
Appendix

A Gradient to the label representations

As described in section 4, the energy component of loss LF , for the task-net, is the sum of following
two parts:
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The gradient of Eglobal w.r.t y is given by the following vector of length L
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While the gradient of cross entropy BCE(y, y⇤) w.r.t. y is given by the following vector of length L
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where ⌦ is element-wise product.

Note the dependency of the gradient for a particular component yi of y on other component in the
expressions above. The gradient of cross entropy ( @l

@yi
) only depends on its label dimension i: yi and

y⇤i . In contrast, in the case of the energy function as loss (SEAL), the gradient @LF
@yi

depends on all L

dimensions of y due to the product term My in @Eglobal

@yi
.

B Task Details

This Section provides task-specific information including task definitions, descriptions for datasets
and models, and additional observations in our experiments. Please refer to the beginning of Section
4 for a preliminary description.

B.1 Multi-label classification

Task Definition: Given input x, multi-label classification maps the input to the labels y in the
output space, Y = {0, 1}L.

Dataset: In our experiments, we use 11 multi-label classification (MLC) datasets covering various
label spaces, label sizes (ranging from 27 to 4k), training sizes, and input characteristics (binary,
real, text) as shown in Table 5. The first seven rows are binary- or real-valued feature-based datasets.
In addition to including Bibtex and Delicious that were used in baseline approaches (Belanger &
McCallum, 2016; Gygli et al., 2017; Tu & Gimpel, 2018), we carefully picked smaller (Genbase,
Cal500) and larger datasets (Eurlex-ev) as well as datasets with known taxonomy (Spo_FUN,
Expr_FUN) to examine SEAL in various scenarios. For text-based datasets, we select RCV Lewis et al.
(2004) and BGC (Aly et al., 2019) which have label dependencies (DAG and forest respectively),
AAPD to compare with state-of-the-art text-based MLC model (Zhang et al., 2021), and take a subset
of the NYT dataset Sandhaus (2008) 5 to experiment with larger label dimensions and training data.
For text-based MLC datasets, we examine whether SEAL can be helpful in the context of large
pre-trained models as well. The links to download the multi-label datasets used in this work are given
in Table 6.

Feature network: We use standard feed-forward neural network and pretrained BERT-base as the
feature network, TE , for the feature-based and text-based MLC datasets respectively.

5Due to their enormous size, we use a subset of NYT training set, which is still the largest dataset in our
experiments.
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Table 5: Statistics of the datasets used in the experiments.

Dataset Domain #Instances Input
Dim #Labels Input

TypeTrain Test

Genbase Biology 398 132 1186 27 Binary
Cal500 Music 283 114 68 174 Real
Spo FUN Gene Ontology 1,600 1,266 86 500 Real
Expr FUN Gene Ontology 1,636 1,288 561 500 Real
Bibtex Text 4,407 1,497 1836 159 Binary
Delicious Text 9,690 3,194 500 983 Binary
Eurlex-ev Text 11,557 3,881 5000 3,993 Real

RCV Text 13,890 781,265 N/A 104 Raw Text
AAPD Text 53,840 1000 N/A 54 Raw Text
BGC Text 58,715 18,394 N/A 142 Raw Text
NYT Text 175,299 180,659 N/A 2,109 Raw Text

Table 6: Links for downloading the datasets.
Dataset Link

AAPD https://git.uwaterloo.ca/jimmylin/Castor-data/-/tree/master/datasets/AAPD

BCG https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html

NYT https://catalog.ldc.upenn.edu/LDC2008T19

RCV1-V2 http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm

feature based datasets https://www.uco.es/kdis/mllresources/

Energy network: Given the input x and the output y 2 {0, 1}L, the energy terms are defined as:
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where bi,v,M, TE contain learnable parameters. TE is a feature network to represent an input x in
the loss-net, and �(z) = log(1 + ez) is the softplus activation function.

B.2 Semantic Role Labeling

Task Definition: Given a sentence and a predicate pair (W, v), the goal of SRL is to identify the
spans of arguments for v in W and assign correct role labels to the identified arguments.

Dataset: We train and evaluate the performance of SEAL and baselines on the standard benchmark
(CoNLL-12) (Pradhan et al., 2013) for SRL.

Feature network: We use pretrained BERT-base for the feature network, TE and TF .

