B after a single twist. Then, it was shown that Z is isomorphic to Xk if ℓ is even, and Z is isomorphic
to Yk if ℓ is odd.

26

Twists and Shields Let u ∈ V (Xk). Let u in V (Xk)
k. Let B\(ū, ū) denote the graph obtained by

deleting the vertices in (ū, ū) in the base graph B. Let e = (x, y) be the edge of B which was twisted to
obtain Yk. Assume that at least one of its endpoints of e is not in (ū, ū). The twisted component of B w.r.t
(ū, ū), denoted by TC(ū, ū), is the unique component of B\(ū, ū) which contains the twisted edge.

Let NTC[ū, ū] be the neighborhood of vertices in (u, u) into the twisted component, i.e., the set of
vertices v ∈ TC(ū, ū) which are incident to (ū, ū). Then, a twisted component is a shield if it satisfies the
following two properties:

• the twisted edge is not incident to any of the vertices in (ū, ū) and NTC[ū, ū], and
• the twisted edge lies on some cycle in TC(ū, ū)\NTC[ū, ū].

In this case, we also call (u, u) to be shielding for Yk. The motivation behind these conditions is as
follows. The first condition ensures that the twist is at distance at least two from the individualized vertices.
The second condition ensures that the twist cannot be trapped using just two pebbles.
Proposition 11. Suppose that (u, u) is shielding for Yk. If we run color refinement on the disjoint union
of (Xk,u) and (Yk,u), the stable color of u in (Xk,u) is identical to the stable color of u in (Yk,u).

Proof. Since (u, u) is shielding for Yk, the twisted edge lies on a cycle C inside TC(ū, ū)\NTC[ū, ū].
Hence, every vertex of C is at distance at least two from the vertices in (u, u). We invoke the usual
Spoiler-Duplicator games of Immerman-Lander to argue the desired claim [Cai et al., 1992].

We show that a Duplicator can always move around the twist such that it is never caught by the Spoiler.
This game uses k pairs of fixed pebbles corresponding to u in each graph, and two pairs of movable
pebbles which are placed on u in Xk and Yk respectively. Recall that color refinement can be simulated
using a 2-pebble Spoiler-Duplicator game [Immerman and Lander, 1990]. Since the k fixed pebbles are
influential only in their neighbourhood, the Duplicator strategy is to move the twist around in the cycle C ,
so that the twist is always at a distance of at least two from the fixed pebbles. This renders the fixed pebbles
useless for the Spoiler. Since there are only two movable pebbles, the Duplicator can always move the twist
around in the cycle C and hence avoid a situation where the Spoiler can trap the twist with the two movable
pebbles.

Shielding Twists Let u ∈ V (Xk) and u ∈ V (Xk)
k. Next we show that if (u, u) is not shielding for

Yk, we can do a series of twisting operations on the graph Yk to obtain an isomorphic graph Y ′
k such that

(u, u) is shielding for Y ′
k .

Proposition 12. If (u, u) is not shielding for Yk, there exists v ∈ V (Xk)
k such that (v, u) is shielding

for Yk. Hence, if we run Color Refinement on the disjoint union of (Xk,u) and (Yk,v), the stable color
of u in (Xk,u) is identical to the stable color of u in (Yk,v).

Proof. Since n >> k, there exists at least one component in B\(ū, ū) such that it contains a grid G3×3

of dimension 3× 3 as an induced subgraph, where G3×3 does not have any edges to (u, u). Let C∗ be the
lexicographically least such component in B\(ū, ū). Our goal is to use an automorphism θ of Yk to
transfer the twist to this grid G3×3 inside the component C∗ such that θ fixes u, i.e. θ(u) = u. This would
mean that (u, u) is shielding for Y θ

k with C∗ as the shield. Hence, we set v = uθ−1

so that (v, u) is
shielding for Yk.

To achieve this transformation, for every ū ∈ V (B)k, we fix a shortest path P ū from one of the ends of
the twisted edge to the central vertex of the grid G3,3 such that P avoids u. We twist all the edges on the
path P ū. If the length of the path P is odd, we twist one more edge in G3,3 so as to ensure that P ū has
even length. The resulting graph Y ′

k is isomorphic to Yk via a unique isomorphism θ. Since the path
P avoids u, the isomorphism θ fixes u. Hence, (u, u) is shielding for Y ′

k , and therefore (uθ−1

, u) is
shielding for Yk. Hence, proved.

Observe that the association u 7→ v in the proof of the above claim is bijective, as follows. Suppose
there exists w 7→ v such that u ̸= w. Now, u and w must have same initial color type, since the used
isomorphisms preserve vertex clouds, i.e. ū = w̄. Hence, the same path Pu is used for both u and v in
the base graph B. For a fixed path Pu of even length, there is a unique isomorphism θ which twists all the
edges in P to yield the graph Y ′

k . Hence, it must be the case that u = w = vθ−1

.

27

Lemma 13. For k ∈ N, k-OSWL cannot distinguish graphs Xk and Yk.

Proof. Let X denote the disjoint union of graphs (Xk,u), u ∈ V (Xk)
k. Let Y denote the disjoint union

of graphs (Yk,v), v ∈ V (Yk)
k. It suffices to show the equality of the following nested multisets

{{{{CR(X , uu) |u ∈ V (Xk)
k}} |u ∈ V (Xk)}} = {{{{CR(Y, vv) |v ∈ V (Yk)

k}} | v ∈ V (Yk)}},

where uu denotes the vertex u in the constituent (Xk,u) of X . Similarly, vv denotes the vertex v in the
constituent (Xk,v) of Y .

Observe that the graphs Xk and Yk have the same vertex set. We claim that for every u ∈ V (Xk), the
corresponding vertex u ∈ V (Yk) satisfies

{{CR(X , uu) |u ∈ V (Xk)
k}} = {{CR(Y, uv) |v ∈ V (Yk)

k}}.

