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Abstract

A Bayesian coreset is a small, weighted subset of data that replaces the full dataset
during Bayesian inference, with the goal of reducing computational cost. Although
past work has shown empirically that there often exists a coreset with low inferential
error, efficiently constructing such a coreset remains a challenge. Current methods
tend to be slow, require a secondary inference step after coreset construction,
and do not provide bounds on the data marginal evidence. In this work, we
introduce a new method—sparse Hamiltonian flows—that addresses all three of
these challenges. The method involves first subsampling the data uniformly, and
then optimizing a Hamiltonian flow parametrized by coreset weights and including
periodic momentum quasi-refreshment steps. Theoretical results show that the
method enables an exponential compression of the dataset in a representative
model, and that the quasi-refreshment steps reduce the KL divergence to the target.
Real and synthetic experiments demonstrate that sparse Hamiltonian flows provide
accurate posterior approximations with significantly reduced runtime compared
with competing dynamical-system-based inference methods.

1 Introduction

Bayesian inference provides a coherent approach to learning from data and uncertainty assessment in
a wide variety of complex statistical models. Two standard methodologies for performing Bayesian
inference in practice are Markov chain Monte Carlo (MCMC) [1; 2; 3, Ch. 11,12] and variational
inference (VI) [4, 5]. MCMC simulates a Markov chain that targets the posterior distribution. In the
increasingly common setting of large-scale data, most exact MCMC methods are intractable. This
is essentially because simulating each MCMC step requires an (expensive) computation involving
each data point, and many steps are required to obtain inferential results of a reasonable quality. To
reduce cost, a typical approach is to perform the computation for a random subsample of the data,
rather than the full dataset, at each step [6–10] (see [11] for a recent survey). However, recent work
shows that the speed benefits are outweighed by the drawbacks; uniformly subsampling at each step
causes MCMC to either mix slowly or provide poor inferential approximation quality [11–15]. VI,
on the other hand, posits a family of approximations to the posterior and uses optimization to find the
closest member, enabling the use of scalable stochastic optimization algorithms [16, 17]. While past
work involved simple parametric families, recent work has developed flow families based on Markov
chains [18, 19]—and in particular, those based on Langevin and Hamiltonian dynamics [20–25].
However, because these Markov chains are typically designed to target the posterior distribution,
each step again requires a computation involving all the data, making KL minimization and sampling
slow. Repeated subsampling to reduce cost has the same issues that it does in MCMC.

Although repeated subsampling in each step of a Markov chain (for MCMC or VI) is not generally
helpful, recent work on Bayesian coresets [26] has provided empirical evidence that there often exists
a fixed small, weighted subset of the data—a coreset—that one can use to replace the full dataset in
a standard MCMC or VI inference method [27]. In order for the Bayesian coreset approach to be
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practically useful, one must (1) find a suitable coreset that provides a good posterior approximation;
and (2) do so quickly enough that the speed-up of inference is worth the time it takes to find the coreset.
There is currently no option that satisfies these two desiderata. Importance weighting methods [26]
are fast, but do not provide adequate approximations in practice. Sparse linear regression methods
[28–30] are fast and sometimes provide high-quality approximations, but are very difficult to tune
well. And sparse variational methods [27, 31] find very high quality coreset approximations without
undue tuning effort, but are too slow to be practical.

This work introduces three key insights. First, we can uniformly subsample the dataset once to
pick the points in the coreset (the weights still need to be optimized). This selection is not only
significantly simpler than past algorithms; we show that it enables constructing an exact coreset—with
KL divergence 0 to the posterior—of size O(log2(N)) for N data points in a representative model
(Proposition 3.1). Second, we can then construct a normalizing flow family based on Hamiltonian
dynamics [21, 22, 32] that targets the coreset posterior (parametrized by coreset weights) rather
than the expensive full posterior. This method address all of the current challenges with coresets: it
enables tractable i.i.d. sampling, provides a known density and normalization constant, and is tuned
using straightforward KL minimization with stochastic gradients. It also addresses the inefficiency
of Markov-chain-based VI families, as the Markov chain steps are computed using the inexpensive
coreset posterior density rather than the full posterior density. The final insight is that past momentum
tempering methods [21] do not provide sufficient flexibility for arbitrary approximation to the
posterior, even in a simple setting (Proposition 3.2). Thus, we introduce novel periodic momentum
quasi-refreshment steps that provably reduce the KL objective (Propositions 3.3 and A.2). The paper
concludes with real and synthetic experiments, demonstrating that sparse Hamiltonian flows compare
favourably to both current coreset compression methods and variational flow-based families. Proofs
of all theoretical results may be found in the appendix.

