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Abstract

Numerous subgraph-enhanced graph neural networks (GNNs) have emerged recently,
provably boosting the expressive power of standard (message-passing) GNNs. However,
there is a limited understanding of how these approaches relate to each other and to the
Weisfeiler–Leman hierarchy. Moreover, current approaches either use all subgraphs of a
given size, sample them uniformly at random, or use hand-crafted heuristics instead of
learning to select subgraphs in a data-driven manner. Here, we offer a unified way to
study such architectures by introducing a theoretical framework and extending the
known expressivity results of subgraph-enhanced GNNs. Concretely, we show that
increasing subgraph size always increases the expressive power and develop a better
understanding of their limitations by relating them to the established k-WL hierarchy.
In addition, we explore different approaches for learning to sample subgraphs using
recent methods for backpropagating through complex discrete probability distributions.
Empirically, we study the predictive performance of different subgraph-enhanced GNNs,
showing that our data-driven architectures increase prediction accuracy on standard
benchmark datasets compared to non-data-driven subgraph-enhanced graph neural
networks while reducing computation time.

1 Introduction

Graph-structured data are ubiquitous across application domains ranging from chemo- and bioinformat-
ics [Barabasi and Oltvai, 2004, Jumper et al., 2021, Stokes et al., 2020] to image [Simonovsky and
Komodakis, 2017] and social-network analysis [Easley and Kleinberg, 2010]. Numerous approaches for
graph–based machine learning have been proposed, most notably those based on graph kernels [Borgwardt
et al., 2020, Kriege et al., 2020] or using graph neural networks (GNNs) [Chami et al., 2020, Gilmer et al.,
2017, Morris et al., 2021]. Here, graph kernels based on the 1-dimensional Weisfeiler–Leman algorithm
(1-WL) [Weisfeiler and Leman, 1968], a simple heuristic for the graph isomorphism problem, and
corresponding GNNs [Morris et al., 2019, Xu et al., 2019], have recently advanced the state-of-the-art in
supervised vertex- and graph-level learning. However, the 1-WL and GNNs operate via local neighborhood
aggregation, missing crucial patterns in the given data while more expressive architectures based on the
k-dimensional Weisfeiler–Leman algorithm (k-WL) [Azizian and Lelarge, 2020, Maron et al., 2019, Morris
et al., 2020b, 2021, 2022] may not scale to larger graphs.
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Hence, several approaches such as Bevilacqua et al. [2021], Cotta et al. [2021], Li et al. [2020], Papp et al.
[2021], Thiede et al. [2021], You et al. [2021] and Zhao et al. [2021] have enhanced the expressive power of
GNNs, by removing, extracting, or marking (small) subgraphs, so as to allow GNNs to leverage more
structural patterns within the given graph, essentially breaking symmetries induced by the GNNs’ local
aggregation function. We henceforth refer to these approaches as subgraph-enhanced GNNs.

Present work First, to bring some order to the multitude of recently proposed subgraph-enhanced GNNs,
we introduce a theoretical framework to study these approaches’ expressive power in a unified setting.
Concretely,

• we introduce k-ordered subgraph aggregation networks (k-OSANs) and show that they capture
most of the recently proposed subgraph-enhanced GNNs.

• We show that any k-OSAN is upper bounded by (k + 1)-WL in terms of expressive power and
show that k-OSANs and k-WL are incomparable in terms of expressive power. Consequently, we
obtain new upper bounds on the expressive power of recently proposed subgraph-enhanced GNNs.

• We show that increasing k, i.e., using larger subgraphs, always leads to an increase in expressive
power, effectively showing that k-OSANs form a hierarchy.

Second, most approaches consider all subgraphs or use hand-crafted heuristics to select them, e.g., by
deleting vertices or edges. Instead, we leverage recent progress in back-propagating through discrete
structures using perturbation-based differentiation [Domke, 2010, Niepert et al., 2021] to sample subgraphs
in a data-driven fashion, automatically adapting to the given data distribution. Concretely,

• we explore different strategies to sample subgraphs leveraging the I-MLE framework [Niepert
et al., 2021], resulting in the data-driven k-OSAN architecture.

• We show, empirically, that data-driven k-OSANs increase prediction accuracy on standard
benchmark datasets compared to non-data-driven subgraph-enhanced GNNs while vastly reducing
computation time.

1.1 Related work

In the following, we discuss related work relevant to the present work; see Appendix A for an extended
discussion.

GNNs Recently, GNNs [Gilmer et al., 2017, Scarselli et al., 2009] emerged as the most prominent
graph representation learning architecture. Notable instances of this architecture include, e.g., Duvenaud
et al. [2015], Hamilton et al. [2017] and Veličković et al. [2018], which can be subsumed under the
message-passing framework introduced in Gilmer et al. [2017]. In parallel, approaches based on spectral
information were introduced in, e.g., Defferrard et al. [2016], Bruna et al. [2014], Kipf and Welling [2017]
and Monti et al. [2017]—all of which descend from early work in Baskin et al. [1997], Kireev [1995],
Micheli and Sestito [2005], Merkwirth and Lengauer [2005], Micheli [2009], Scarselli et al. [2009]
and Sperduti and Starita [1997].