Indeed, this follows immediately from Proposition 11 and Proposition 12 along with the fact that the
association in Proposition 12 is bijective (see the discussion subsequent to Proposition 12). Hence,
proved.

Theorem 14. For k ∈ N, there exist graphs Xk and Yk such that they are distinguishable by (k + 1)-WL
but not distinguishable by k-OSWL.

Proof. Immediate from Lemma 13.

Next we compare the expressive power of k-WL and k-OSWL.

Lemma 15. For k ∈ N, there exist graphs Xk and Yk such that they are distinguishable by k-OSWL but
not distinguishable by k-WL.

Proof. We set Xk and Yk to be CFI-gadgets Gk+1 and Hk+1 which are known to be indistinguishable
by k-WL (see Section E.2 for the definition of these gadgets). It remains to show that they can be
distinguished by k-OSWL. Recall that Xk contains a colorful distance-two-clique Q of size k + 2 while
Yk does not contain such an object. We place k fixed pebbles on some k vertices of Q, and let x, y be the
remaining two vertices in Q. It is clear that upon two rounds of color refinement, the vertices x and y see
all individualized colors corresponding to the fixed pebbles. Moreover, the individualized pebbles also see
all the individualized colors of other pebbles.

On the other hand, doing such an operation on Yk will never yield such colors, since this would otherwise
ensure a colorful distance-two-clique in Yk. Hence, there does not exist any x′ ∈ V (Yk) and v ∈ V (Yk)

k

such that color refinement on the disjoint union of (Xk,u) and (Yk,v) yields the same colors for x and x′.
Therefore for any choice of x′ ∈ V (Yk) it holds that the following multisets for vertices x ∈ V (Xk) and
x′, obtained by aggregation over all ordered subgraphs, satisfy

{{CR(X , xu) |u ∈ V (Xk)
k}} ̸= {{CR(Y, (x′)

v
) |v ∈ V (Yk)

k}}.

which implies that the aggregated multisets over all vertices

{{{{CR(X , uu) |u ∈ V (Xk)
k}} |u ∈ V (Xk)}} ≠ {{{{CR(Y, vv) |v ∈ V (Yk)

k}} | v ∈ V (Yk)}}.

Hence, k-OSWL distinguishes Xk and Yk.

The following theorem shows that the algorithms k-OSWL, k ∈ N, form a hierarchy of increasingly
powerful isomorphism tests.

Theorem 16. For k ∈ N, k-OSWL has strictly less expressive power than (k + 1)-OSWL.

Proof. The proof follows immediately from Theorem 14 and Lemma 15; see below.

28

E Vertex-subgraph k-OSWL and k-OSAN: Omitted Proofs

In this section we consider a variant of k-OSWL, denoted vertex-subgraph k-OSWL, in which the
construction of the multi-sets used to define the color of graph is defined differently. As before, we define
Ci(v,g) and C∞(v,g) for v ∈ V (G) and g ∈ Gk. Then, instead of computing a single color for a vertex
v, we compute a single color for g ∈ Gk. We do this by aggregating over all vertex in G, i.e, we compute

C(g) := RELABEL
(
{{C∞(v,g) | v ∈ V (G)}}

)
.

Finally, we use

RELABEL
(
{{C(g) | g ∈ Gk}}

)
to obtain the color C(G) of G. The neural counterpart, vertex-subgraph k-OSANs, are defined in a similar
way. That is, h(i)

v,g is defined as for k-OSANs but we now define

h(T)
g := AGG

(
{{h(T)

v,g | v ∈ V (G)}}
)

hG := SAGG
(
{{h(T)

g | g ∈ V (G)k, v ∈ V (G)πππv,g ̸= 0}}
)
.

Again, AGG and SAGG are differentiable, parameterized functions, e.g., neural networks.

E.1 Equivalence of vertex-subgraph k-OSWL and vertex-subgraph k-OSAN

Proposition 17. For all k ≥ 1, vertex-subgraph k-OSANs and vertex-subgraph k-OSWL have the same
distinguishing power.

The proof consists in showing that (i) vertex-subgraph k-OSANs cannot distinguish more graphs than
vertex-subgraph k-OSWL (Lemma 18); and (ii) vertex-subgraph k-OSWL cannot distinguish more graphs
than vertex-subgraph k-OSANs (Lemma 19).
Lemma 18. For all k ≥ 1, it holds that ρ(k-OSWL) ⊆ ρ(k-OSANs).

Proof. Consider graphs G and H in ρ(k-OSWL). By definition, this implies that

RELABEL
(
{{C(g) | g ∈ Gk}}

)
= RELABEL

(
{{C(q) | q ∈ Hk}}

)
(9)

holds. We next show C(g) = C(q) for g ∈ Gk and q ∈ Hk implies that any k-OSAN computes the
same features for k-ordered subgraphs g and q. Combined with Equation (9) this implies that any k-OSAN
assigns the same feature to G and H . Assume C(g) = C(q), hence C(g) := RELABEL

(
{{C∞(v,g) |

v ∈ V (G)}}
)

and C(q) := RELABEL
(
{{C∞(w,q) | w ∈ V (H)}}

)
. Hence, for C(g) = C(q) to

hold, we need that

Ci(g) := {{Ci(v,g) | v ∈ V (G)}} = {{Ci(w,q) | w ∈ V (H)}} =: Ci(q) (10)

for all iterations i of the k-OSWL. On the k-OSAN side we define

h(i)
g := AGG

(
{{h(i)

v,g | v ∈ V (G)
)

and similarly for h(i)
q . We now show

Ci(g) = Ci(q) =⇒ h(i)
g = h(i)

q . (11)

Indeed, Ci(g) = Ci(q) and Equation (10) imply that there exists a bijection θ : V (G) → V (H) such
that Ci(v,g) = Ci(θ(v),q). Claim 1 implies that h(i)

v,g = h
(i)
θ(w),q and thus θ can be used to define a

bijection between the multisets defining h
(i)
g and h

(i)
q . Hence, h(i)

g = h
(i)
q as desired.