Energy network: For the sequence tagging experiments, we take the input, x, a sequence of N
tokens and the output, y, a sequence of N labels. yn denotes the label at the nth position in the
sequence and has L dimensions, the number of labels. Consequently, we define the energy terms as,
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where ES applies the self-attention (Vaswani, 2017) over y to capture the long-distance dependencies
among labels and gets a L by N dimension output. We then do max-pooling over the L dimension
before taking the sum across the sequence length to get the global energy, Eglobal

⇥ .
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B.3 Image segmentation

Task Definition: Given a 3-channel L-pixel RGB image x, binary image segmentation requires
models to classify each pixel to either foreground or background, thus outputing a binary segmentation
mask y 2 {0, 1}L.

Datasets: The Weizmann Horse Image dataset Borenstein & Ullman (2004) consists of 328 left-
oriented horse images annotated with segmentation masks. Following CHOPPS (Li et al., 2013) and
DVN (Gygli et al., 2017)6, we adopt a split of 160 training, 40 validation, and 128 testing examples
at the resolution of 32⇥32 pixels. We train models using the training split, select hyperparameters
according to mean image IoU on the validation split, and report mean image IoU on the test split.

Feedforward (FCN): We implement Fully Convolutinal Network described by Gygli et al. (2017)
as our feedforward baseline and task-net in SEAL. It has 3 convolutional layers, 2 transposed con-
volutional layers, and 2 skip connections. The second transposed convolutional layer outputs two
channels of logits. A softmax layer is then applied and we take the normalized horse channel as the
probability that each pixel belongs to the horse object. The channel can be binarized to obtain the
segmentation mask.

Energy network (DVN): For segmentation, we do not have separate notions of local and global
energies (Eq.(2)). We implement Deep Value Network described by Gygli et al. (2017) as our energy
network baseline and loss-net in SEAL, referring to this public repository. In general we find gradient
based inference during DVN training and inference unstable and sensitive to configurations like
sampling methods and initialization for the segmentation mask. For example, it achieves < 50 test
IoU if we do not supply ground truth samples during its training. Nevertheless, using the same energy
network architecture as loss for FCN under the SEAL-dynamic learning framework improves the
performance of FCN. We leave sampling strategies and loss-net architectures for further exploration.

Qualitative Results: We observe that segmentation masks predicted by FCN trained with SEAL-
dynamic (regression-s) are better at details (e.g. legs) than those by cross-entropy (Figure 3).

Figure 3: The four rows are the original images, ground truth masks, masks predicted by FCN trained
by cross-entropy, and masks by FCN trained with SEAL-dynamic.

C Experiment Details

C.1 Training setup

Our experiments are performed on a mix of TitanX, 1080Ti, 2080ti, M40, and RTX8000 GPUs.
We use separate ADAM optimizers (Kingma & Ba, 2014) for the loss-net (⇥) and the task-net (�)
which optimize parameters in alternating fashion7. For each minimization loop, we take nE , nF

gradient steps respectively for estimating ⇥t and �t. The best hyper-parameters for each model are
found using Bayesian search8. We also report the training time, inference time, and parameter size of
different MLC methods in Appendix D.

6Script that includes links to and processes the dataset: https://gist.github.com/gyglim/714cb24a1c34c95e0a0c9a8a4ec0620c
7The code we used to train and evaluate our models is available a https://anonymous.4open.science/

r/SEAL/README.md.
8We use Weights & Biases (Biewald, 2020) for hyperparameter search
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C.2 Hyperparameters

The following tables tabulate the hyper-parameters for SEAL on each dataset. We fix the �2 = 1 in
equation 1 to reduce degree of freedom in hyperparameter search. In MLC and SRL experiments, we
fix the task-net number of layers, layer-dimensions, and dropout for the SEAL framework according to
the best run of the task-net with cross-entropy. In segmentation experiments, we run sweeps of about
200 runs and use the same search space for overlapping hyperparameters for different models for fair
comparisons; once the best hyperparameters are found by wandb sweeps, we use them to run with
5 or 10 random seeds depending on the task. We tested on 10 random seeds for both feature-based
MLC and binary imagae segmentation where the models are trained from scratch. For text-based
MLC and SRL, we tested on 5 random seeds as running multiple experiments on large pre-trained
models such as BERT-base is expensive.

