
A Proofs

Here we prove the propositions stated in Section 4.

A.1 Entropy Search

Proposition 1. If we choose A = P(⇥) and `(f, q) = � log q(✓f ), then the EHIG is equivalent to
the entropy search acquisition function, i.e. EHIGt(x; `, A) = ESt(x).

Proof of Proposition 1. We first prove that under our definition of loss `, the H`,A-entropy H[f | Dt]

is equivalent to the Shannon entropy of the posterior distribution over ✓f (where ✓f denotes a property
of f that we would like to infer—as an example, ✓f could be equal to the global maximizer x

⇤ of f ).

Note that the H`,A-entropy is the expected loss of the Bayes action

q
⇤

= arg infq2P(X )Ep(f |Dt) [� log q(✓f )] .

We want to show that q
⇤ defined above is equal to p(✓f | Dt). To do so, note that

q
⇤

= arg infq2P(X )Ep(f |Dt) [� log q(✓f |Dt)] (10)

= arg infq2P(X )Ep(✓f |Dt) [� log q(✓f |Dt)] (11)

= p(✓f |Dt), (12)

where the first equality holds since

EX [f(g(X))] = EZ [f(Z)], when Z = g(X), (13)

and the second equality holds since we can view Ep(✓f |Dt) [� log q(✓f |Dt)] as a cross entropy, which
is minimized when q(✓f |Dt) = p(✓f |Dt). Therefore, under this loss and action set, using the
definition of the EHIG we can write

EHIGt(x; `, A) = H [p(✓f | Dt)] � Ep(yx|Dt) [H [p(✓f | Dt [ {x, yx})]] = ESt(x). (14)

A.2 Knowledge Gradient

Proposition 2. If we choose A = X and `(f, x) = �f(x), then the EHIG is equivalent to the
knowledge gradient acquisition function, i.e. EHIGt(x; `, A) = KGt(x).

Proof of Proposition 2. The proof follows directly from the definition of H`,A-entropy and the EHIG,
namely

EHIGt(x) = inf
a2A

Ep(f |Dt) [`(f, a)] � Ep(yx|Dt)


inf
a2A

Ep(f |Dt[{(x,yx)}) [`(f, a)]

�
(15)

= inf
x02X

Ep(f |Dt) [�f(x
0
)] � Ep(yx|Dt)


inf

x02X
Ep(f |Dt[{(x,yx)}) [�f(x

0
)]

�
(16)

= � sup
x02X

Ep(f |Dt) [f(x
0
)] + Ep(yx|Dt)


sup
x02X

Ep(f |Dt[{(x,yx)}) [f(x
0
)]

�
(17)

= Ep(yx|Dt)

⇥
µ
⇤
t+1(x, yx)

⇤
� µ

⇤
t (18)

= KGt(x) (19)

A.3 Expected Improvement

Proposition 3. If we choose At = {xi}t�1
i=1 , where xi 2 Dt, and `(f, xi) = �f(xi), then the EHIG

is equal to the expected improvement acquisition function, i.e. EHIGt(x; `, A) = EIt(x).
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Proof of Proposition 3. The first term of EHIGt in Eq. (3) is equal to:

H`,At [f | Dt] = inf
a2At

Ep(f |Dt) [`(f, a)] = � max
it�1

f̂(xi) := �f
⇤
t (20)

where f̂(xi) is the posterior expected value of f at xi.

The second term in Eq. (3) is:

Ep(yx|Dt)

⇥
H`,At+1 [f | Dt [ {(x, yx)}]

⇤
(21)

=Ep(yx|Dt)


Ep(f |Dt[{(x,yx)})


inf

a2At+1

`(f, a)

��
(22)

=Ep(yx|Dt)

⇥
Ep(f |Dt[{(x,yx)}) [� max(f

⇤
t , f(x))]

⇤
(23)

=Ep(yx|Dt) [� max(f
⇤
t , yx)] (24)

Putting it together, the EHIGt acquisition function in Eq. (3) will reduce to:

EHIGt(x; `, A) = �f
⇤
t � Ep(yx|Dt) [� max(f

⇤
t , yx)] (25)

= Ep(yx|Dt)[max(0, yx � f
⇤
t )] (26)

= EIt(x). (27)

A.4 Probability of Improvement

We additionally include a result below showing that the probability of improvement (PI) acquisition
function can similarly be viewed as a special case of the proposed EHIG family.

Proposition 4. For some constant ⌧ , the acquisition function of PI is defined as PI⌧ (x; Dt) =

Ep(f |Dt)[I(f(x) � ⌧ > 0)], where I(·) is the indicator function, and typically ⌧ is taken to be
equal to f

⇤
t = maxit�1 f̂(xi) for xi 2 Dt. If we choose At = {xt�1}, where xt�1 2 Dt, and

`⌧ (f, x) = �I(f(x) � ⌧ > 0), then maximizing EHIG is equivalent to maximizing the probability
of improvement acquisition function, i.e. arg maxx2X EHIGt(x; `⌧ , A) = arg maxx2X PI⌧ (x).