Lemma 19. For all k ≥ 1, it holds that ρ(k-OSANs) ⊆ ρ(k-OSWL).

This is shown in precisely the same way as Lemma 9.

E.2 CFI-Gadgets

The comparison with k-WL and separation results are derived from a graph construction, also outlined in
Morris et al. [2020b, Appendix C.1.1]. They provide an infinite family of graphs (Gk, Hk), k ∈ N, such
that (a) (k − 1)-WL does not distinguish Gk and Hk but (b) k-WL distinguishes Gk and Hk. In the
following, we recall some relevant results from their paper.

29

Construction of Gk and Hk. Let Kk+1 denote the complete graph on k + 1 nodes (there are no
self-loops). We index the nodes of Kk+1 from 0 to k. Let E(v) denote the set of edges incident to v in
Kk+1. Clearly, |E(v)| = k for all v ∈ V (Kk+1). We define the graph Gk as follows.

1. For the node set V (Gk), we add
(a) (v, S) for each v in V (Kk+1) and for each even subset S of E(v).
(b) two nodes e1 and e0 for each edge e in E(Kk+1).

2. For the edge set E(Gk), we add
(a) an edge (e0, e1) for each e in E(Kk+1),
(b) an edge between (v, S) and e1 if v in e and e in S,
(c) an edge between (v, S) and e0 if v in e and e not in S.

For v ∈ V (Kk+1), the set of vertices of the form (v, S) defined in Item 1 are assigned a common color
Cv . They form what we call a vertex-cloud corresponding to the vertex v. Similarly, for e ∈ E(Kk+1),
the two vertices e0 defined in Item 1 are assigned a common color Ce. They form what we call an
edge-cloud corresponding to the edge e. A vertex-cloud vertex is a vertex of the form (v, S) as defined
above. An edge-cloud vertex is a vertex of the form e0 or e1 as defined above.

We define the graph Hk, in a similar manner to Gk, with the following exception. In step 1(a), for the node
0 in V (Kk+1), we choose all odd subsets of E(0). Clearly, both graphs have (k) · 2k +

(
k+2
2

)
· 2 nodes.

The above construction of graphs (Gk, Hk) is essentially the application of the classic Cai-Fürer-Immerman
construction to a (k + 1)-clique: we refer to these graphs as CFI-gadgets henceforth.

Distance-two cliques. We say that a set S of nodes form a distance-two-clique if the distance between
any two nodes in S is exactly two. A distance-two-clique S is colorful if (a) every vertex of S is of
vertex-cloud kind, and (b) no two vertices in S belong to the same vertex cloud. Clearly, each vertex in a
colorful distance-two-clique has a unique initial color. The following lemma is a mild strengthening of a
lemma from Morris et al. [2020b]: the proof is a straightforward derivation from the proof of their lemma.
Lemma 20 ([Morris et al., 2020b]). The following holds for the graphs Gk and Hk defined above.

• There exists a set of k + 1 vertex-cloud vertices in Gk such that they form a colorful distance-
two-clique of size (k + 1).

• There does not exist a set of k + 1 vertex-cloud vertices in Hk such that they form a colorful
distance-two-clique of size (k + 1).

Hence, Gk and Hk are non-isomorphic.

Further, they showed the following results regarding the power and limitations of Weisfeiler-Leman
vis-a-vis such graphs.
Lemma 21 ([Morris et al., 2020b]). The (k − 1)-WL does not distinguish Gk and Hk.
Lemma 22 ([Morris et al., 2020b]). The k-WL does distinguish Gk and Hk.

E.3 Separation results: Comparison of vertex-subgraph k-OSWL and k-WL.

We now compare the relative expressive power of the k-ordered subgraph Weisfeiler-Leman and the
standard Weisfeiler-Leman. We remark that, by definition, 0-OSWL = 1-WL, so in the remainder of this
section we consider k-OSWL for k > 0.

We show that k-OSWL is bounded in distinguishing power by k + 1-WL (Lemma 24), yet there are are
graphs that can be distinguished by k + 1-WL but not by k-OSWL (Proposition 26). Moreover, k-OSWL
can distinguish graphs which cannot be distinguished by k-WL (Lemma 27). As a consequence, As a
consequence, the algorithms k-OSWL, k ∈ N, form a strict hierarchy of vertex-refinement algorithms.
Lemma 23. Let k ∈ N. Then k-OSWL is strictly less expressive than (k + 1)-OSWL.

Proof. We have shown that (a) k-OSWL is strictly less expressive than (k + 1)-WL, (b) there exist
(k + 1)-WL-indistinguishable graphs which are distinguished by (k + 1)-OSWL. Hence, we obtain the
desired claim.

30

Gk Hk

GkHk

(a) Graph Xk

Gk Gk

HkHk

(b) Graph Yk

Figure 1: Pair of graphs which are (k + 1)-WL distinguishable but k-OSWL indistinguishable. The
graphs Gk and Hk are CFI gadgets. Shaded sector represents uniform adjacency to the backbone vertex.

Lemma 24. Let k ∈ N. Then k-OSWL is strictly less expressive than (k + 1)-WL.

We start by describing a construction of a new family of graphs (Xk, Yk), k ∈ N, based on the CFI
gadgets Gk and Hk.

Construction of the graphs Xk and Yk The graph Xk is defined as follows. Let C be a backbone cycle
of length four with vertices u1, u2, u3, u4, each colored “red”. We attach the CFI gadgets Gk, Hk to each
of these four vertices as follows. By “attaching a gadget F to a vertex u”, we mean that every vertex of the
gadget F is made adjacent to the backbone vertex u. Conversely, a backbone vertex u points to a gadget F
if F is attached to u. Going back to our construction of Xk, we attach a copy of Gk each to u1 and u3.
We also attach a copy of Hk each to u2 and u4. All the gadget vertices retain their original colors.