It is worth noting that Hamiltonian flow posterior approximations based on a weighted data subsample
were also developed in concurrent work in the context of variational annealed importance sampling
[33], and subsampling prior to weight optimization was developed in concurrent work on MCMC
[34]. In this work, we focus on incorporating Bayesian coresets into Hamiltonian-based normalizing
flows to obtain fast and accurate posterior approximations.

2 Background

2.1 Bayesian coresets

We are given a target probability density π(θ) for variables θ ∈ Rd that takes the following form:

π(θ) =
1

Z
exp

(
N∑

n=1

fn(θ)

)
π0(θ).

In a Bayesian inference problem with i.i.d. data, π0 is the prior density, the fn are the log-likelihood
terms for N data points, and the normalization constant is in general not known. The goal is to take
samples from the distribution corresponding to density π(θ).

In order to avoid the Θ(N) cost of evaluating log π(θ) or ∇ log π(θ) (at least one of which must be
conducted numerous times in most standard inference algorithms), Bayesian coresets [26] involve
replacing the target with a surrogate density of the form

πw(θ) =
1

Z(w)
exp

(
N∑

n=1

wnfn(θ)

)
π0(θ),

where w ∈ RN , w ≥ 0 are a set of weights. If w has at most M ≪ N nonzeros, the O(M) cost of
evaluating log πw(θ) or ∇ log πw(θ) is a significant improvement upon the original Θ(N) cost.

The baseline method to construct a coreset is to draw a uniformly random subsample of M data points,
and give each a weight of N/M ; although this method is fast in practice, it typically generates poor
posterior approximations. More advanced techniques generally involve significant user tuning effort
[26, 28–30]. The current state-of-the-art black box approach formulates the problem as variational
inference [27, 31] and provides a stochastic gradient scheme using samples from πw,

w⋆ = argmin
w∈RN

+

DKL (πw||π) s.t. ∥w∥0 ≤M.
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Empirically, this method tends to produce very high-quality coresets [27]. However, to estimate the
gradient at each iteration of the optimization, we require MCMC samples from the weighted coreset
posterior at that iteration. While generating MCMC samples from a sparse coreset posterior is not
expensive, it is difficult to tune the algorithm to ensure the quality of these MCMC samples across
iterations (as the weights, and thus the coreset posterior, change each iteration). The amount of tuning
effort required makes the application of this method too slow to be practical. Once the coreset is
constructed, all of the aforementioned methods require a secondary inference algorithm to take draws
from πw. Further, since Z(w) is not known in general, it is not tractable to use these methods to
bound the marginal evidence Z.

2.2 Hamiltonian dynamics

In this section we provide a very brief overview of some important aspects of a special case of
Hamiltonian dynamics and its use in statistics; see [35] for a more comprehensive overview. The
differential equation below in Eq. (1) describes how a (deterministic) Hamiltonian system with
position θt ∈ Rd, momentum ρt ∈ Rd, differentiable negative potential energy log π(θt), and kinetic
energy 1

2ρ
T
t ρt evolves over time t ∈ R:

dρt
dt

= ∇ log π(θt)
dθt
dt

= ρt. (1)

For t ∈ R, define the mappings Ht : R2d → R2d that take (θs, ρs) 7→ (θs+t, ρs+t) under the
dynamics in Eq. (1). These mappings have two key properties that make Hamiltonian dynamics
useful in statistics. First, they are invertible, and preserve volume in the sense that |det∇Ht| = 1. In
other words, they provide tractable density transformations: for any density q on R2d and pushforward
qt on R2d under the mapping Ht, we have that qt(·, ·) = q

(
H−1

t (·, ·)
)
. Second, the augmented target

density π̄(θ, ρ) on R2d corresponding to independent draws from π and N (0, I),

π̄(θ, ρ) ∝ π(θ) · exp
(
−1

2
ρT ρ

)
,

is invariant under the mappings Ht, i.e., π̄(Ht(·, ·)) = π̄(·, ·). Given these properties, Hamiltonian
Monte Carlo [35, 36] constructs a Gibbs sampler for π̄ that interleaves Hamiltonian dynamics with
periodic stochastic momentum refreshments ρ ∼ N (0, I). Upon completion, the ρ component of the
samples can be dropped to obtain samples from the desired target π.