C.2.1 Multilabel Classification

method nE nF �1 num samples ⇥lr �lr

margin 1 10 0.001 n/a 0.0002 0.001
regression 6 10 0.002 n/a 0.0003 0.001
regression-s 3 10 0.03 20 0.0004 0.001
NCE ranking 9 10 0.002 100 0.0005 0.001

Table 7: genbase

method nE nF �1 num samples ⇥lr �lr

margin 1 10 0.001 n/a 0.0005 0.008
regression 3 10 1.4 n/a 0.006 0.007
regression-s 9 5 9 5 0.008 0.006
NCE ranking 9 10 0.4 40 0.007 0.005

Table 8: cal500

method nE nF �1 num samples ⇥lr �lr

margin 1 1 0.0002 n/a 0.002 0.004
regression 3 5 8 n/a 0.0001 0.00015
regression-s 6 1 9 5 0.0001 0.003
NCE ranking 6 5 0.9 20 0.002 0.001

Table 9: delicious

method nE nF �1 num samples ⇥lr �lr

margin 1 5 0.001 n/a 0.0003 0.002
regression 6 5 0.002 n/a 0.0006 0.004
regression-s 12 1 0.01 20 0.0004 0.007
NCE ranking 6 5 0.5 40 0.001 0.002

Table 10: eurlex
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method nE nF �1 num samples ⇥lr �lr

margin 1 5 0.01 n/a 0.00003 0.001
regression 9 5 0.02 n/a 0.0003 0.0006
regression-s 9 5 2 30 0.007 0.002
NCE ranking 6 10 4 80 0.00005 0.0002

Table 11: expr_fun

method nE nF �1 num samples ⇥lr �lr

margin 1 10 0.08 n/a 0.0001 0.002
regression 1 5 9 n/a 0.001 0.00015
regression-s 9 10 0.02 10 0.0002 0.0009
NCE ranking 3 10 0.7 60 0.008 0.0005

Table 12: spo_fun

method nE nF �1 num samples ⇥lr �lr

margin 1 6 0.0002 n/a 0.00005 0.001
regression 9 1 3 n/a 0.005 0.003
regression-s 5 5 9 10 0.005 0.001
NCE ranking 12 5 5 20 0.0004 0.001

Table 13: bibtex

method nE nF �1 num samples ⇥lr �lr

NCE ranking 1 1 1 300 0.00001 0.0001
Table 14: AAPD

C.2.2 Semantic Role Labeling

We set batch size to 16 and weight decay to 0.00001 for both loss-net (⇥) and the task-net (�). For
the self-attention used in loss-net (⇥), we set the hidden dimension to 256 and number of attention
head to 1. We again fix nE , nF as 1.

method nE nF �1 num samples ⇥lr �lr

NCE 1 1 0.5 400 0.00001 0.00001
Table 15: CoNLL-12

C.2.3 Weizmann Horse Segmentation

In all experiments, we use batch size 8 and 36 image crops (Gygli et al., 2017). In DVN with GBI,
the found learning rate for GBI to get adversarial samples is 7.82 while that for other GBI is 6.96.

method nE nF �1 num samples ⇥lr ⇥wd �lr �wd

FCN (cross-entropy) n/a n/a n/a n/a n/a n/a 2.01e-3 5.86e-5
DVN with GBI n/a n/a n/a n/a 2.73e-4 4.73e-4 n/a n/a
SEAL-dynamic (regression) 8 10 0.20 n/a 1.9e-2 1.41e-4 3.64e-4 3.75e-5
SEAL-dynamic (NCE) 1 1 0.0002 500 1.01e-5 4.17e-4 3.96e-3 3.59e-5

Table 16: Weizmann Horse segmentation. lr is learning rate. wd is weight decay.
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D Analysis: Parameter Size and Speed of Inference and Training

We present the analysis on number of parameters (Table 17), inference speed (Table 18), and
training speed (Table 19) that different methods utilize for Multilabel Classification datasets. Theses
experiments were performed on TitanX GPU with 14GB CPU memory.

In summary, SEAL requires approximately twice number of parameters compared to cross-entropy
loss on training time, however it requires the same amount of parameter on inference time. Similarly,
train time (sec) per epoch of SEAL is slower than that of cross-entropy and energy network as
SEAL requires multiple backpropagation steps for both energy network and feedforward network.
Nonetheless, again, at inference time, the speed of CE and SEAL is the same and is much faster
(2⇥-7⇥) than the inference of energy network.

The analysis we present below are on the seven feature-based dataset, however the trend is similar for
text-based dataset as well: twice parameter size on training time but equal parameter and runtime in
inference time with CE method. The only difference in the text-based MLC is, due to running on a
much larger BERT-baed models, that we only run one step for each update of feedforward network
and energy network. Thus, unlike Table 19, train time of SEAL is approximately twice that of CE.