The graph Yk is defined similarly to Xk with the following exception. We attach a copy of Gk each to
consecutive vertices u1 and u2, while we attach a copy of Hk each to consecutive vertices u3 and u4.
Hence, Xk and Yk only differ in the cyclic ordering of the attached gadgets.

Observe that the backbone vertices in Xk and Yk are colored ‘red’ initially. The gadget vertices inherit
their colors from the construction of graphs Gk and Hk. These colors are either vertex cloud colors, say
{Ci : i ∈ [k + 1]}, or the edge clouds colors {Cij : {i, j} ∈

(
k+1
2

)
}. We call these two kinds of colors

along with the red color as the basic colors. Let the basic color of a vertex u be denoted by β(u).
Proposition 25. For k ∈ N, (k + 1)-WL distinguishes the graphs Xk and Yk.

Proof. It suffices to define a (k + 2)-variable sentence φ in first-order logic with counting quantifiers
(FOC) such that φ(Xk) ̸= φ(Yk) (Indeed, Cai et al. [1992] establishes a precice correspondence between
k-WL and FOC sentences using (k + 1) variables). Intuitively, the sentence φ expresses that there is a
backbone vertex which has two different backbone vertices, each of which pointing to a CFI-gadget
containing a colorful distance-two clique of size (k + 1).

We first note that a distance-two-clique of size (k + 1) over vertex-cloud vertices is definable as a
FOC-formula on (k + 2) variables. Indeed, let Ci, i ∈ [k + 1] be unary color predicates for vertex clouds,
and Cij , {i, j} ∈

(
k+1
2

)
unary predicates for edge clouds. Then,

DTC(x1, . . . , xk+1) :=
∧

i,j∈[k+1]
i̸=j

Ci(xi)∧Cj(xj)∧∃xk+2 (Cij(xk+2)∧(E(xk+2, xi)∧E(xk+2, xj)))

is a formula that is satisfied by a (k+1)-tuple of vertices in a graph when they form a colorful distance-two
clique with colors based on vertex and edge clouds.

We proceed to the description of φ. Let ∃X denote the chain of k + 1 quantifiers ∃x1 · · · ∃xk+1. Since
the backbone vertices in Xk and Yk receive a distinct color (red), let BB(x) denote the unary predicate
encoding this condition. The (k + 2)-variable formula POINTGk

(x) encodes whether a backbone vertex
x points to a Gk-gadget, by requiring the existence of a distance-two-clique of the kind stated in Lemma 20.

POINTGk
(xk+2) := BB(xk+2) ∧ ∃X (DTC(x1, . . . , xk+1) ∧

∧
i∈[k+1]

E(xk+2, xi))

31

Then the desired sentence

φ := ∃xk+1

(
BB(xk+1) ∧ ∃=2xk+2 (BB(xk+2) ∧ E(xk+2, xk+1) ∧ POINTGk

(xk+2))
)

It is know clear that Xk satisfies φ: it has a backbone vertex u3 which has exactly two backbone neighbours
u2 and u4, each of which point to a Gk-gadget. Since Gk contains a distance-two-clique of size (k + 1)
while Hk does not contain a distance-two-clique of size (k + 1), Xk satisfies φ. On the other hand, Yk

does not satisfy φ because it does not have any backbone vertex with two such backbone neighbours.

Cyclic Types Given a vertex tuple z = (z1, . . . , zk) ∈ V (Xk)
k, define its cyclic type as follows. For

i ∈ [4], let Si denote the set of all j ∈ [k] such that the vertex zj is either equal to or is attached to
the backbone vertex ui. Call |Si| to be the weight of the backbone vertex ui. This associates a cyclic
sequence Sz = (S1, S2, S3, S4) with z: by cyclic sequence, we mean that only the cyclic ordering of the
sets matters, e.g., the cyclic sequence (S2, S3, S4, S1) is equal to the cyclic sequence (S1, S2, S3, S4).
The cyclic type of z = (z1, . . . , zk) is then defined by the tuple (β(z1), . . . , β(zk)) of basic colors and
the cyclic sequence Sz . The same procedure can be used to define the cyclic type of a vertex tuple
z ∈ V (Yk)

k. Further, a cyclic type is said to be simple if the weight of every backbone vertex is at most
k − 2. If the cyclic type is not simple, there is a unique backbone vertex of weight at least k − 1. We call
such a vertex as a leader. If the weight of the leader is exactly k − 1, there exists a follower vertex of
weight one. A backbone vertex of weight zero is called weightless.

Instead of usual color refinement (CR), we define a skewed color refinement (SCR) on the graphs (Xk,u)
and (Yk,v), as follows: in the first stage, we exhaustively and exclusively refine the class of backbone
vertices. This refinement uses color information from both backbone and non-backbone vertices. In the
second stage, we do the usual Color Refinement on the resulting graph. Using standard arguments, it is easy
to show that both CR and SCR both converge to the same stable coloring.
Proposition 26. For k ∈ N, k-OSWL cannot distinguish the graphs Xk and Yk.

Proof. It suffices to show a partition PX of V (Xk)
k into m classes P1, . . . , Pm and a partition PY of

V (Yk)
k into m classes Q1, . . . , Qm such that for each i ∈ [m] it holds that (a) |Pi| = |Qi| , and (b)

graphs (Xk,u) and (Yk,v) are indistinguishable under color refinement, for all u ∈ Pi and for all
v ∈ Qi. Here (Xk,u) stands for a copy of the graph Xk in which the vertex ui receives a distinct initial
color i, for each i ∈ [k]. Similarly, (Yk,v) stands for a copy of the graph Yk in which the vertex ui

receives a distinct initial color i, for each i ∈ [k].

For the partition PX , we first partition the tuples in V (Xk)
k into sets Pτ according to their cyclic type τ .