Limits of GNNs and more expressive architectures Recently, connections between GNNs and
Weisfeiler–Leman type algorithms have been shown [Azizian and Lelarge, 2020, Barceló et al., 2020, Chen
et al., 2019b, Geerts et al., 2020, Geerts, 2020, Geerts and Reutter, 2022, Maehara and NT, 2019, Maron
et al., 2019, Morris et al., 2019, 2022, Xu et al., 2019]. Specifically, Morris et al. [2019] and Xu et al.
[2019] showed that the expressive power of any possible GNN architecture is limited by the 1-WL in terms
of distinguishing non-isomorphic graphs.

Recent works have extended the expressive power of GNNs, e.g., by encoding vertex identifiers [Murphy
et al., 2019, Vignac et al., 2020], using random features [Abboud et al., 2020, Dasoulas et al., 2020, Sato
et al., 2020], homomorphism and subgraph counts [Barceló et al., 2021, Bouritsas et al., 2020, NT and
Maehara, 2020], spectral information [Balcilar et al., 2021], simplicial and cellular complexes [Bodnar
et al., 2021b,a], persistent homology [Horn et al., 2021], random walks [Tönshoff et al., 2021], graph
decompositions [Talak et al., 2021], or distance [Li et al., 2020] and directional information [Beaini et al.,
2020]. See Morris et al. [2021] for an in-depth survey on this topic.

Subgraph-enhanced GNNs Most relevant to the present work are subgraph-enhanced GNNs. Cotta et al.
[2021] and Papp et al. [2021] showed how to make GNNs more expressive by removing one or more
vertices from a given graph and using standard GNN architectures to learn vectorial representations of the
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resulting subgraphs. The approaches either consider all possible subgraphs or utilize random sampling to
arrive at more scalable architectures. Cotta et al. [2021] showed that by removing one or two vertices,
such architectures can distinguish graphs the 1-WL and 2-WL, respectively, are not able to distinguish.
Extensions and refinements of the above were proposed in Bevilacqua et al. [2021], Papp and Wattenhofer
[2022], Thiede et al. [2021], You et al. [2021], Zhang and Li [2021] and Zhao et al. [2021], see Papp and
Wattenhofer [2022] for an overview. For example, Bevilacqua et al. [2021] generalized several ideas
discussed above and proposed the ESAN framework in which each graph is represented as a multiset of its
subgraphs and processed them using an equivariant architecture based on the DSS architecture [Maron
et al., 2020] and GNNs. The authors proposed several simple subgraph selection policies, e.g., edge
removal, ego networks, or vertex removal, and showed that the architecture surpasses the expressive power
of the 1-WL. Moreover, Frasca et al. [2022] presented a novel symmetry analysis unifying a series of
subgraph-enhanced GNNs, allowing them to upper-bound their expressive power and to define a systematic
framework to conceive novel architectures in this family. We note here that the above works, unlike the
present one, mostly do not study the approaches’ expressive power beyond (folklore or non-oblivious)
2-WL and do not compare at all to the (folklore or non-oblivious) 3-WL, while our analysis works for the
whole k-WL hierarchy.

See Appendix A for a detailed overview of recent progress in differentiating through discrete structures.

2 Preliminaries

As usual, for n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use {{. . . }} to denote multisets, i.e., the generalization
of sets allowing for multiple instances of each of its elements.

A graph G is a pair (V (G), E(G)) with finite sets of vertices V (G) and edges E(G) ⊆ {{u, v} ⊆
V (G) | u ̸= v}. If not otherwise stated, we set n := |V (G)|. For ease of notation, we denote the edge
{u, v} in E(G) by (u, v) or (v, u). In the case of directed graphs, E ⊆ {(u, v) ∈ V × V | u ̸= v}.
A labeled graph G is a triple (V,E, l) with (vertex) coloring or label function l : V (G) → N. Then
l(v) is a label of v for v in V (G). The neighborhood of v in G is denoted by NG(v) := {u ∈ V (G) |
{v, u} ∈ E(G)} and the degree of a vertex v is |NG(v)|. For S ⊆ V (G), the graph G[S] = (S,ES) is
the subgraph induced by S, where ES := {(u, v) ∈ E(G) | u, v ∈ S}.

Two graphs G and H are isomorphic and we write G ≃ H if there exists a bijection φ : V (G) → V (H)
that preserves the adjacency relation, i.e., (u, v) is in E(G) if and only if (φ(u), φ(v)) is in E(H). Then
φ is an isomorphism between G and H . Moreover, we call the equivalence classes induced by the relation ≃
isomorphism types. In the case of labeled graphs, we additionally require that l(v) = l(φ(v)) for v in V (G).
We further define the atomic type atp : V (G)k → N such that atp(v) = atp(w) for v,w ∈ V (G)k if
and only if the mapping φ : V (G)k → V (G)k where vi 7→ wi induces a partial isomorphism, i.e., we
have vi = vj ⇐⇒ wi = wj and (vi, vj) ∈ E(G) ⇐⇒ (φ(vi), φ(vj)) ∈ E(G). Let v be a tuple in
V (G)k for k > 0, then G[v] is the ordered k-vertex subgraph induced by the multiset of elements of v,
where the vertices are labeled with integers from [k] corresponding to their positions in v. Moreover, let
t(G[v]) := v, i.e., the k-tuple v underlying the ordered k-vertex subgraph G[v]. We denote the set of all
ordered k-vertex subgraphs of a graph G by Gk. Finally, let G be the set of all vertex-labeled graphs.

