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Abstract

Belanger & McCallum (2016) and Gygli et al. (2017) have shown that energy
networks can capture arbitrary dependencies amongst the output variables in struc-
tured prediction; however, their reliance on gradient based inference (GBI) makes
the inference slow and unstable. In this work, we propose Structured Energy As
Loss (SEAL) to take advantage of the expressivity of energy networks without
incurring the high inference cost. This is a novel learning framework that uses
an energy network as a trainable loss function (loss-net) to train a separate neural
network (task-net), which is then used to perform inference through a forward pass.
We establish SEAL as a general framework wherein various learning strategies like
margin-based, regression, and noise-contrastive could be employed to learn the
parameters of loss-net. Through extensive evaluation on multi-label classification,
semantic role labeling, and image segmentation, we demonstrate that SEAL pro-
vides various useful design choices, is faster at inference than GBI, and leads to
significant performance gains over the baselines.

1 Introduction

Structured prediction is an important machine learning problem in which, given an input x, the model
needs to predict the output y 2 Y1 ⇥ Y2 ⇥ · · ·⇥ YL where there are dependencies across y1, . . . , yL.
Common structured prediction tasks include multi-label classification (Belanger & McCallum, 2016;
Gygli et al., 2017), extracting parse trees or semantic role labels from texts (Palmer et al., 2010),
and image segmentation (Müller, 2014). Traditionally, these tasks are performed using models
that explicitly represent the dependencies among output variables, such as directed and undirected
graphical models, including Hidden Markov Models and Conditional Random Fields. However,
except in cases with very limited dependency patterns (Lafferty et al., 2001; Ghamrawi & McCallum,
2005), inference algorithms in these methods are difficult to engineer and expensive to run because
structured output spaces are exponentially large. In a multi-label classification task, for example, the
size of the label space Y is 2L given Yi = {0, 1}.

With their growing expressivity and capacity, it is common to use large feedforward neural networks
to implicitly capture dependencies among output variables. Given an input x, the elements of an
output y are predicted in a conditionally independent manner in parallel, solely relying on the
representation of input x to capture dependencies among output variables. While the feedforward
approach is computationally efficient, the widely used cross-entropy loss does not directly capture
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dependencies in the output space and thus often lacks statistical efficiency in capturing multivariate
correlations.

A recent line of methods (Belanger & McCallum, 2016; Gygli et al., 2017; Rooshenas et al., 2019)
model the joint space of x and multivariate y explicitly with an energy function E⇥(x,y) (LeCun
et al., 2006), which aims to learn arbitrary global dependencies in the output space. They relax the
combinatorial output space Y to Ỹ = [0, 1]L and apply gradient-based inference (GBI) directly on ỹ
to search for optima on the relaxed energy surface as argminỹ E(x, ỹ). These energy models are
therefore often called structured prediction energy networks (SPENs).

SPENs show noticeable gains in predictive performance over feedforward models and traditional
graphical models such as (Chen et al., 2015; Schwing & Urtasun, 2015). Due to the use of GBI, how-
ever, inference for SPENs remains relatively inefficient when compared to feedforward approaches
(Tu & Gimpel, 2019). Moreover, models using GBI are often difficult to train and sensitive to
sampling methods and numerous hyperparameters, including step size, number of iterations, and
initialization for GBI. This raises a question: Can energy networks be used in a way that is as expres-
sive as SPENs, as efficient at inference as feedforward approaches, and also easy to train? To this
end, we propose using structured energy networks as parameterized loss functions for feedforward
networks, instead of as prediction networks.