Next, if a cyclic type τ is not simple, we further partition the set Pτ depending on whether the leader vertex
points to a Gk-gadget or a Hk-gadget. We obtain a corresponding partition PY following the same process
for Yk.

Instead of usual color refinement (CR), we do a skewed color refinement (SCR) on the graphs (Xk,u) and
(Yk,v): in first stage, we exhaustively and exclusively refine the class of backbone vertices, and in second
stage we do the usual Color Refinement on the resulting graph. Using standard arguments, it is easy to
show that both CR and SCR both converge to the same stable coloring.

Let τ be a simple cyclic type. It is easy to verify that the number of tuples of type τ in V (Xk)
k and

V (Yk)
k are equal. Suppose that u ∈ V (Xk)

k and v ∈ V (Yk)
k have the cyclic type τ . After the first

stage of SCR, the two graphs are indistinguishable because of the cyclic types being equal. After the second
stage of SCR, the backbone vertices do not get refined any further: since each gadget has at most k − 2
individualized vertices, it is not possible to identify whether it is a Gk gadget or a Hk gadget with color
refinement (otherwise k-WL would also distinguish Gk and Hk). Hence, Color Refinement does not
distinguish (Xk,u) and (Yk,v).

Otherwise, let τ be a non-simple type. Let u ∈ V (Xk)
k and v ∈ V (Yk)

k of type τ such that their leader
vertices point to a Gk-gadget. Again, it is easy to verify that the number of such tuples in V (Xk)

k and
V (Yk)

k are equal. Again, we do a skewed color refinement on the graphs (Xk,u) and (Yk,v). After the
first stage of SCR, the two graphs are again indistinguishable because of the cyclic types being equal. After
the second stage of SCR, the backbone vertices again do not get refined any further for the following reason.
The leader and the follower vertices are already in singleton color classes. If the weightless vertices are not
already distinguished after stage one, they will not get distinguished any further because the gadgets
attached to them do not have any individualized vertices and hence they cannot be distinguished by Color

32

Refinement (i.e. 1-WL). Hence, CR does not distinguish (Xk,u) and (Yk,v). A similar argument works
when both leader vertices point to a Hk-gadget. This finishes our case analysis.

We conclude by comparing k-WL and k-OSWL.

Lemma 27. For each k ∈ N there exist k-WL-indistinguishable graphs which are distinguished by
k-OSWL.

Proof. We show that the CFI-gadget graphs Gk+1 and Hk+1 can be distinguished by k-OSWL. Since
Lemma 21 implies that these graphs cannot be distinguished by k-WL this suffices.

More specifically, we will identify a k-ordered subgraph g in V (Gk+1)
k for which C(g) is different from

any C(q) with q in V (Hk+1)
k.

Let {v1, . . . , vk, vk+1, vk+2} be a colorful distance-two-clique in Gk+1. Recall that each vi lies in a
distinct vertex cloud. We set g = (v1, . . . , vk). For each pair vi, vj with i, j ∈ [k], there exist a vertex vij
in an edge cloud, such that (vi, vij) and (vij , vj) are edges. This information is captured by C(vij ,g) and
hence also by C(g). In other words, C(g) will reflect that the vertices in g form a colorful distance-two
clique of size k. We now argue that C(g) also reflects that there is a distance-two clique of size k + 2 in
Gk+1.

Indeed, observe that C(vk+1,g) contains information that vk+1 is connected to all vertices in g at distance
two, and similarly for C(vk+2,g). Moreover, since C(vk+1,g) reflects that vk+2 is at distance two from
vk+1. In other words, C(g) indeed reflects that there is a colorful distance-two cliques of size k + 2 in
Gk+1. By Lemma 20, C(q) cannot reflect this since Hk+1 does not contain a colorful distance-two
cliques of size k + 2.

F Subgraph-enhanced GNNs as k-OSANs, Proofs of Propositions 4 to 6.

F.1 Unordered vs. ordered subgraphs

We specified k-OSANs using ordered k-vertex subgraphs G[v] with v ∈ V (G)k. The order information
is encoded in G[v] by means of the vertex labels in [k] of the vertices in v. In the unordered case, we
would simply consider G[v] without any labels. That is, k-OSANs using ordered k-vertex subgraphs can
simulate any k-OSAN using unordered k-vertex subgraphs.

As an example of how ordered k-vertex subgraphs can be used, consider v = (v1, v2, v2, v3) ∈ V (G)4

and assume that the vertices v1, v2 and v3 form a 3-clique in G. In the ordered case G[v] is simply the
3-clique, in the ordered case, G[v] is the 3-clique in which v1 is labeled with 1, v2 with 2 and 3, and v3
with 3. Suppose we want to use the selected subgraph to simulate edge deletions. Then, in the unordered
case one cannot distinguish between the different edges in the 3-clique, and hence they will be all treated as
deleted. In contrast, in the ordered case we can, e.g., only delete edges with end points labeled 1 and 2, and
2 and 3, leaving the edge labeled 1 and 3 intact.

F.2 Proofs

In the following, we show that k-OSANs capture most recently proposed subgraph-enhanced GNNs,
implying Propositions 4 to 6.

Marked GNNs, dropout GNNs and reconstruction GNNs Dropout GNNs [Papp et al., 2021] generate
vertex embeddings by running classical MPNNs on k-vertex deleted subgraphs and then aggregating
the obtained embeddings. Dropout GNNs were generalized to Marked GNNs (k-mGNNs) [Papp and
Wattenhofer, 2022] in which the k vertices are just marked, in contrast to always being deleted. For
efficiency reasons, a random strategy is used to select the k vertices to be marked or deleted [Papp et al.,
2021, Papp and Wattenhofer, 2022].