The 1-WL and the k-WL The 1-WL or color refinement is a simple heuristic for the graph isomorphism
problem, originally proposed by Weisfeiler and Leman [1968].2 Intuitively, the algorithm determines if two
graphs are non-isomorphic by iteratively coloring or labeling vertices. Given an initial coloring or labeling
of the vertices of both graphs, e.g., their degree or application-specific information, in each iteration, two
vertices with the same label get different labels if the number of identically labeled neighbors is not equal.
If, after some iteration, the number of vertices annotated with a specific label is different in both graphs, the
algorithm terminates and a stable coloring (partition) is obtained. We can then conclude that the two graphs
are not isomorphic. It is easy to see that the algorithm cannot distinguish all non-isomorphic graphs [Cai
et al., 1992]. Nonetheless, it is a powerful heuristic that can successfully test isomorphism for a broad class
of graphs [Babai and Kucera, 1979].

Formally, let G = (V,E, l) be a labeled graph. In each iteration, i > 0, the 1-WL computes a vertex
coloring C1

i : V (G) → N, which depends on the coloring of the neighbors. That is, in iteration i > 0, we

2Strictly speaking, the 1-WL and color refinement are two different algorithms. That is, the 1-WL considers
neighbors and non-neighbors to update the coloring, resulting in a slightly higher expressive power when distinguishing
vertices in a given graph, see Grohe [2021] for details. For brevity, we consider both algorithms to be equivalent.
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set

C1
i (v) := RELABEL

((
C1

i−1(v), {{C1
i−1(u) | u ∈ NG(v)}}

))
,

where RELABEL injectively maps the above pair to a unique natural number, which has not been used in
previous iterations. In iteration 0, the coloring C1

0 := l. To test if two graphs G and H are non-isomorphic,
we run the above algorithm in “parallel” on both graphs. If the two graphs have a different number of
vertices colored c in N at some iteration, the 1-WL distinguishes the graphs as non-isomorphic. Moreover,
if the number of colors between two iterations, i and (i+ 1), does not change, i.e., the cardinalities of the
images of C1

i and C1
i+1 are equal, the algorithm terminates. For such i, we define the stable coloring

C1
∞(v) = C1

i (v) for v in V (G). The stable coloring is reached after at most max{|V (G)|, |V (H)|}
iterations [Grohe, 2017].

Due to the shortcomings of the 1-WL or color refinement in distinguishing non-isomorphic graphs, several
researchers [Babai, 1979, 2016, Immerman and Lander, 1990], devised a more powerful generalization of
the former, today known as the k-dimensional Weisfeiler-Leman algorithm (k-WL); see Appendix B for a
detailed description.

Graph Neural Networks Intuitively, GNNs learn a vectorial representation, i.e., a d-dimensional vector,
representing each vertex in a graph by aggregating information from neighboring vertices. Formally, let
G = (V,E, l) be a labeled graph with initial vertex features h(0)

v ∈ Rd that are consistent with l. That is,
each vertex v is annotated with a feature h(0)

v ∈ Rd such that h(0)
u = h

(0)
v if l(u) = l(v), e.g., a one-hot

encoding of the labels l(u) and l(v). Alternatively, h(0)
v can be an arbitrary real-valued feature vector

or attribute of the vertex v, e.g., physical measurements in the case of chemical molecules. A GNN
architecture consists of a stack of neural network layers, i.e., a composition of parameterized functions.
Similarly to 1-WL, each layer aggregates local neighborhood information, i.e., the neighbors’ features,
around each vertex and then passes this aggregated information on to the next layer.

Following, Gilmer et al. [2017] and Scarselli et al. [2009], in each layer, i > 0, we compute vertex features

h(i+1)
v := UPD(i+1)

(
h(i)
v ,AGG(i+1)

(
{{h(i)

u | u ∈ NG(v)}}
))

∈ Rd,

where UPD(i+1) and AGG(i+1) may be differentiable parameterized functions, e.g., neural networks.3 In
the case of graph-level tasks, e.g., graph classification, one uses

hG := READOUT
(
{{h(T )

v | v ∈ V (G)}}
)
∈ Rd, (1)

to compute a single vectorial representation based on learned vertex features after iteration T . Again,
READOUT may be a differentiable parameterized function. To adapt the parameters of the above
three functions, they are optimized end-to-end, usually through a variant of stochastic gradient descent,
e.g., [Kingma and Ba, 2015], together with the parameters of a neural network used for classification or
regression.

The Weisfeiler–Leman hierarchy and permutation-invariant function approximation The Weisfeiler–
Leman hierarchy is a purely combinatorial algorithm for testing graph isomorphism. However, the
graph isomorphism function, mapping non-isomorphic graphs to different values, is the hardest to
approximate permutation-invariant function. Hence, the Weisfeiler–Leman hierarchy has strong ties to
GNNs’ capabilities to approximate permutation-invariant or equivariant functions over graphs. For
example, Morris et al. [2019], Xu et al. [2019] showed that the expressive power of any possible GNN
architecture is limited by 1-WL in terms of distinguishing non-isomorphic graphs. Azizian and Lelarge
[2020] refined these results by showing that if an architecture is capable of simulating k-WL and allows
the application of universal neural networks on vertex features, it will be able to approximate any
permutation-equivariant function below the expressive power of k-WL; see also Chen et al. [2019b].
Hence, if one shows that one architecture distinguishes more graphs than another, it follows that the
corresponding GNN can approximate more functions. These results were refined in Geerts and Reutter
[2022] for color refinement and taking into account the number of iterations of k-WL.