In this paper, we introduce the Structured Energy As Loss (SEAL) framework which uses trainable
SPENs (loss-net1) as loss functions to guide the training of other feedforward networks (task-net).
The key idea is to provide the feedforward network with access to rich dependencies in the output
space through a learned loss-net (§2.1 SEAL-static). We further propose to learn the loss-net in a
dynamic fashion (§2.2 SEAL-dynamic) by adjusting the loss-net to be tailored to the most up-to-date
outputs of the feedforward network; and then propose an NCE ranking loss uniquely suited for
the SEAL-dynamic framework. Using feature-based multi-label classification as a case study, we
extensively analyze the impact of various loss functions for updating the loss-net (§2.3). We further
demonstrate the faster inference and higher performance of SEAL, compared to other baseline methods,
over feature-, text-based multi-label classification, semantic role labeling, and image segmentation
(§4). Additionally, we show that energy models capture the dependencies on the output space through
analyzing gradient signals in an ablation study (§5 and Appendix G).

loss-net

task-net task-net

loss-net

Figure 1: Overview of the SEAL framework. The
figure on the left describes the update to the task-
net in Eq.(3) and Eq.(5) and the figure on the right
describes the update to the loss-net in Eq.(4).

Algorithm 1: SEAL-dynamic Algorithm

Require: (x,y): Training Instance
Require: F�: Feedforward Network
Require: sampling: True/False flag
Require: optimizer⇥, optimizer�
Require: T : No. of steps

⇥0,�0  Random initialization, t 0
while t < T do

if sampling then

S  {y(i), i = 1, . . . ,K|y(i) ⇠ F�t(x)}
else

S  {F�t(x)} . singleton set
t t+ 1
Update ⇥ as Eqn. 4 using ỹ 2 S and optimizer⇥
Update � as Eqn. 5 using optimizer�

2 Structured Energy Network as Loss (SEAL)

Notation. X denotes the input space, Y = {0, 1}L the label space, and Ỹ = [0, 1]L the continuous
relaxation of Y . Let D = {(x(j),y(j)) 2 X ⇥ Y}Nj=1 denote the dataset, and yi 2 {0, 1} the i-th
dimension in the label vector y for i 2 {1, . . . , L}, and ỹi 2 [0, 1] its continuous relaxation. The
feedforward network F� : X ! Ỹ is a parametrized function that maps an input x 2 X to an output

1We refer an energy network as loss-net when it is used as a trainable loss function for another network.
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F�(x) 2 Ỹ , where F�(x)i is the predicted probability of label i occurring, given the input x. The
structured energy network E⇥ : X ⇥ Ỹ ! R is a parameterized function that maps an input x and a
continuously relaxed output ỹ to real-valued scalar energy. For clarity, we refer to the feedforward
network as task-net, and the structured energy network as loss-net.

As depicted in Figure 1, the proposed SEAL framework consists of two parametric components. First,
the loss-net E⇥ is trained by an energy loss LE to capture an energy surface that reflects the latent
dependencies among output variables. Low energy indicates a high quality of a label prediction given
an input. Second, a task-net F� is trained using a loss LF that involves minimizing the energy E⇥

estimated by the loss-net. After training finishes, the loss-net is no longer utilized; inference time
predictions are obtained solely from the task-net as ŷi = 1(F�(x)i � 0.5). Unlike SPEN which
requires iterative gradient-based inference, a task-net trained with the SEAL framework has the same
computational efficiency at inference-time as standard feedforward networks (Appendix D), while
enjoying a loss that captures the label dependencies through the loss-net.

To guide the task-net training with the loss-net E⇥, we propose the task-net training loss LF (�;⇥)
to be a weighted sum of estimated energy and a binary-cross entropy (BCE) loss as

LF (�;⇥) = �1E⇥(x, F�(x)) + �2

LX

j=1

BCE(yj , F�(x)j) (1)

where (x,y) is a training instance and BCE(yj , F�(x)j)= �[yj logF�(x)j + (1 �
yj) log (1� F�(x)j)]. By incorporating the energy term in LF , we enable the loss function to
reflect the latent variable dependencies in the output space, whereas BCE treats L labels in a condi-
tionally independent fashion.