Here, we consider the deterministic variant of k-mGNNs in which all possible sets of k vertices are
considered to be marked (as this provides the maximum distinguishing power) as is also used in Cotta et al.
[2021] in the context of reconstruction GNNs. The marking process in k-mGNNs naturally relates to the
selection of unordered k-vertex subgraphs, as we will illustrate.

33

Let G be a graph and let M ⊆ V (G), with |M | = k, be a set of k marked vertices. Let NM
G (v) :=

NG(v) ∩M be the set of marked neighbors of v. As described in Papp and Wattenhofer [2022], when
running an MPNN on a graph with k marked vertices M , features are computed in layer i ≥ 0 as

h(i+1)
v := AGG

(i+1)
marked

(
{{h(i)

u | u ∈ NM
G (v)}}

)
+AGG

(i+1)
unmarked

(
{{h(i)

u | u ∈ NG(v)\NM
G (v)}}

)
. (12)

In other words, during neighbor aggregation, MPNNs can distinguish between marked and unmarked
neighbors. Furthermore, for k-mGNNs one first obtains vertex features for all markings M , which are
subsequently aggregated into a single vertex feature. Finally, these vertex features are aggregated to obtain
a single graph feature.

Inspecting Equation (12), we see that we can replace the two aggregation functions by one aggregation
function provided that h(i)

u contains information indicating whether or not u is marked. In other words, we
can replace Equation (12) by

h(i+1)
v := AGG(i+1)

(
{{(h(i)

u ,1u∈M) | u ∈ NG(v)}}
)
,

for a given set M of markings. We use this observation for casting k-mGNNs as k-OSANs. Indeed, each
marking M corresponds to an ordered k-vertex subgraph g ∈ Gk. Furthermore, we set the update function
in h

(0)
v,g := UPD(atp(v, t(g))) such that it returns the label l(v) of v and the indicator function 1v∈g.

We ensure that all update functions propagate the indicator function to the next layers such that aggregation
functions have this information at their disposal in every layer. As mentioned, this suffices to perform the
aggregation carried out by k-mGNNs. Moreover, all possible markings are considered in k-mGNNs.
Hence, the k-OSAN will select all possible k-vertex graphs as well. We will capture this by setting
πππv,g = 1 below.

More precisely, the following k-OSAN correspond to k-mGNNs:

h(0)
v,g = (l(v),1v∈g)

πππv,g = 1

h(i+1)
v,g = UPD(i+1)

(
h(i)
v,g,AGG

(i+1)
(
{{h(i)

u,g | u ∈ NG(v)}}
))

h(T)
v = SAGG

(
{{h(T)

v,g | g ∈ Gk s.t. πππv,g ̸= 0}}
)
= SAGG

(
{{h(T)

v,g | g ∈ Gk}}
)

hG = AGG
(
{{h(T)

v | v ∈ V (G)}}
)
,

where the aggregation functions AGG(i+1) are those from the marked GNN under consideration, and the
update functions are such that they propagate the indicator function 1v∈g to the next iteration, as explained
before. Finally, hG is obtained by aggregating over vertex embeddings, which in turn are defined in terms
of aggregating over vertex embedding h

(T)
v,g for g ∈ Gk. This is in accordance with how marked GNNs

operate.

We also note that k-mGNNs in Papp and Wattenhofer [2022] are guaranteed to be stronger than MPNNs
because they run a classical MPNN alongside. This is not shown in the k-OSAN description given above
as any architecture can be made at least as strong as MPNNs in this way.

We next consider k-reconstruction GNNs (k-recGNNs) [Cotta et al., 2021] which for each set S of k
vertices, compute a vectorial representation (using an MPNN) of G[S], then concatenate all the obtained
representations (for all S), followed by the application of a permutation invariant update function to obtain
a graph representation. The difference with marked GNN is thus that the order of aggregation is different.
And indeed, k-recGNNs are captured by vertex-subgraph k-OSANs, as we will see shortly.

Clearly, the S of k vertices and, more specifically, G[S] corresponds to a vertex-ordered subgraph g ∈ Gk.
Then, in order to compute a representation of G[S] using g, we proceed as follows: We run an MPNN on
G[S] by ensuring that the update and aggregation functions in the vertex-subgraph k-OSANs know
which vertices belong to g (i.e., G[S]). This is done in the same way as for k-mGNNs by including this
information in the initial features. In contrast to k-mGNNs, we perform vertex aggregation for each g to
obtain a representation of g (G[S]). Then, we aggregate over all g (i.e., all S and thus G[S]) using
concatenation as an aggregation function, and finally apply an update function, following how k-recGNNs
operate. We have thus shown the following.
Proposition 28 (Proposition 4 in the main text). For k ≥ 1, k-OSANs capture k-mGNNs and vertex-
subgraph k-OSANs capture k-recGNNs.

34

Our results on expressive power of k-OSANs now imply that these architectures are bounded by (and are
strictly weaker than) (k + 1)-WL.

Identity-aware GNNs We next consider identity-aware GNNs (idGNNs) [You et al., 2021], an extension
of MPNNs in which message functions can differentiate whether the vertices visited are equal or different
from a given center vertex and vertex exploration only happens inside the h-hop egonet of the center
vertices.

More specifically, let us denote by Nh
G(v) the set of h-hop neighbors of the “center” vertex v. Then, for

each v ∈ V (G), idGNNs compute vertex features of u ∈ Nh
G(v) in layer i > 0 as

h(i+1)
u,v := UPD(i+1)

(
h(i)
u,v,AGG

(i+1)({{(hw,v,1w=v) | w ∈ NG(u) ∩Nh
G(v)}})

)
and then after layer h, one lets hv := h

(h)
v,v and hG := AGG({{hv | v ∈ V (G)}}). In other words, vertex

features are computed by means of a local message passing neural network, centered around each vertex, in
which the aggregation functions can distinguish between the center and other vertices.