In practice, one approximately simulates the dynamics in Eq. (1) using the leapfrog method, which
involves interleaving three discrete transformations with step size ϵ > 0,

ρ̂k+1 = ρk +
ϵ

2
∇ log π(θk) θk+1 = θk + ϵρ̂k+1 ρk+1 = ρ̂k+1 +

ϵ

2
∇ log π(θk+1). (2)

Denote the map constructed by applying these three steps in sequence Tϵ : R2d → R2d. As the
transformations in Eq. (2) are all shear, Tϵ is also volume-preserving, and for small enough step size
ϵ it nearly maintains the target invariance. Note also that evaluating a single application of Tϵ is of
O(Nd) complexity, which is generally expensive in the large-data (large-N ) regime.

2.3 VI via Hamiltonian dynamics

Since the mapping Tϵ is invertible and volume-preserving, it is possible to tractably compute the
density of the pushforward of a reference distribution q(·, ·) under repeated applications of it. In
addition, this repated application of Tϵ resembles the steps of Hamiltonian Monte Carlo (HMC) [35],
which we know converges in distribution to the target posterior distribution. [21, 22] use these facts
to construct a normalizing flow [32] VI family. However, there are two issues with this methodology.
First, the O(Nd) complexity of evaluating each step Tϵ makes training and simulating from this flow
computationally expensive. Second, Hamiltonian dynamics on its own creates a flow with insufficient
flexibility to match a target π̄ of interest. In particular, given a density q(·, ·) and pushforward qt(·, ·)
under Ht, we have

∀t ∈ R, DKL (qt||π̄) = DKL (q||π̄) . (3)
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In other words, Hamiltonian dynamics itself cannot reduce the KL divergence to π̄; it simply
interchanges potential and kinetic energy. [21] address this issue by instead deriving their flow from
tempered Hamiltonian dynamics: for an integrable tempering function γ : R→ R,

dρt
dt

= ∇ log π(θt)− γ(t)ρt
dθt
dt

= ρt. (4)

The discretized version of the dynamics in Eq. (4) corresponds to multiplying the momentum by a
tempering value αk > 0 after the kth application of Tϵ. By scaling the momentum, one provides
the normalizing flow with the flexibility to change the kinetic energy at each step. However, we
show later in Proposition 3.2 that just tempering the momentum does not provide the required flow
flexibility, even for a simple representative Gaussian target.

A related line of work uses the mapping Tϵ for variational annealed importance sampling [23–25].
The major difference between these methods and the normalizing flow-based methods is that the
auxiliary variable is (partially) stochastically refreshed via ρ ∼ N (0, I) after applications of Tϵ.
One is then forced to minimize the KL divergence between the joint distribution of θ and all of the
auxiliary momentum variables under the variational and augmented target distributions.

3 Sparse Hamiltonian flows

In this section we present sparse Hamiltonian flows, a new method to construct and draw samples
from Bayesian coreset posterior approximations. We first present a method and supporting theory
for selecting the data points to be included in the coreset, then discuss building a sparse flow with
these points, and finally introduce quasi-refreshment steps to give the flow family enough flexibility
to match the target distribution. Sparse Hamiltonian flows enables tractable i.i.d. sampling, provides
a tractable density and normalization constant, and is constructed by minimizing the KL divergence
to the posterior with simple stochastic gradient estimates.

3.1 Selection via subsampling

The first step in our algorithm is to choose a uniformly random subsample of M points from the full
dataset; these will be the data points that comprise the coreset. Without loss of generality, we assume
these are the first M points. The key insight in this work is that while subsampling with importance
weighting does not typically provide good coreset approximations [26], a uniformly random subset of
the N log-likelihood potential functions {f1, . . . , fM} still provides a good basis for approximation
with high probability. Proposition 3.1 provides the precise statement of this result for a representative
example model Eq. (5). In particular, Proposition 3.1 asserts that as long as we set our coreset size M
to be proportional to d log2 N , the optimal coreset posterior approximation will be exact, i.e., have 0
KL divergence to the true posterior, with probability at least 1−N− d

2 (log2 N)
d
2 . Thus we achieve

an exponential compression of the dataset, N → log2 N , without losing any fidelity. Note that we
will still need a method to choose the weights w1, . . . , wM for the M points, but the use of uniform
selection rather than a one-at-a-time approach [27–29] substantially simplifies the construction. In
Proposition 3.1, C is the universal constant from [37, Corollary 1.2], which provides an upper bound
on the number of spherical balls of some fixed radius needed to cover a d-dimensional unit sphere.