We present the formulation of E⇥ used for multi-label classification to analyze the effect of intro-
ducing E⇥ into LF without loss of generality. We use energy network E⇥(x, y) that has the same
structure with Belanger & McCallum (2016) and Gygli et al. (2017) for a fair comparison with them.
The energy E⇥ is the sum of local energy Elocal

⇥ and global energy Eglobal
⇥ which are defined as:

Elocal
⇥ (x,y) =

LX

i=1

yib
>
i TE(x), E

global
⇥ (x,y) = v>�(My), (2)

where bi,v,M, TE contain learnable parameters, TE is a feature network to represent an input x
in the loss-net, and �(z) = log(1 + ez) is the softplus activation function. We observe from the
derivative of the global energy @Eglobal

⇥
@yi

=
�
MT Diag(�0(My))v

 
i

that all dimensions of y decides
the gradient signal for each label i. The global energy term Eglobal

⇥ in LF , specifically, allows the
gradient of the task-net loss to capture the dependency of yi on all L dimensions of y. In contrast,
the gradient of BCE for each label i only depends on the i-th dimension of y. More details are in
Appendix A.

2.1 SEAL-static

Since the task-net loss LF depends on the quality of the loss-net, it is critical to find the loss-net
parameters⇥ that produce the best loss surface for training the task-net �. In order to achieve this, we
first estimate the loss-net parameters b⇥ over training data and then optimize the task-net parameters �
by plugging in the fixed loss-net parameters b⇥ into LF . Formally, given training instances (x,y) 2 D,
the task-net parameters � are trained in the following manner:

min
�

1

|D|
X

D
LF (�; b⇥) s.t. b⇥ = argmin

⇥

1

|D|
X

D
LE(x,y, ỹ;⇥) (3)

Since the loss function LF is static after pretraining b⇥, we call this approach SEAL-static. We discuss
various types of LE losses in §2.3.

2.2 SEAL-dynamic

Ideally, we would like to learn a perfect energy surface by estimating b⇥ that is static. However,
estimating an accurate energy surface over a high-dimensional, continuous joint space X ⇥ Ỹ is a
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challenging task. Instead, we hypothesize that using loss-net to dynamically estimate the energy
surface that is focused around the current input and task-net output pair (x, F�(x)) could be more
beneficial in teaching task-net. To this end, we propose SEAL-dynamic which dynamically adapts
loss-net so that the region of interest for training task-net is well represented.
Given a batch of training data Bt, a complete training step of SEAL-dynamic is provided as

⇥t � ⇥t�1 �r⇥
1

|Bt|
X

Bt

LE

�
x,y, F�t�1(x);⇥

�
(4)

�t � �t�1 �r�
1

|Bt|
X

Bt

LF (�;⇥t) (5)

where the loss-net parameters ⇥t and the task-net parameters �t are optimized in alternating fashion.
Note that, from Eq.(3) to Eq.(4), arbitrary label samples ỹ were replaced with F�t�1(x) from the task-
net during the training of ⇥t parameters. Thus the energy surface learned by the loss-net is adaptive
to the task-net. On the contrary, in SEAL-static, the training of the static loss-net is independent of the
task-net. Further, the update step for the task-net parameters �t relies on dynamic loss-net parameters
⇥t rather than static b⇥. In §4, we show the effectiveness of the proposed SEAL framework compared
to standard feedforward networks and SPENs, and further that SEAL-dynamic often improves over
SEAL-static.

2.3 Energy losses LE

We now discuss various energy loss functions LE with different characteristics such as margin-based,
regression-based, and noise-contrastive-sampling-based, that can be plugged into the SEAL framework
to train the loss-net. For brevity, we use LE(⇥) and LE(x,y, ỹ;⇥) interchangeably.

Margin-based (LE�margin). SPEN (Belanger & McCallum, 2016) learns structured energy network
with the SSVM loss (Taskar et al., 2004; Tsochantaridis et al., 2004) so that energy function learns to
predict sufficient energy difference, larger than the margin � (ỹ,y), between an arbitrary output ỹ
and a true output y. To examine the effect of the margin-based loss in SEAL, we follow SPEN and
utilize the SSVM loss as

LE�margin =
X

x,y

max
ỹ

[� (ỹ,y)� E⇥ (x, ỹ) + E⇥ (x,y)]+ . (6)

SPEN resorts to gradient ascent on ỹ to solve the optimization problem argmaxỹ� (ỹ,y) �
E⇥ (x, ỹ). InfNet (Tu & Gimpel, 2018) proposes an adversarial training of the task-net � together
with the energy network⇥. We identify InfNet as a special case of SEAL-dynamic that uses LE�margin.
We defer a detailed description of InfNet to the related work section §3.