Dataset \ Methods
Parameter size

CE Energy network
(SPEN, DVN, NCE)

SEAL
(Train-time)

SEAL
(Inference-time)

EXPR_FUN 333000 533800 866800 333000
SPO_FUN 447000 597600 1044600 447000
Bibtex 958800 991000 1949800 958800
Cal500 1158700 1123500 2282200 1158700
Delicious 754000 951000 1705000 754000
Genbase 485600 491400 977000 485600
Eurlex-ev 4747500 5546500 10294000 4747500

Table 17: The number of parameters required during train time for SEAL is approximately double
the size of feedforward (CE column) while energy network and feedforward sizes are comparable.
However, in the inference time, SEAL has an equal amount of parameters to the CE column as only
feedforward network is utilized during inference time.

Dataset Inference time (sec) Inference speed (examples/sec) Speed ratio
(CE and SEAL/
Energy Network)Energy network CE and SEAL Energy network CE and SEAL

EXPR_FUN 1.33 0.22 638 3801 5.96
SPO_FUN 1.18 0.16 709 5231 7.38
Bibtex 3.6 1.78 414 840 2.03
Cal500 0.24 0.10 438 1080 2.47
Delicious 5.35 1.39 599 2307 3.85
Genbase 0.23 0.13 574 1005 1.75
Eurlex-ev 24 12.22 162 317 1.96

Table 18: We simply average inference time for CE and SEAL variants as they are very similar.
Likewise, we average the inference time of different energy networks. Here, inference time (sec) is
recorded for the whole validation set. We also present speed per sec (example/sec) and speed ratio.
The last column shows that CE and SEAL methods are 2x-7x faster in inference time than the energy
networks.
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Methods\ Datasets Train time (sec/epoch)
EXPRFUN SPO_FUN Bibtex Cal500 Delicious Genbase Eurlex-ev

CE 6.29 5.46 22.67 1.00 33.01 2.12 114.84
SPEN 10.99 11.01 28.04 2.53 37.31 3.57 136.10
DVN 10.95 10.02 32.12 1.87 55.24 2.79 129.94
NCE 3.71 3.83 13.97 2.82 22.03 3.68 89.33
SEAL-margin 27.96 35.24 212.94 5.78 44.60 8.73 260.10
SEAL-regression 46.32 56.97 27.78 8.07 143.90 13.91 352.63
SEAL-regression-s 42.87 77.92 179.97 8.48 45.33 10.79 221.33
SEAL-NCE 72.43 40.34 131.73 16.58 158.97 17.77 431.92
SEAL-Ranking 41.24 26.83 218.37 7.04 317.63 10.74 408.79

Table 19: The training time per epoch is presented per dataset and per loss function used. Due to
different gpu types and node status, there are some outliers. Furthermore, as SEAL runs multiple
number of backpropagation steps for energy network and feedforward network in the alternating
optimization, direct comparison of training time is not really available. However, the general trend in
terms of training time per epoch is CE < Energy Networks < SEAL.

E Further analysis continued

E.1 Effect of samples

Given the notable performance of the NCE ranking loss, we raise the question of whether drawing
many samples from the task-net helps better estimation of the energy surface. To examine this
question, we perform additional experiments using the regression loss with sampling. Given a sample
set S, we define the regression-s loss as LE�regression-s =

P
ỹ2S LE�regression(x,y⇤, ỹ;⇥). We take

two approaches in collecting these samples: (1) discrete binary vectors drawn from probability vector
ỹ as done with the NCE ranking loss and (2) continuous perturbation of ỹ with Gaussian noise. We
find that discrete samples do not make any notable changes between regression and regression-s, while
continuous samples result in +0.4 F1 improvements on average. We report results of regression-s
using continuous samples in row 10 of Table 1. We conclude that sampling helps capturing better
energy surfaces for training the task-net. However, the effect and characteristics of the samples might
differ for different types of energy losses. We believe sampling is more effective for the NCE ranking
loss where the group of samples contribute in a relative manner in learning surface, in contrast to the
regression-s loss to which each sample contributes independently.

E.2 Data-specific analysis

We analyze the characteristics of selected datasets to reason about the high performances of SEAL on
them.