Proposition 3.1. Consider a Bayesian Gaussian location model:

θ ∼ N (0, I) and ∀n ∈ [N ], Xn
i.i.d.∼ N (θ, I), (5)

where θ,Xn ∈ Rd for d ∈ N. Suppose the true data generating parameter θ = 0, and set
M = log2(AdN

d(logN)−d/2) + C where Ad = e
d
2 d

3
2 log(1 + d). Then the optimal coreset πw⋆

for the model Eq. (5) built using a uniform subsample of data of size M satisfies

lim sup
N→∞

P (DKL(πw⋆ ||π) ̸= 0)

N− d
2 (logN)

d
2

≤ 1.
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3.2 Sparse flows

Upon taking a uniform subsample of M data points from the full dataset, we consider the sparsified
Hamiltonian dynamics initialized at θ0, ρ0 ∼ q(·, ·) for reference density1 q(·, ·),

dρt
dt

= ∇ log πw(θt)
dθt
dt

= ρt. (6)

Much like the original Hamiltonian dynamics for the full target density, the sparsified Hamiltonian
dynamics Eq. (6) targets the augmented coreset posterior with density π̄w(θ, ρ) on R2d,

π̄w(θ, ρ) ∝ πw(θ) exp

(
−1

2
ρT ρ

)
.

Discretizing these dynamics yields a leapfrog method similar to Eq. (2) with three interleaved steps,

ρ̂k+1 = ρk +
ϵ

2
∇ log πw(θk) θk+1 = θk + ϵρ̂k+1 ρk+1 = ρ̂k+1 +

ϵ

2
∇ log πw(θk+1). (7)

Denote the map constructed by applying these three steps in sequence Tw,ϵ : R2d → R2d. Like
the original leapfrog method, these transformations are both invertible and shear, and thus preserve
volume; and for small enough step size ϵ, they approximately maintain the invariance of π̄w(θ, ρ).
However, since w only has the first M entries nonzero,

∇ log πw(θk) =

M∑
m=1

wm∇ log fm(θk),

and thus a coreset leapfrog step can be taken in O(Md) time, as opposed to O(Nd) time in the
original approach. Given that Proposition 3.1 recommends setting M ≈ d log2(N), we have achieved
an exponential reduction in computational cost of running the flow.

However, as before, the weighted sparse leapfrog flow is not sufficient on its own to provide a flexible
variational family. In particular, we know that Tw,ϵ nearly maintains the distribution π̄w as invariant.
We therefore need a way to modify the distribution of the momentum variable ρ. One option is to
include a tempering of the form Eq. (4) into the sparse flow. However, Proposition 3.2 shows that
even optimal tempering does not provide the flexibility to match a simple Gaussian target π̄.

Proposition 3.2. Let θt, ρt ∈ R follow the tempered Hamiltonian dynamics Eq. (4) targeting
π = N (0, σ2), σ > 0, with initial distribution θ0 ∼ N (µ, 1), ρ0 ∼ N (0, β2) for initial center µ ∈ R
and momentum scale β > 0. Let qt be the distribution of (θt, ρt). Then

inf
t>0,β>0,γ:R+→R

DKL (qt||π̄) ≥ log
1 + µ2

4σ
.

Note that if γ(t) = 0 identically, then ∀t ≥ 0, DKL(qt||π̄) = DKL(q0||π̄).

The intuition behind Proposition 3.2 is that while adding a tempering γ(t) enables one to change the
total energy by scaling the momentum, it does not allow one fine enough control on the distribution
of the momentum. For example, if E[ρ] ̸= 0 under the current flow approximation, we cannot scale
the momentum to force E[ρ] = 0 as it should be under the augmented target; intuitively, we also need
the ability to shift or recenter the momentum as well.

1The reference q can also have its own variational parameters to optimize, but in this paper we leave it fixed.
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Algorithm 1 SparseHamFlow