Regression-based (LE�regression). Deep Value Network (DVN) (Gygli et al., 2017) attempts to
learn an energy network which directly outputs a score that is similar to the metric s(ỹ,y) of interest,
such as F1 score, that compares arbitrary ỹ with true output y. Following DVN, we let the true score
s(·)2 and �(�E(·)) be between [0, 1] and express the regression-based loss as cross entropy between
s and �(�E):

LE�regression = �s(ỹ,y) log � (�E⇥(x, ỹ))� (1� s(ỹ,y)) log (1 + � (�E⇥(x, ỹ))) (7)

where �(·) is a sigmoid function. DVN utilizes two samples to train the model: the model prediction
that minimizes the energy and an adversarial sample ỹ that maximizes the loss LE�regression. We follow
this approach for training SEAL-static with LE�regression. To train SEAL-dynamic with LE�regression,
we simply use the output of task-net, F�t�1(x), as described in Eq.(4).

To better capture the energy surface in SEAL-dynamic, we further introduce regression-s loss
LE�regression-s =

P
ỹ2S LE�regression(x,y⇤, ỹ;⇥) where the sample set S is taken by continuously

perturbing task-net output F�t�1(x) with Gaussian noise (experimental analysis on the ‘effect of
samples’ can be found at Appendix E.1).

2In this paper, we adopt soft F1 score s(ỹ,y) from Gygli et al. (2017) that is defined on the continuous
ỹ 2 [0, 1]L.
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Noise-contrastive ranking (LE�NCE). Lastly, we propose to use noise contrastive estimation
(NCE) ranking loss (Ma & Collins, 2018) uniquely for SEAL-dynamic. We are interested in capturing
appropriate energy surface in high-probability output spaces of task-net. To reflect such space
accurately, we propose to train the loss-net E⇥ to contrast the true output y with a group of K
negative samples drawn from the task-net prediction F�(x) motivated by NCE.

Before we discuss LE�NCE for SEAL-dynamic in more detail, we first review the original form of
NCE ranking loss from Ma & Collins (2018). For K samples y(k) ⇠ PN , k = 1, . . . ,K, drawn
from a noise distribution PN , rewriting ground truth y as y(0) without loss of generality, the NCE
ranking loss is defined as

LE�NCE = � log
exp

�
s(x,y(0);⇥)

�
PK

k=1 exp
�
s(x,y(k);⇥)

�where s(x,y;⇥) = �E⇥(x,y)� logPN(y). (8)

Given the noise samples y(k), minimizing Eq.(8) minimizes the energy of the ground truth sam-
ple y(0) while increasing the energy of the noise samples. In SEAL-dynamic, we propose to useQ

i P (yi|x;�t), which is dynamically changing, in place of the static PN (y) in Eq.(8). The NCE
ranking loss is thus

Eq.(8) but with s(x,y;⇥) = �E⇥(x,y)�
X

i

logP (yi|x;�t). (9)

The novelty of this proposal is that task-net, viewed as producing a dynamic noise distribution, is in
turn trained using loss-net.

The NCE ranking loss LE�NCE brings two benefits in SEAL-dynamic. First, LE�NCE captures the
output distribution of the task-net rather than just a single point. Second, LE�NCE allows estimation
of a more fine-grained loss surface as the training steps proceed. In our SEAL-dynamic learning
procedure, we hypothesize that

Q
i P (yi|x;�t) becomes closer to the true data distribution as

training steps proceed. Contrasting these noise samples to the ground truth could lead the loss surface
estimated by loss-net to be more fine-grained. This is in line with the known fact that NCE methods
work the best when the noise distribution is close to the data distribution but not the same (Gutmann
& Hirayama, 2012).

To thoroughly experiment with the proposed NCE ranking loss LE�NCE, we also train a static energy
network with LE�NCE in order to utilize it as a prediction network with GBI and as a loss-net in
SEAL-static. We set PN (y) =

Q
i P (yi|x; ) in Eq.(8), where  is a fixed pretrained feedforward

network. When we train an energy network E⇥ with LE�NCE, exp(�E⇥(x,y))P
y2Y exp(�E⇥(x,y)) becomes an

unbiased estimator of the true distribution P (y|x) (Ma & Collins, 2018). Given a perfect energy
E⇥(x,y), minimizing it with respect to y in SEAL-static and for prediction with GBI is equivalent to
minimizing the estimate of � logP (y|x).