3Strictly speaking, Gilmer et al. [2017] consider a slightly more general setting in which vertex features are
computed by h

(i+1)
v := UPD(i+1)

(
h
(i)
v ,AGG(i+1)

(
{{(h(i)

v ,h
(i)
u , l(v, u)) | u ∈ NG(v)}}

))
.
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3 Ordered subgraph Weisfeiler–Leman and MPNNs

In the following, we introduce a variant of 1-WL, denoted k-ordered subgraph WL (k-OSWL). Essentially,
the k-OSWL labels or marks ordered subgraphs and then executes 1-WL on top of the marked graphs,
followed by an aggregation phase. Although unordered subgraphs are also possible, ordered ones lead to
more expressive architectures and also encompass the unordered case; see Appendix F.1 for a discussion.
To make the procedure permutation-invariant, we consider all possible ordered subgraphs. Based on the
ideas of k-OSWL, we then introduce k-OSANs, which can be seen as a neural variant of the former,
allowing us to analyze various subgraph-enhanced GNNs.

3.1 Ordered subgraph WL

We now describe the algorithm formally. Let G be a graph, and let g ∈ Gk be an ordered k-vertex
subgraph. Then k-OSWL computes a vertex coloring, similarly to 1-WL, with the main distinction that it
can use structural graph information related to the ordered subgraph G[(v, t(g))], where v is a vertex in
V (G).

More precisely, at each iteration i ≥ 0, k-OSWL computes a coloring Ci : V (G)×Gk → N where we
interpret elements (v,g) ∈ V (G)×Gk as a vertex v along with an ordered k-vertex subgraph. Given an
ordered k-vertex subgraph g ∈ Gk, initially, for i = 0, we set C0(v,g) := atp(v, t(g)), and for i > 0,
we set

Ci+1(v,g) := RELABEL
((
Ci(v,g), {{Ci(u,g) | u ∈ □}}

))
,

where □ is either NG(v) or V (G). We compute the stable partition analogously to 1-WL. Finally, to
compute a single color for a vertex v, we aggregate all ordered k-vertex subgraphs, i.e., we compute

C(v) := RELABEL
(
{{C∞(v,g) | g ∈ Gk}}

)
. (2)

In other words, one can regard the k-OSWL as running 1-WL in parallel over nk graphs, one for each
ordered k-vertex subgraph g ∈ Gk, followed by combining the colors of each vertex in all these graphs.
Furthermore, by restricting the number of considered subgraphs, the algorithm allows for more fine-grained
control over the trade-off between scalability and expressivity. Note that 0-OSWL is equal to 1-WL. We
also define a variation of the k-OSWL, denoted vertex-subgraph k-OSWL, which, unlike Equation (2), first
computes a color C(g) for each ordered k-vertex subgraph g by aggregating over vertices; see Appendix E
for details.

We remark that in contrast to k-WL, which has to update the coloring of all nk ordered k-vertex
subgraphs in a complicated manner, the computation of k-OSWL’s coloring relies on the simple and
easy-to-implement 1-WL. Furthermore, k-OSWL’s computation can be either done in parallel or
sequentially across all n vertices and nk graphs. Despite its simplicity, in Section 3.2, we will show that the
k-OSWL has high expressivity.

3.2 Ordered subgraph MPNNs

In the following, to study the expressivity of subgraph-enhanced GNNs, we introduce k-ordered subgraph
MPNNs (k-OSANs), which can be viewed as neural variants of the k-OSWL. At initialization, k-OSANs
learn two features for each element in Gk and each vertex v

h(0)
v,g := UPD(atp(v, t(g))) ∈ Rd, and πππv,g := UPDπππ(atp(v, t(g))),

where UPD and UPDπππ are differentiable, parameterized function, e.g., a neural network. Additional vertex
features can be concatenated to the first feature. We use the second feature πππv,g to select admissible
ordered subgraphs for the vertex v; see below. Now in each layer (i+ 1), we update the feature of a vertex
v with regard to the k-ordered subgraph g as

h(i+1)
v,g := UPD(i+1)

(
h(i)
v,g,AGG

(i+1)
(
{{h(i)

u,g | u ∈ □}}
))

,

where □ is either NG(v) or V (G). After T such layers, for each vertex v, we then learn a joint feature
over all k-ordered subgraphs, i.e., we apply subgraph aggregation

h(T )
v := SAGG

(
{{h(T )

v,g | g ∈ Gk s.t. πππv,g ̸= 0}}
)
. (3)
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Here, we leverage πππv,g ̸= 0 to select a subset of the set of k-ordered subgraphs. Finally, analogous to
GNNs, we use a READOUT layer to compute a single graph feature. Again, AGG(i+1), UPD(i+1),
READOUT, and SAGG are differentiable, parameterized functions, e.g., neural networks.

We also define a variation of k-OSANs, denoted vertex-subgraph k-OSANs, which, unlike Equation (3),
first compute a color for each ordered k-vertex subgraph; see Appendix E for details.