Require: θ0, ρ0, w, ϵ, λ, L, R
J ← 0, and (θ, ρ)← (θ0, ρ0)
for r = 1, . . . , R do

for ℓ = 1, . . . , L do
Sparse flow leapfrog:
θ, ρ← Tw,ϵ(θ, ρ)

end for
Accumulate log Jacobian determinant:
J ← J + log |det ∂Rλr

∂ρ (ρ, θ)|
Quasi-refreshment:
ρ← Rλr

(ρ, θ)
end for
return θ, ρ, J

Algorithm 2 Estimate_ELBO

Require: q, π0, w, ϵ, λ, L, R, S
(θ0, ρ0) ∼ q(·, ·)
Forward pass:
θ, ρ, J ← SparseHamFlow(θ0, ρ0, w, ϵ, λ, L,R)
Obtain unbiased ELBO estimate:
(n1, . . . , nS)

i.i.d.∼ Unif({1, 2, . . . , N})
log p̄← log π0(θ) +

N
S

∑S
s=1 fns

(θ)+
logN (ρ | 0, I)

log q̄ ← q(θ0, ρ0)− J
return log p̄− log q̄

3.3 Quasi-refreshment

Rather than resampling the momentum variable from its target marginal—which removes the ability
to evaluate the density of θt, ρt—in this work we introduce deterministic quasi-refreshment moves
that enable the flow to strategically update the momentum without losing the ability to compute the
density and normalization constant of θt, ρt (i.e., we construct a normalizing flow [32]). Here we
introduce the notion of marginal quasi-refreshment, which tries to make the marginal distribution of
ρt match the corresponding marginal distribution of the augmented target π̄w. Proposition 3.3 shows
that marginal quasi-refreshment is guaranteed to reduce the KL divergence.
Proposition 3.3. Consider the state θt, ρt ∈ Rd of the flow at step t, and the augmented target
distribution θ, ρ ∼ π̄. Suppose that we have a bijection R : Rd → Rd such that R(ρt)

d
= ρ. Then

DKL (θt, R(ρt)||θ, ρ) = DKL (θt, ρt||θ, ρ)−DKL (ρt||ρ) .

Figure 1: ELBO across leapfrog steps.

See Appendix A for the proof of Proposition 3.3
and a general treatment of quasi-refreshment;
for simplicity, we focus on the type of quasi-
refreshment that we use in the experiments. In
particular, if we are willing to make an assump-
tion about the marginal distribution of ρt at step
t of the flow, we can introduce a tunable family
of functions Rλ with parameters λ that is flex-
ible enough to set Rλ(ρt)

d
= ρ for some λ, and

include optimization of λ along with the coreset
weights. It is important to note that this assump-
tion on the distribution of ρt is not related to the
posterior π. As an example, in this work we as-
sume that ρt ∼ N (µ,Λ−1) for some unknown
mean µ and diagonal precision Λ, which enables
us to simply set

Rλ(x) = Λ (x− µ) . (8)

We then include λ = (µ,Λ) as parameters to be optimized along with the coreset weights w (each
quasi-refreshment step will have its own set of parameters µ,Λ). Even when this assumption does not
hold exactly, the resulting form of Eq. (8) enables the refreshment step to both shift and scale (i.e.,
standardize) the momentum as desired, and is natural to implement as part of a single optimization
routine.

Fig. 1 provides an example of the effect of quasi-refreshment in a synthetic Gaussian location model
(see Section 4.1 for details). In particular, it shows the evidence lower bound (ELBO) as a function
of leapfrog step number in a trained sparse Hamiltonian flow with the quasi-refreshment scheme in
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Eq. (8). While the estimated ELBO values stay relatively stable across leapfrog steps in between
quasi-refreshments (as expected by Eq. (3)), the quasi-refreshment steps (colored red) cause the ELBO
to increase drastically. We note that the ELBO does not stay exactly constant because the Hamiltonian
dynamics targets the coreset posterior instead of the true posterior, and is simulated approximately
using leapfrog steps. As the series of transformations brings the approximated density closer to the
target, the quasi-refreshment steps no longer change the ELBO much, signalling the convergence of
the flow’s approximation of the target. It is thus clear that the marginal quasi-refreshments indeed
decrease the KL, as shown in Proposition 3.3.

3.4 Algorithm

In this section, we describe the procedure for training and generating samples from a sparse Hamil-
tonian flow. As a normalizing flow, a sparse Hamiltonian flow can be trained by maximizing the
augmented ELBO using usual stochastic gradient methods (e.g. as in [32]), where the transformations
follow Eq. (7) with a periodic quasi-refreshment. Here and in the experiments we focus on the
shift-and-scale quasi-refreshment in Eq. (8).

We begin by selecting a subset of M data points chosen uniformly randomly from the full data. Next
we select a total number R of quasi-refreshment steps, and a number L of leapfrog steps between each
quasi-refreshment. The flow parameters to be optimized consist of the quasi-refreshment parameters
λ = (λr)

R
r=1, the M coreset weights w = (wm)Mm=1, and the leapfrog step sizes ϵ = (ϵi)

d
i=1; note

that we use a separate step size ϵi per latent variable dimension i in Eq. (7) [35, Sec. 4.2]. This
modification enables the flow to fit nonisotropic target distributions.