We next show how to model idGNNs as 1-OSANs. We first observe that 1-OSANs can extract information
related to h-hop distance neighbors. More precisely, let g ∈ G1 = V (G) be a single-vertex subgraph. We
first compute the function µ

(i)
u,g for 0 ≤ i ≤ h, indicating if the vertex u ∈ N i

G(g). We can compute µ(i)
u,g

using i 1-OSANs layers as follows:

µ(0)
u,g = UPD(0)

(
atp(u, g)

)
= 1u=g

µ(i+1)
u,g = UPD(i+1)

(
µ(i)
u,g,AGG

(i+1)
(
{{µ(i)

w,g | w ∈ NG(u)}}
))

,

where the update and aggregation functions are such that µ(i+1)
u,g = 1 if and only if µ(i)

u,g = 1 or there exists
a w ∈ NG(u) with µ

(i)
w,g = 1. We will use these layers for computing the indicator function 1u∈Nh

G(g) in
other architectures below.

We can now model idGNNs as 1-OSANs, as follows. We let the center vertices correspond to 1-vertex
subgraphs g ∈ V (G), and ensure that the initial features h(0)

v,g carry around 1v=g and µ(h)
v,g (i.e., 1v∈Nh

G(g)).
As before, we assume that all update functions propagate this information to the next layer such that
aggregation functions can take into account whether or not a vertex is equal g or lies in Nh

G(g).

In contrast to 1-mGNNs and 1-recGNNs, where πππv,g did not restrict the subgraphs, idGNNs obtain vertex
features for v only using the subgraph g = v (recall hv := h

(h)
v,v)). Hence, we will impose that πππv,g = 1

iff v = g. More specifically, idGNNs correspond to 1-OSANs of the form:

h(0)
v,g = (l(v),1v=g, µ

(h)
v,g)

πππv,g = UPD(atp(v, g)) = 1v=g

h(i+1)
v,g = UPD(i+1)

(
h(i)
v,g,AGG

(i+1)
(
{{h(i)

u,g | u ∈ NG(v)}}
))

hv = SAGG
(
{{h(h)

v,g | g ∈ G1 s.t. πππv,g ̸= 0}}) = SAGG
(
{{h(h)

v,v}}
)

hG = AGG
(
hv | v ∈ V (G)

)
,

where AGG(i+1) only takes into account those u ∈ NG(v) ∩Nh
G(g) (using µ

(h)
u,g = 1) and also uses the

availability of 1u=g to simulate the aggregation function used in idGNNs. The definitions of hv and hG

are as in the description of idGNNs given earlier.

You et al. [2021] showed that idGNNs can distinguish more graphs than 1-WL based on the counting of
cycles. By viewing idGNNs as 1-OSANs our results provide an upper bound by 2-WL for idGNNs. This
is consistent with their ability to count cycles, as this can be done in 2-WL.

Although not considered in You et al. [2021], one could extend idGNNs to k-idGNNs by allowing
checking for identity with vertices on a previously explored path of length k − 1, as follows:

h(0)
v,g = (l(v),1v∈g, µ

(h)
v,g1)

πππv,g = UPD(atp(v,g)) =

{
1 if v = g1, g2, . . . , gk from a path in G

0 otherwise

35

h(i+1)
v,g = UPD(i+1)

(
h(i)
v,g,AGG

(i+1)
(
{{h(i)

u,g) | u ∈ NG(v)}}
))

hv = SAGG
(
{{h(h)

v,g | g ∈ Gk s.t. πππv,g ̸= 0}}
)

= SAGG
(
{{hv,g | g is a walk in G of length k starting from v}}

)
hG = AGG

(
{{hv | v ∈ V (G)}}

)
Our results show that such k-idGNNs are bounded by (k + 1)-WL in expressive power. It is also readily
verified that k-idGNNs for k > 1 can detect more complex substructures than cycles.

Nested GNNs We next consider Nested GNNs (nestedGNNs) [Zhang and Li, 2021] that obtain vertex
embeddings based on the aggregation over vertex embeddings in the h-hop egonets. In their notation, Gh

w

denotes the subgraph in G, rooted at w of “height” h. Then, for any vertex v ∈ V (Gh
w) they compute:

h
(i+1)

v,Gh
w
= UPD

(i+1)
1

(
h
(i)

v,Gh
w
,

∑
u∈N(v|Gh

w)

UPD
(i+1)
2

(
h
(i)

u,Gh
w

))
where N(v | Gh

w) is the set of neighbors of v within Gh
w. Pooling happens after layer T :

hw = AGG({{h(T)

v,Gh
w
| v ∈ V (Gh

w)}})

and then hG = AGG({{hv | v ∈ V (G)}}).
We can formulate nestedGNNs as 1-OSANs as follows. Similarly as for idGNNs, the center vertices
correspond to 1-vertex subgraphs g and we again include the information µ

(h)
v,g as initial feature in order to

aggregate over vertices in Nh
G(g), i.e., those in Gh

g . We assume that the update function propagate this
information to higher layers, as before. As aggregation functions AGG(i+1), we use summation but only
over those features for which the µ(h)

u,g component is 1 and in this way simulate the aggregation step used in
nestedGNNs. More specifically, we have:

h(0)
v,g = (l(v), µ(h)

v,g) (13)

πππv,g = UPD(atp(v, g)) = 1v=g (14)

h(i+1)
v,g = UPD(i)

(
h(i)
v,g,AGG

(i+1)
(
{{h(i)

u,g | u ∈ NG(v)}}
))

, (15)

which similar as to how idGNNs, viewed as 1-OSANs, operate. The main difference with idGNNs is how
vertex features are computed. Indeed, nestedGNNs assign to vertex v the representation of Gh

v . We
use AGG(T+1) to aggregate over all vertices u in Gh

g by leveraging µ
(h)
u,g . More precisely, instead of

aggregating over neighbors we aggregate over the entire vertex set but ensure that AGG(T+1) only takes
into account those vertices in Nh

G(g) using µ
(h)
u,g:

hv,g = AGG(T+1)
(
{{h(T)

u,g | w ∈ V (G)}}
)

hv = SAGG
(
{{hv,g | g ∈ G1 s.t. πππv,g ̸= 0}}

)
= SAGG

(
{{hv,v}}

)
(16)

hG = AGG
(
{{hv | v ∈ V (G)}}

)
, (17)

where the final steps are in place to create a graph representation in accordance with how nestedGNNs
operate.