Expressive power of k-OSANs In the following, we study the expressive power of k-OSANs. The
first result shows that any possible k-OSAN has at most the expressive power of k-OSWL in terms of
distinguishing non-isomorphic graphs. Further, k-OSANs are in principle capable of reaching k-OSWL’s
expressive power. Hence, the k-OSWL upper bounds k-OSANs ability to represent permutation-invariant
functions.

Proposition 1. For all k ≥ 1, it holds that k-OSANs are upper bounded by k-OSWL in terms of
distinguishing non-isomorphic graphs. Further, there exists a k-OSAN instance that has exactly the same
expressive power as the k-OSWL.

The following result shows that any possible k-OSAN is upper-bounded by the (k+1)-WL in terms of dis-
tinguishing non-isomorphic graphs while the expressive power of k-OSANs and the k-WL are incomparable.
That is, there exist non-isomorphic graphs k-WL cannot distinguish while k-OSANs can and vice versa.

Proposition 2. For all k ≥ 1, it holds that (k + 1)-WL is stricly more expressive than k-OSANs and
there exist non-isomorphic graphs k-WL cannot distinguish while k-OSANs can and vice versa.

Finally, the following results shows that increasing the size of the subgraphs always leads to a strictly
more expressive k-OSANs.

Theorem 3. For all k ≥ 1, it holds that (k + 1)-OSANs is strictly more expressive than k-OSANs.

Subgraph-enhanced GNNs captured by k-OSANs To exemplify the power and generality of k-OSANs,
we show how k-OSANs cover most subgraph-enhanced GNNs; see Appendix F for a thorough overview.
We say that k-OSANs capture a subgraph-enhanced GNN G if there exists a k-OSAN instance that is at
least as expressive as G.

The first results shows that k-OSANs capture k-marked GNNs (k-mGNNs) [Papp and Wattenhofer, 2022]
and k-reconstruction GNNs (k-recGNNs) [Cotta et al., 2021]. For both approaches, the sets of k vertices
to be marked or deleted correspond to unordered k-vertex subgraphs. It then suffices to ensure that the
update and aggregation functions in the k-OSANs treat the vertices in the selected k-vertex subgraphs as
being marked or deleted.

Proposition 4. For k ≥ 1, k-OSANs capture k-mGNNs and vertex-subgraph k-OSANs capture
k-recGNNs.

Further, 1-OSANs capture identity-aware GNNs (idGNNs) [You et al., 2021], GNN As Kernel
(kernelGNNs) [Zhao et al., 2021], and nested GNNs (nestedGNNs) [Zhang and Li, 2021]. Intu-
itively, in these approaches GNNs are used locally around each vertex. It thus suffices to ensure that the
update and aggregation functions in the 1-OSANs use the selected single vertex subgraph to only pass
messages locally.

Proposition 5. 1-OSANs capture idGNNs, kernelGNNs, and nestedGNNs.

Finally, k-OSANs capture the DS-GNNs with the vertex-deleted policy [Bevilacqua et al., 2021].4

Proposition 6. Vertex-subgraph k-OSANs capture DS-GNNs with the k-vertex-deleted policy.

We note that the above result can be further extended to accommodate the edge-deleted and ego-networks
policy from Bevilacqua et al. [2021]; see Appendix F.

Importantly, by viewing existing subgraph-enhanced GNNs as k-OSANs we immediately gain insights into
their expressive power. Previous results primarily focused on showing more expressivity than 1-WL.

4We note here that it is an open question if vertex-subgraph k-OSANs also capture the more general
DSS-GNNs [Bevilacqua et al., 2021].
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4 Data-driven Subgraph-enhanced GNNs

In the above section, we thoroughly investigated the expressive power of subgraph-enhanced GNNs.
Specifically, we showed that they are strictly limited by the (k + 1)-WL and that they can distinguish
graphs which are not distinguishable by k-WL. As indicated by Proposition 1 and to reach maximal
expressive power, however, we need to consider all possible ordered subgraphs, resulting in an exponential
running time. Hence, in this section, we leverage the I-MLE framework [Niepert et al., 2021], to sample
ordered subgraphs in a data-driven fashion. We first address the problem of learning the parameters of a
probability distribution over ordered subgraphs using a GNN. Secondly, we show how to approximately
sample from this intractable distribution. Subsequently, these subgraphs are used within a k-OSAN to
compute a graph representation. Finally, we propose a gradient estimation scheme that allows us to use
backpropagation in the resulting discrete-continuous architecture.

Parameterizing probability distributions over subgraphs Contrary to existing approaches, which often
consider all possible subgraphs or sample a fraction of subgraphs uniformly at random, our method
maintains a probability distribution over (ordered) subgraphs. Let G be a graph where each vertex v has an
initial feature h(0)

v , which we stack row-wise over all vertices into the feature matrix H ∈ Rn×d. Further,
let hW1 : G × Rn×d → Rm×n be a permutation-equivariant function, e.g., a message-passing GNN,
parameterized by W1, called upstream model, mapping a graph G and its initial features H to a parameter
matrix

θ := hW1
(G,H) ∈ Rm×n.