We initialize the weights to N/M (i.e., a uniform coreset), and select an initial step size for all
dimensions. We use a warm start to initialize the parameters λr = (µr,Λr) of the quasi-refreshments.
Specifically, using the initial leapfrog step sizes and coreset weights, we pass a batch of samples
from the reference density q(·, ·) through the flow up to the first quasi-refreshment step. We initialize
µ1,Λ1 to the empirical mean and diagonal precision of the samples at that point. We then apply the
initialized first quasi-refreshment to the momentum, proceed with the second sequence of leapfrog
steps, and repeat until we have initialized all quasi-refreshments r = 1, . . . , R.

Once the parameters are initialized, we log-transform the step sizes, weights, and quasi-refreshment
diagonal scaling matrices to make them unconstrained during optimization. We obtain an unbiased
estimate of the augmented ELBO gradient by applying automatic differentiation [38, 39] to the ELBO
estimation function Algorithm 2, and optimize all parameters jointly using a gradient-based stochastic
optimization technique such as SGD [40, 41] and ADAM [42]. Once trained, we can obtain samples
from the flow via Algorithm 1.

4 Experiments

In this section, we compare our method against other Hamiltonian-based VI methods and Bayesian
coreset construction methods. Specifically, we compare the quality of posterior approximation, as
well as the training and sampling times of sparse Hamiltonian flows (SHF), Hamiltonian importance
sampling (HIS) [21], and unadjusted Hamiltonian annealing (UHA) [23] using real and synthetic
datasets. We compare with two variants of HIS and UHA: “-Full,” in which we train using in-flow
minibatching as suggested by [21, 23], but compute evaluation metrics using the full-data flow; and
“-Coreset,” in which we base the flow on a uniformly subsampled coreset. We also include sampling
times of adaptive HMC and NUTS [43, Alg. 5 and 6] using the full dataset. Finally, we compare the
quality of coresets constructed by SHF to those obtained using uniform subsampling (UNI) and Hilbert
coresets with orthogonal matching pursuit (Hilbert-OMP) [28, 44]. All experiments are performed
on a machine with an Intel Core i7-12700H processor and 32GB memory. Code is available at
https://github.com/NaitongChen/Sparse-Hamiltonian-Flows. Details of the experiments
are in Appendix B.

4.1 Synthetic Gaussian

We first demonstrate the performance of SHF on a synthetic Gaussian-location model,

θ ∼ N (0, I) and ∀n ∈ [N ], Xn
i.i.d.∼ N (θ, cI),

7
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(a) (b) (c)

(d) (e) (f)

Figure 2: ELBO (Fig. 2a), KL divergence (Fig. 2b), relative 2-norm mean error (Fig. 2c), relative
Frobenius norm covariance error (Fig. 2d), energy distance (Fig. 2e), and IMQ KSD [45] (Fig. 2f) for
synthetic Gaussian. The lines indicate the median, and error regions indicate 25th to 75th percentile
from 5 runs.

(a) (b) (c)

Figure 3: Density evaluation (Fig. 3a) and sample generation time (Fig. 3b) (100 samples), and ELBO
versus time during training (Fig. 3c) for synthetic Gaussian. The lines indicate the median, and error
regions indicate 25th to 75th percentile from 5 runs.

where θ,Xn ∈ Rd. We set c = 100, d = 10, N = 10, 000. This model has a closed from posterior
distribution π = N

(∑N
n=1 Xn

c+N , c
c+N I

)
. More details may be found in Appendix B.1.

Fig. 2a compares the ELBO values of SHF, HIS, and UHA across all optimization iterations. We
can see that SHF and UHA-Full result in the highest ELBO, and hence tightest bound on the log
normalization constant of the target. In this problem, since we have access to the exact posterior
distribution in closed form, we can also estimate the θ-marginal KL divergence directly, as shown in
Fig. 2b. Here we see the posterior approximation produced by SHF provides a significantly lower
KL than the other competing methods. Figs. 2c to 2f show, through a number of other metrics, that
SHF provides a higher quality posterior approximation than others. It is worth noting that while the
relative covariance error for SHF takes long to converge, we observe a monotonic downward trend in
both the relative mean error and KL divergence of SHF. This means that for this particular problem,
our method finds the centre of the target before fine tuning the covariance. We also note that a number
of metrics go up for UHA-full because it operates on the augmented space based on a sequence of
distributions that bridge some simple initial distribution and the target distribution. Therefore, it is
not guaranteed that all steps of optimization improve the quality of approximation on the marginal
space of the latent variables of interest, which is what the plots in Fig. 2 show.