Zhang and Li [2021] observe that nestedGNNs are more powerful than 1-WL and raise the question
whether nestedGNNs can be more powerful than 2-WL. By viewing nestedGNNs as 1-OSANs, our
general results about expressive power, show that nestedGNNs are bounded by 2-WL in expressive power.
Moreover, Zhang and Li [2021] allude to deeper nested GNNs in their paper. It seems natural to conjecture
that these can be cast as k-OSANs when k levels of nesting are used. We leave the verification of this
conjecture for future work.

GNN As Kernel Very related to nestedGNNs are GNN as kernel (kernelGNNs) [Zhao et al., 2021].
Indeed, the only difference is that once the hv are defined for v ∈ V (G) in Equation (16), kernelGNNs
restart the message passing over egonets (Equation (13)-Equation (15)), but this time with the initial
features h(0)

v,g replaced by (hv, µ
(h)
v,g). This is then repeated a number of times, after which a graph

representation is obtained, just as for nestedGNNs (Equation (17)). It is now readily verified that we can
express kernelGNNs as 1-OSANs in the same as we showed for nestedGNNs.

36

Proposition 29 (Proposition 5 in the main text). The 1-OSANs capture idGNNs, kernelGNNs, and
nestedGNNs.

Proof. The result follows from the above equations.

We note again that our results show that idGNNs, kernelGNNs and nestedGNNs are all bounded in
expressive power by 2-WL, yet are less expressive than 2-WL.

DS-GNN with the k-vertex-deleted policy In the following, we define an instance of a vertex-subgraph
k-OSAN which captures DS-GNNs with the k-vertex-deleted policy [Bevilacqua et al., 2021]. In a
nutshell, DS-GNNs generate MPNN-based representations of a collection of subgraphs and then aggregate
those to obtain a representation of the original graph. In general, a policy is in place in DS-GNNs to select
the subgraphs. Here, we consider the k-vertex-deleted policy in which all k-vertex deleted subgraphs S are
considered. The deletion of k-vertices used to obtain a subgraph S will be simulated by considering
k-vertex subgraphs g and by treating the vertices in g to be marked. In other words, DS-GNNs act like a
k-mGNNs except that graph representations are obtained by aggregating subgraph representations. More
specifically:

h(0)
v,g = (l(v),1v∈g)

πππv,g = 1

h(i+1)
v,g = UPD(i+1)

(
h(i)
v,g,AGG

(i+1)
(
{{h(i)

u,g | u ∈ NG(v)}}
))

hg = AGG
(
{{h(T)

v,g | v ∈ V (G)}}
)

hG = SAGG
(
{{hg | g ∈ Gk,∃v ∈ V (G)πππv,g ̸= 0}}

)
= SAGG

(
{{hg | g ∈ Gk}}

)
,

where update functions propagate 1v∈g and aggregation functions treat vertices in g as marked (or to be
deleted).
Proposition 30 (Proposition 6 in the main text). Vertex-subgraph k-OSANs capture DS-GNNs with the
k-vertex-deleted policy.

Proof sketch. We argue that the above k-OSAN instance can simulate DS-WL [Bevilacqua et al., 2021]
which upper bounds any possible DS-WL in terms of distinguishing non-isomorphic graphs.

As noted by Papp and Wattenhofer [2022], see also above paragraph on k-mGNNs, marking vertices is
at least as powerful as removing them. The markings enable the aggregation function to distinguish
between deleted and non-deleted vertices. By choosing injective instances of UPD and AGG, we can
simulate the coloring function c

(i)
v,g, for i ≥ 0, of the DS-WL. That is, if h(i)

v,g = h
(i)
w,g holds, it follows

that c(i)v,g = c
(i)
w,g for all vertices v and w of a given graph G and g ∈ Gk holds. The existence of such

instances follows directly from the proof of Theorem 2 in [Morris et al., 2019]. Similarly, by choosing
injective instances of SAGG and AGG for computing the single graph feature, the resulting architecture has
at least the same expressive power as the DS-WL in distinguishing non-isomorphic graphs. The reasoning
is analogous to the proof Lemma 19. Hence, the resulting architecture has at least the expressive power of
DS-WL, implying the result.

Bevilacqua et al. [2021] also consider the 1-edge-deleted policy in which the subgraphs S considered
are those obtained by deleting a single edge. The deletion of an edge can be simulated by marking
two vertices, which can be simulated using message and update functions having access to 2-vertex
subgraphs g ∈ G2. Hence, DS-GNNs with the 1-edge-deleted policy can be captured by vertex-subgraph
2-OSANs. As a consequence, such DS-GNNs are bounded in expressive power by 3-WL. Combined with
the discussion in Appendix F.1 it should be clear that DS-GNNs with k-edge-deleted policy can be
captured by vertex-subgraph 2k-OSANs. As argued in Appendix F.1 the use of ordered graphs is crucial to
simulate multiple edge deletions. Finally, Bevilacqua et al. [2021] also consider two variants of k-hop
ego-net policies. In the first, the subgraphs S consist of all k-hop ego-net subgraphs, one for each vertex in
the graph. In the second variant, equality with the center vertex in each ego-net can be checked. It should
be clear from our treatment of nestedGNNs and kernelGNNs that the ego-net extraction can be simulated
in vertex-subgraph 1-OSANs and that the distinction between two variants pours down to include 1v=g as
an initial feature (just as for idGNNs). Hence DS-GNNs with ego-net policies are bounded by 2-WL.

37