Intuitively, each parameter θij is an unnormalized prior probability of vertex j being part of the ith
sampled subgraph of G. Let θi := (θi1, . . . , θin) for i ∈ [m]. We use these to parameterize m probability
distributions p(z;θi), for i ∈ [m], over vector encodings of ordered k-vertex subgraphs of G, i.e.,

p(z;θi) :=

{
exp (⟨z,θi⟩ −A(θi)) if z ∈ Z,
0 otherwise, (4)

where ⟨·, ·⟩ is the standard inner product and A(θi) is the log-partition function defined as A(θi) :=
log

(∑
z∈Z exp (⟨z,θi⟩)

)
. Furthermore, for a distribution over unordered k-vertex subgraphs, Z is the

set of all binary n-component vectors with exactly k non-zero entries indicating which vertices are part of a
subgraph of G. Hence, there is a bijection between Z and the set of unordered k-vertex subgraphs of G.
For a distribution over ordered k-vertex subgraphs, the set Z is the set of all vectors in [k]n with k
non-zero entries. For each non-zero entry zi for z ∈ Z it holds that zi = j if and only if vertex i has rank
k + 1− j in the ordered subgraph, encoding the position in the ordered graph. This encoding is required
for the gradient computation we perform later. For instance, in an ordered 5-vertex subgraph, if a node
has rank 1 but should have rank 5 to obtain a lower loss, then the gradient of the downstream loss is
proportional to 5− 1 = 4. Similarly, if a node i is not part of the ordered subgraph, that is, zi = 0 but
should be in position 1 of the ordered subgraph, then the gradient of a downstream loss is proportional to
0− 5. For any i, j ∈ [k] with i ̸= j we have that zi ̸= zj . Hence, again, there is a bijection between Z
and the set of ordered k-vertex subgraphs of G.

Efficient approximate sampling of subgraphs Computing the log-partition function and sampling exactly
from the probability distribution in Equation (4) is intractable for both ordered and unordered graphs. Since
it is tractable, however, to compute a configuration with a highest probability, a maximum a posteriori
(MAP) configuration z∗(θi), we can use perturb-and-MAP [Papandreou and Yuille, 2011, Niepert et al.,
2021] to sample approximately. For unordered graphs, determining the top-k values in θi suffices, while
for ordered graphs, we additionally require their rank. Therefore, the worst-case running time of computing
z∗(θi) for ordered graphs of size k is in O(n+ k log k). That is, we first use a selection algorithm to find
the kth largest element E in the list of weights, taking time O(n), e.g., using the Quickselect algorithm.
Now, we go through the list again and select all entries larger to E, taking time O(n). Finally, we sort the
k values.

Now, to use perturb-and-MAP to approximately sample the i-th ordered k-vertex subgraph gi from the
above probability distributions, we compute

gi := adj (z∗(θi + ϵi)) with ϵi ∼ ρ(ϵ),

where ρ(ϵ) is a noise distribution such as the Gumbel distribution and adj converts the above vector
encoding of the (ordered) subgraph to an n×n adjacency matrix as follows. The jth row or column encodes
the vertex of the ordered subgraph with rank j and its incident edges within the ordered subgraph. All other
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entries are set to 0, i.e., they are masked out. We therefore sample a multiset of (ordered) subgraphs
S := {{g1, ..., gm}} ⊆ Gk, which act as the input to a k-OSAN instance fW2 , called downstream model,
where πππv,g ̸= 0 for v ∈ V (G) if g ∈ S, to compute the target outputs

fW2(G,H, {{g1, ..., gm}}).

Backpropagating through the subgraph distribution Now that we have outlined a way to approximately
sample subgraphs, we still need to learn the parameters ω = (W1,W2) of the upstream and downstream
model. Hence, given a set of examples {(Gj ,Hj , ŷj)}Nj=1, we are concerned with finding approximate
solutions to minω 1/N

∑
j L(G,H, ŷj ;ω), where L is the expected training error

L(G,H, ŷj ;ω) := Egi∼p(z;θi) [ℓ (fW2
(G,H, {{g1, ..., gm}}) , ŷ)] , (5)

with θ := hW1(G,H) and ℓ : Y × Y → R+ is a point-wise loss function. The challenge of training a
model as defined in Equation (5) is to compute ∇θL(G,H, ŷj ;ω), i.e., the gradient with respect to
the parameters θ of the probability distribution for the expected loss. In this work, we utilize implicit
maximum likelihood learning, a recent framework that allows us to use algorithmic solvers of combinatorial
optimization problems as black-box components [Rolinek et al., 2020, Niepert et al., 2021]. A particular
instance of the framework uses implicit differentation via perturbation [Domke, 2010]. We derive the
gradient computation for a single ordered subgraph gi to simplify the notation. We compute the gradients
of the downstream loss with respect to parameters θi as

∇θi
L(G,H, ŷ;ω) ≈ Eϵi∼ρ(ϵ)

[
1/λ

(
z∗ (θi + ϵi)− z∗

(
θi + ϵi − λ∇̂

))]
,

where λ > 0 and ∇̂v , the approximated gradient for a single vertex v, is defined as

∇̂v := agg
(
{{
[
∇gi

ℓ (fW2 (G,H, {{gi}}))
]
v,w

| w ∈ NG(v)}}
)
,

with v ∈ V (G). Here, agg can be any aggregation function such as the element-wise sum or mean.
Hence, to approximate the gradients with respect to the parameter θiv , which corresponds to vertex v of the
input graph, we aggregate the gradients of the downstream loss with respect to all edges (v, w) incident to
vertex v in the original graph.