Figs. 3a and 3b show the time required for each method to evaluate the density of the joint distribution
of θ, ρ and to generate samples. It is clear that the use of a coreset improves the density evaluation
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(a) (b) (c)

(d) (e)

Figure 4: Estimated KL divergence (Fig. 4a), relative 2-norm mean error (Fig. 4b), relative Frobenius
norm covariance error (Fig. 4c), energy distance (Fig. 4d), and IMQ KSD (Fig. 4e) versus coreset
size. The lines indicate the median, and error regions indicate 25th to 75th percentile from 5 runs.

and sample generation time by more than an order of magnitude. Fig. 3c compares the training times
of SHF, HIS-Coreset, and UHA-Coreset (recall that due to the use of subsampled minibatch flow
dynamics, HIS-Full and UHA-Full share the same training time as their -Coreset versions). The
relative training speeds generally match those of sample generation from the target posterior.

Finally, Fig. 4 compares the quality of coresets constructed via SHF, uniform subsampling (UNI), and
Hilbert coresets with orthogonal matching pursuit (Hilbert-OMP). Note that in this problem, the
Laplace approximation is exact (the true posterior is Gaussian), and hence Hilbert-OMP constructs
a coreset using samples from the true posterior. Despite this, SHF provides coresets of comparable
quality, in addition to enabling tractable i.i.d. sampling, density evaluation, normalization constant
bounds, and straightforward construction via stochastic optimization.

4.2 Bayesian linear regression

In the setting of Bayesian linear regression, we are given a set of data points (xn, yn)
N
n=1, each

consisting of features xn ∈ Rp and response yn ∈ R, and a model of the form[
β log σ2

]T ∼ N (0, I), ∀n ∈ [N ], yn | xn, β, σ
2 indep∼ N

([
1 xT

n

]
β, σ2

)
,

where β ∈ Rp+1 is a vector of regression coefficients and σ2 ∈ R+ is the noise variance. The dataset2
that we use consists of N = 100, 000 flights, each containing p = 10 features (e.g., distance of the
flight, weather conditions, departure time, etc), and the response variable is the difference, in minutes,
between the scheduled and actual departure times. More details can be found in Appendix B.2.

Since we no longer have the posterior distribution in closed form, we estimate the mean and covariance
using 5000 samples from Stan [46] and treat them as the true posterior mean and covariance. Figs. 5a
to 5c show the marginal KL, relative mean error, and relative covariance error of SHF, HIS, and
UHA, where the marginal KL is estimated using the Gaussian approximation of the posterior with the
estimated mean and covariance. Here we also include the posterior approximation obtained using
the Laplace approximation as a baseline. We see that SHF provides the highest quality posterior
approximation. Furthermore, Fig. 5d shows that SHF provides a significant improvement in the
marginal KL compared with competing coreset constructions UNI and Hilbert-OMP. This is due to
the true posterior no longer being Gaussian; the Laplace approximation required by Hilbert-OMP
fails to capture the shape of the posterior. Additional plots comparing the quality of posterior
approximations using various other metrics can be found in Appendix B.2.

2This dataset consists of airport data from https://www.transtats.bts.gov/DL_SelectFields.asp?
gnoyr_VQ=FGJ and weather data from https://wunderground.com.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Linear (top) and logistic (bottom) regression results: Gaussian approximated KL divergence
versus training time (Figs. 5a and 5e), relative 2-norm mean error (Figs. 5b and 5f), relative Frobenius
norm covariance error (Figs. 5c and 5g), and Gaussian approximated KL divergence versus coreset
size (Figs. 5d and 5h). The lines indicate the median, and error regions indicate 25th to 75th percentile
from 5 runs.

4.3 Bayesian logistic regression

In the setting of Bayesian logistic regression, we are given a set of data points (xn, yn)
N
n=1, each

consisting of features xn ∈ Rp and label yn ∈ {0, 1}, and a model of the form

∀i ∈ [p+ 1], βi
i.i.d.∼ Cauchy(0, 1), ∀n ∈ [N ], yn

indep∼ Bern
((

1 + exp
(
−
[
1 xT

n

]
β
))−1

)
,

where β ∈ Rp+1. The same airline dataset is used with the labels indicating whether a flight is can-
celled. Of the flights included, 1.384% were cancelled. More details can be found in Appendix B.3.