E.2.1 genbase

Here, we analyze the factors behind SEAL achieving almost perfect F1 score on the genbase dataset.
It seems genbase stands out with its small label size (27 which is the smallest among Table 5) and
with very clear pattern in the label space. Upon analysis, out of 27 labels, we found that 6 labels
only occur as a singleton (by itself), 10 labels only occur as non-singleton, and 7 labels do not
participate at all. This leaves only 4 labels occurring by themselves as well as with others. Not only
that, only 7% (35/500) of training instances have more than one active label. In this peculiar setting,
we conjecture feedforward networks with cross-entropy (CE) loss can easily learn singletons, and
energy networks would easily learn co-occurrence, but learning both might be confusing for these
two models at the opposite end of the spectrum. We believe the synergy of CE and a loss from the
energy network enables capturing the best of both worlds and achieving a near-perfect score that
none of the approaches by itself achieves. As can seen in Table 1, neither cross-entropy nor energy
networks are nearly as strong as SEAL methods.

E.2.2 Delicious and Cal500

In Table 1, it seems SEAL-NCE and SEAL-Ranking are particularly well performing on cal500 and
delicious. It turns out that cal500 and delicious have a very high diversity of 1 and 0.981 (Reference:
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MLC data repo). Diversity of 1 means that each data point holds a unique label set. It seems that the
exposure to multiple samples and evaluations of their relative scores in the NCE ranking loss function
can be helpful in a high-diversity setting.

F Additional Experiment: Multi-label Classification on Text Dataset with

BERT Adapters

Table 20: Test F1 for text MLC datasets.
method \ datasets BGC RCV NYT

cross-entropy 81.15 87.18 77.4
SEAL-dynamic with margin (InfNet) 81.14 87.01 78.13
SEAL-dynamic with NCE 81.64 87.82 78.87

To test the effectiveness of SEAL on training large language models, in Table 20, we further experiment
with text datasets using pre-trained BERT (Devlin et al., 2019) with adapter (Houlsby et al., 2019;
Pfeiffer et al., 2020) as the feature network TE and TF . Considering the computational expense of
running hyper-parameter searches on BERT, based on Table 1, we choose the best-performing SEAL

(SEAL-dynamic with NCE ranking) to compare with baselines: InfNet and cross-entropy. Table 20
shows that SEAL-dynamic with the NCE ranking loss is effective on pre-trained models that utilizes
large text datasets as well. On average, SEAL-NCE gains 0.87 and 0.68 F1 points over cross entropy
and SEAL-margin (InfNet) respectively on the text datasets.

G Gradient Plots

In multi-label classification, the global energy Eglobal
⇥ (y), one of the two constituents of the loss-net,

captures the dependence between different labels. In order to inspect the nature of the dependence
captured, we randomly pick a tuple of labels (li, lk) such that li ./ lk, where ./ is a particular
relation and plot samples of @Eglobal

@yk
(y) in the following manner. First, we sample each component

of y uniformly and independently, which, with a slight abuse of notation can be written as y ⇠
Uniform(0, 1)L; then heatmap of @Eglobal

⇥ (y)
@yk

on coordinates (yi, yk) are plotted. Figure 2b (see Fig. 4,

6 for more examples) shows the samples from @Eglobal

@yk
(yi, yk) when i and k are such that yi =) yk,

i.e. there is a positive association between labels li and lk. As seen, larger values of yi makes the
gradient w.r.t yk always higher for the same value of yk showing positive association between yi and
yk. Contrast this with Figure 2c (see Fig. 5, 7 for more examples), where i and k are such that there
is no relationship between yi and yk. In this setting, @Eglobal

⇥
@yk

does not change w.r.t yi. Furthermore, as
expected, Figure 2a, shows that when the same procedure is applied to the cross-entropy loss function,
we find no dependence between any pair of labels. For the plots discussed in this section, we analyze
energy model trained on DVN (4, 5) and SEAL-dynamic-NCE (6, 7) trained on the expr_fun dataset.
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Figure 4: (yi,
@Eglobal

⇥ (y)
@yk

) when yi =) yk. Analysis of energy model trained with DVN.

Figure 5: (yi,
@Eglobal

⇥ (y)
@yk

) when there is no relation between labels li and lk. Analysis of energy
model trained with DVN.
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Figure 6: (yi,
@Eglobal

⇥ (y)
@yk

) when yi =) yk. Analysis of energy model trained with SEAL-dynamic
NCE.

Figure 7: (yi,
@Eglobal

⇥ (y)
@yk

) when there is no relation between labels li and lk. Analysis of energy
model trained with SEAL-dynamic NCE.
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