Hence, the above techniques allow us to efficiently learn to sample subgraphs, which are then fed into
a k-OSAN to learn a graph representation while optimizing the parameters of all components in an
end-to-end fashion.

5 Experimental evaluation

Here, we aim to empirically investigate the learning performance and efficiency of data-driven subgraph-
enhanced GNNs, instances of the k-OSAN framework, compared to non-data-driven ones. Specifically, we
aim to answer the following questions.

Q1 Do data-driven subgraph-enhanced GNNs exhibit better predictive performance than non-data-driven
ones?

Q2 Does the graph structure of the subgraphs sampled affect predictive performance?

Q3 Does data-driven sampling have an advantage in efficiency and predictive performance when used
within state-of-the-art subgraph-enhanced GNNs?

All experimental results are fully reproducible from the source code provided at https://github.com/
Spazierganger/OSAN.

Datasets To compare our data-driven, subgraph-enhanced GNNs to non-data-driven ones and standard
GNN baselines, we used the ALCHEMY [Chen et al., 2019a], the QM9 [Ramakrishnan et al., 2014, Wu
et al., 2018], OGBG-MOLESOL [Hu et al., 2020], and the ZINC [Dwivedi et al., 2020, Jin et al., 2017]
graph-level regression datasets; see Table 16 in Appendix C for dataset statistics and properties. In
addition, we used the EXP dataset [Abboud et al., 2020] to investigate the additional expressive power of
subgraph-enhanced GNNs over standard ones. Following Morris et al. [2020b], we opted not to use the
3D-coordinates of the ALCHEMY dataset to solely show the benefits of the data-driven subgraph-enhanced
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Table 1: Results on large-scale regression datasets, data-driven versus non-data-driven subgraph sampling.

(a) Results for the OGBG-MOLESOL dataset.

Method RSMSE ↓
Baseline 1.193 ±0.083

OPERAT. TYPE # # SUBG.
Random Delete Vertex 1 3 1.215 ±0.095

I-MLE 1.053 ±0.080

Random Delete Vertex 1 10 1.128 ±0.055

I-MLE 0.984 ±0.086

Random Delete Vertex 2 1 1.283 ±0.080

I-MLE 0.968 ±0.102

Random Delete Vertex 2 3 1.132 ±0.020

I-MLE 1.081 ±0.021

Random Delete Vertex 5 3 0.992 ±0.115

I-MLE 1.115 ±0.076

Random Delete Vertex 5 10 1.186 ±0.154

I-MLE 1.137 ±0.053

Random Select Vertex 10 1 1.128 ±0.022

I-MLE 1.099 ±0.099

Random Delete Edge 1 3 1.240 ±0.029

I-MLE 1.106 ±0.069

Random Delete Edge 1 10 1.152 ±0.046

I-MLE 1.056 ±0.071

Random Delete Edge 3 3 1.084 ±0.076

I-MLE 1.052 ±0.049

Random Delete Edge 3 10 1.099 ±0.071

I-MLE 1.077 ±0.079

Random Delete 2-Ego – 3 1.071 ±0.062

I-MLE 0.959 ±0.184

(b) Result for the ALCHEMY dataset.

Method MAE ↓
Baseline 11.12 ±0.69

OPERAT. TYPE # # SUBG.
Random Delete Vertex 1 3 13.26 ±0.41

I-MLE 8.78 ±0.28

Random Delete Vertex 1 10 12.11 ±0.21

I-MLE 8.87 ±0.12

Random Delete Vertex 2 3 12.66 ±0.28

I-MLE 9.01 ±0.27

Random Delete Vertex 5 3 10.29 ±0.30

I-MLE 9.22 ±0.06

Random Delete Edge 1 3 11.66 ±0.63

I-MLE 10.80 ±0.31

Random Delete Edge 2 3 10.79 ±0.64

I-MLE 10.56 ±0.44

Random Delete Edge 5 3 9.15 ±0.12

I-MLE 9.08 ±0.28

Random Select Vertex 5 3 11.48 ±0.60

I-MLE 9.22 ±0.14

Random Select Edge 5 3 8.99 ±0.24

I-MLE 8.95 ±0.29

Random Delete 1-Ego – 3 14.98 ±0.49

I-MLE 11.15 ±1.09

Random Select 5-Ego – 3 14.97 ±0.23

I-MLE 13.83 ±1.06

GNNs regarding graph structure. All datasets, excluding EXP and OGBG-MOLESOL, are available
from Morris et al. [2020a].5

Neural architectures and experimental protocol For all datasets and architectures, we used the
competitive GIN layers [Xu et al., 2019] for the baselines and the downstream models. For data with
(continuous) edge features, we used a 2-layer MLP to map them to the same number of components as
the vertex features and combined them using summation. We describe the upstream and downstream
models’ architecture used for each dataset in the following. We stress here that we always used the same
hyperparameters for the downstream model and the baselines.

Sampling subgraphs Since the number of unordered k-vertex subgraphs is considerably smaller than
the number of ordered k-vertex subgraphs, we opted to consider unordered k-vertex subgraphs; see
also Appendix F.1. Further, since vertex-subgraph k-OSANs, see Appendix E, are easier to implement
efficiently and are closer to DS-GNNs variant of ESAN [Bevilacqua et al., 2021], we opted to use them for
the empirical evaluation. In addition, we used a simple GNN architecture for the upstream model to
compute initial features for the subgraphs for ease of implementation. We experimented with selecting and
deleting a various number of vertices, edges, and subgraphs induced by k-hop neighborhoods (k-Ego) for
all datasets; see Appendix C for details.