The same procedures as in the Bayesian linear regression example are followed to generate the results
in Figs. 5e to 5h. To account for the class imbalance problem present in the dataset, we construct all
subsampled coresets with half the data having label 1 and the rest with label 0. The results in Figs. 5e
to 5h are similar to those from the Bayesian linear regression example; SHF provides high quality
variational approximations to the posterior. Additional plots comparing the quality of posterior
approximations using various other metrics can be found in Appendix B.3.

5 Conclusion

This paper introduced sparse Hamiltonian flows, a novel coreset-based variational family that enables
tractable i.i.d. sampling, and evalution of density and normalization constant. The method randomly
subsamples a small set of data, and uses the subsample to construct a flow from sparse Hamiltonian
dynamics. Novel quasi-refreshment steps provide the flow with the flexibility to match target
posteriors without introducing additional auxiliary variables. Theoretical results show that, in a
representative model, the method can recover the exact posterior using a subsampled dataset of the
size that is a logarithm of its original size, and that quasi-refreshments are guaranteed to reduce
the KL divergence to the target. Experiments demonstrate that the method provides high quality
coreset posterior approximations. One main limitation of our methodology is that the data must be
“compressible" in the sense that log-likelihood functions of a subset can be used to well represent the
full log-likelihood. If the data do not live on some underlying low-dimensional manifold, this may
not be the case. Additionally, while our quasi-refreshment is simple and works well in practice, more
work is required to develop a wider variety of general-purpose quasi-refreshment moves. We leave
this for future work.
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[38] Aılım Güneş Baydin, Barak Pearlmutter, Alexey Radul, and Jeffrey Siskind. Automatic differentiation in
machine learning: a survey. Journal of Machine Learning Research, 18:1–43, 2018.

[39] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David Blei. Automatic Differentia-
tion Variational Inference. Journal of Machine Learning Research, 18(14), 2017.

[40] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pages 400–407, 1951.

[41] Léon Bottou. Stochastic Learning. In Olivier Bousquet, Ulrike von Luxburg, and Gunnar Rätsch, editors,
Advanced Lectures on Machine Learning: ML Summer Schools 2003, pages 146–168. Springer Berlin
Heidelberg, 2004.

[42] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 2014.

[43] Matthew Hoffman and Andrew Gelman. The No-U-Turn Sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014.

12



[44] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krishnaprasad. Orthogonal
matching pursuit: Recursive function approximation with applications to wavelet decomposition. In
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pages 40–44. IEEE, 1993.

[45] Jackson Gorham and Lester Mackey. Measuring sample quality with kernels. In International Conference
on Machine Learning, pages 1292–1301. PMLR, 2017.

[46] Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic programming language.
Journal of Statistical Software, 76(1), 2017.

[47] Luke Tierney and Joseph Kadane. Accurate approximations for posterior moments and marginal densities.
Journal of the American Statistical Association, 81(393):82–86, 1986.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In Section 3.3, we assume that the
momentum distribution is Gaussian. In Section 5, we mention that a direction of future work is
to develop more general quasi-refreshment moves that do not require such assumptions.

(c) Did you discuss any potential negative societal impacts of your work? [No] This paper presents
an algorithm for sampling from a Bayesian posterior distribution in the large-scale data regime.
There are possible negative societal impacts of downstream applications of this method (e.g. in-
ference for a particular model and dataset), but we prefer not to speculate about these here.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are provided in the

appendix

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] We have included anonymized
code in the supplement.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes] All details are provided in the main paper and in Appendix B.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] All results come with error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes] Hardware is listed at the beginning of the experiments.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Footnotes to the source URL
and bibliography citations are provided.

(b) Did you mention the license of the assets? [No] None of the real datasets we use specify a
particular license that the data were released under.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A] We do
not produce any new assets.

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating? [No] Our data does not pertain to individuals.

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-
tion or offensive content? [No] Our data does not pertain to individuals.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

13


	Introduction
	Background
	Bayesian coresets
	Hamiltonian dynamics
	VI via Hamiltonian dynamics

	Sparse Hamiltonian flows
	Selection via subsampling
	Sparse flows
	Quasi-refreshment
	Algorithm

	Experiments
	Synthetic Gaussian
	Bayesian linear regression
	Bayesian logistic regression

	Conclusion