Proof of Proposition 4. The first term of EHIGt in Eq. (3) is equal to:

H`,At [f | Dt] = inf
a2At

Ep(f |Dt) [`(f, a)] = �I(f̂(xt�1) � ⌧ > 0) (28)

where f̂(xt�1) is the posterior expected value of f at xt�1. More importantly, H`,At [f | Dt] is a
constant with respect to x that we are optimizing.

The second term in Eq. (3) is:

Ep(yx|Dt)

⇥
H`,At+1 [f | Dt [ {(x, yx)}]

⇤
(29)

=Ep(yx|Dt)


inf

a2{x}
Ep(f |Dt[{(x,yx)}) [`(f, a)]

�
(30)

=Ep(yx|Dt)

⇥
Ep(f |Dt[{(x,yx)}) [�I(f(x) � ⌧ > 0)]

⇤
(31)

= � Ep(yx|Dt) [I(yx � ⌧ > 0)] (32)

Putting it together, the EHIGt acquisition function in Eq. (3) will reduce to:

EHIGt(x; `⌧ , A) = �I(f̂(xt�1) � ⌧ > 0) + Ep(yx|Dt) [I(yx � ⌧ > 0)] (33)
= Ep(yx|Dt) [I(yx � ⌧ > 0)] + constant (34)
= PI⌧ (x) + constant. (35)

Thus maximizing EHIG is equivalent to maximizing the probability of improvement acquisition
function.

16



B Additional Experimental Details and Results

Details on the Alpine-d function. The multimodal Alpine-d function is defined as Alpine-d(x) =Pd
i=1 |xi sin(xi) + 0.1xi|, for x 2 Rd.

Details on the Vaccination function. The vaccination function is obtained by training a Multi-
Layer Perceptron (MLP) network based on the data from [53], which uses county-level vaccination
data provided by the CDC, and uses small area estimation3 to interpolate the vaccination rate of every
location. We restrict the optimization domain to be a rectangle focusing on the state of Pennsylvania.

Details on the Multihills function. The Multihills function is defined as a mixture density as
follows. Multihills(x) =

PJ
j=1 wjN (x | µj , Cj), for x 2 Rd, where N denotes a multivariate

normal density, {µj} are a set of J means, {Cj} are a set of J covarance matrices, and {wj} are a set
of J weights.

Details on the Pennsylvania Night Light function. We consider the 2012 gray scale global night-
light raster with resolution 0.1 degree per pixel. The data is downloaded from NASA Earth Observa-
tory4. We restrict the optimization domain to be a rectangle focusing on the state of Pennsylvania and
normalize all raster data before use. Each location query gives a value proportional to the average
amount of night light at that location.

Computational Cost. While using the EHIGt(x; `, A) acquisition function in Bayesian optimiza-
tion (Algorithm 1) is more expensive than simpler methods (e.g. expected improvement (EI)), in
many cases it has a comparable computational cost to methods such as knowledge gradient (KG)
or entropy search (ES) methods, when applied to the same task—in fact, our implementation has a
similar structure as one-shot knowledge gradient acquisition optimization methods.

The following timing results compare the average cost (mean wall clock time in seconds) of acquisition
optimization for a set of comparison methods, including EI as an additional method, on the Alpine-2

function from the first experiment in our paper: EHIG: 6.9s, KG: 6.6s, EI: 0.5s, US: 0.3s.

3https://en.wikipedia.org/wiki/Small_area_estimation
4https://earthobservatory.nasa.gov/features/NightLights
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B.1 Additional Experiment Results and Visualizations.

We show further experiment results for multi-level set estimation and sequence search (Figure 5),
visualizations for multi-level set estimation (Figure 6), and an additional comparisons of classic BO
acquisition functions on the initial top-k optimization experiments (Figure 7).
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Figure 5: Multi-level set estimation and sequence search. Left and center: Plots of accuracy versus iteration
for the task of multi-level set estimation (Equation (5), m = 1), where error bars represent one standard error.
Right: Plot of negative loss versus iteration for the task of sequence search (Equation (6)), where error bars
represent one standard error.
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Figure 6: Visualization results for multi-level set estimation. Visualization of multi-level set estimation for
Alpine-2, Multihills, and the Pennsylvania Night Light (PNL) functions. We show the ground-truth level set
thresholds with red and blue dashed lines (for Alpine-2 and Multihills) and white dashed line (for the PNL
function). The queries Dt taken by each method are shown with black dots (for Alpine-2 and Multihills) and
red dots (for the PNL function). We observe that the queries taken by H`,A-Entropy Search focus on level set
boundaries, yielding a fine-grained estimate near these boundary curves, while the other methods fail to do so.
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