Upstream models For all datasets and experiments, we used a GCN model [Kipf and Welling, 2017]
consisting of three GCN layers, with batch norm and ReLU activation after each layer. We set the hidden
dimensions to that of the downstream model one. The model either outputs the vertex or edge embeddings
according to the task. We computed edge embeddings based on the vertex features of the incident vertices
after the last layers and the edge attributes provided by the dataset.

When sampling multiple subgraphs with I-MLE, they tend to have similar structures. In other words,
I-MLE learns similar distributions in different channels of the neural network. This phenomenon is not in
our favor, as we need to cover the original full graph as much as possible. To mitigate this issue, we
propose an auxiliary loss for the diversity of subgraphs. We calculate the cosine similarity between the
selected vertex or edge masks of every two subgraphs and try to minimize the average similarity value. We
tune the weight for the auxiliary loss on the log scale, e.g., 0.1, 1, 10, and so on.

Downstream and baseline models See Appendix A for a detailed description of the architecture used for
the downstream and baseline models, and how we processed subgraphs. For processing the subgraphs, we
performed similar steps like ESAN. We first applied intra-subgraph aggregation for the vertices within each
subgraph and obtained graph embeddings for each subgraph. After that, we performed inter-subgraph mean

5https://chrsmrrs.github.io/datasets/
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pooling to obtain a single embedding vector for the original graph. It is worth noting that ESAN does not
exclude the vertices deleted during graph pooling but removes the adjacent edges of those nodes. In our
experiments, we masked out the deleted or unselected nodes.

See Appendix C for further details on the experiments.

5.1 Results and discussion

In the following, we answer the research questions Q1 to Q3.

A1 See Tables 1, 2a, 4 and 5 (in the appendix). On all five datasets, the subgraph-enhanced GNN models
based on I-MLE beat the random baseline, excluding edge sampling configurations on the ALCHEMY and
the QM9 dataset; see Tables 1b and 2a. For example, on the OGBG-MOLESOL the average gain over
the random baseline is over 11%. Similar improvements can be observed over the other four datasets.
Moreover, the results on the EXP dataset, see Appendix C, clearly indicate that the added expressivity of the
(data-driven) subgraph-enhanced GNNs translates into improved predictive performance. The data-driven
subgraph-enhanced GNNs improve the accuracy of the non-subgraph-enhanced GNN by almost 50% in all
configurations while improving over the random subgraph-enhanced GNN baseline by almost 6%. The
data-driven subgraph-enhanced GNNs also clearly improve over the (non-subgraph-enhanced) GNN
baseline on four out of five datasets.

A2 See Tables 1 and 2a (in the appendix). Deleting or selecting subgraphs leads to a clear boost in predictive
performance across datasets over the random baseline while also improving over the non-subgraph-enhanced
GNN baseline. Further, on all datasets, learning to delete or select k-hop neighborhood subgraphs
for k ∈ {2, 3} leads to a clear boost over the random as well as non-subgraph-enhanced baselines.
However, the number of deleted vertices seems to affect the predictive performance. For example, on the
OGBG-MOLESOL dataset, going from deleting one 2-vertex subgraph to one 10-vertex subgraph leads to a
drop in performance. Hence, the drop in performance of the latter is in contrast to our theoretical findings,
i.e., larger subgraphs lead to improved expressivity, indicating that more work should be done to understand
subgraph-enhanced GNNs’ generalization ability. Interestingly, deleting edges did not perform as well as
deleting vertices or other subgraphs. We speculate that a more powerful edge embedding method is needed
here, which computes edge features directly instead of learning them from vertex features.

A3 See Table 2b (in the appendix). The I-MLE-based ESAN severely speeds up the computation time.
That is, across all configurations, we achieve a significant speed-up. For some configurations, e.g., sampling
three vertices, the I-MLE based ESAN is more than 3.5 times faster than the non-data-driven ESAN while
taking about the same time as the simple random baseline. We stress here that the ESAN implementation
provided by Bevilacqua et al. [2021] precomputes subgraphs in a preprocessing step, which is not possible
when learning to sample subgraphs using ESAN. Regarding predictive performance, the I-MLE based
ESAN is slightly behind the non-data-driven one, although always better than the non-subgraph enhanced
GNN baseline; see Table 5 in Appendix C.

6 Conclusion

We introduced the k-OSAN framework to study the expressive power of recently introduced subgraph-
enhanced GNNs. We showed that any such architecture is strictly less powerful than the (k + 1)-WL while
being incomparable to the k-WL in representing permutation-invariant functions over graphs. Further, to
circumvent random or heuristic subgraph selection, we devised a data-driven variant of k-OSANs which
learn to select subgraph for a given data distribution. Empirically, we verified that such data-driven
subgraph selection is superior to previously used random sampling in predictive performance. Further,
when compared to state-of-the-art models, we showed promising performance in terms of computation time
while still providing good predictive performance. We believe that our paper provides a first step in
unifying combinatorial insights on the expressive power of GNNs with data-driven insights.
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