3 Related Work

Learning with dynamic loss. Wu et al. (2018) and Huang et al. (2019) attempt to learn a dynamic
loss for multi-class classification tasks. Both approaches try to learn a parametrized loss function that
can directly increase the model’s metric score m, such as the BLEU or 0-1 accuracy, on the validation
set. Since m is usually non-differentiable, Huang et al. (2019) view this problem as a reinforcement
learning problem and attempt to learn a loss function that maximizes the expected reward. On the
other hand, Wu et al. (2018) relax the m to be differentiable and try to learn a loss parameter (⇥) that
can improve the relaxed score on feed-forward (�) output.

There are three major differences between SEAL and the previous work. While both Wu et al. (2018);
Huang et al. (2019) use the parametric form �(yT⇥ logF�(x)) to define the loss function, SEAL
utilizes a bigger class of functions expressed using general energy network E⇥. Moreover, SEAL
does not require manually designed state vectors and works directly with the task-net outputs. Lastly,
while the SEAL framework is designed for structured prediction, Wu et al. (2018) and Huang et al.
(2019) are designed for multi-class classification and it is non-trivial to extend these methods for
structured prediction.
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Structured Prediction Energy Network (SPEN). Structured prediction energy networks (Belanger
& McCallum, 2016) and its variants (Gygli et al., 2017; Rooshenas et al., 2019) (together referred to
as SPENs) learn an energy network E⇥ : X ⇥ Ỹ ! R and predict the output using gradient-based
inference (GBI) with the objective y = argminy E(x,y). The optimization objective for training the
SPENs relies on finding adversarial or margin-violating points in the label space using gradient based
inference (GBI). This learning process in SPENs is highly sensitive with respect to hyper-parameters
such as the learning rate and initial points for the GBI, resulting in high variance in the model
performance. Nonetheless, SPENs are strong baselines for structured prediction tasks and are used as
motivations for the design of SEAL. They are further discussed in §2.3.

Jointly learning ⇥ and �. Inference Network (InfNet) (Tu & Gimpel, 2018) is the first work
that interactively learns a structured energy network and a feedforward network. It aims to replace
the expensive GBI in SPEN with a feedforward network’s forward pass. During its training with
the SSVM loss (Eq.(6)), SPEN maximizes � (ỹ,y)� E⇥ (x, ỹ) with respect to ỹ by GBI. InfNet,
on the contrary, trains a feedforward network F� to generate ỹ = F�(x) that maximizes the term.
This results in an adversarial framework (Goodfellow et al., 2014), where a feedforward network
maximizes the margin-based loss while an energy network minimizes it. The approach, however,
suffers from train-test-time objective mismatch (Tu et al., 2020). While the feedforward network
serves as an adversarial sampler during training, the end goal is to learn a feedforward network that
predicts outputs with low energy at test time. Tu et al. (2020) resolves this by learning two separate
feed-forward networks: one adversarial sampler for training and the other for performing inference.

Our proposed SEAL generalizes, and differs from, InfNet by providing a framework that can employ
completely independent loss functions for training loss-net and task-net. SEAL updates task-net in
the direction of reducing energy defined by loss-net; loss-net is only used as a tool for evaluation
of loss, and how loss-net is trained does not matter as long as it estimates a good loss surface for
task-net. The SEAL framework is not interested in producing the similar test-time behaviour of SPEN
as InfNet did. Despite the difference in the end goal, mechanically speaking, InfNet is a special case
of SEAL-dynamic (i.e. SEAL-dynamic with LE�margin) with the margin removed from the SSVM loss
for the feedforward model training. In fact, Tu et al. (2020) reports that this special case leads to
more efficient and stable learning of the feedforward network . We use this special case of InfNet to
represent SEAL with LE�margin in the main experiment, and by doing so, we reinterpret the success of
InfNet as a result of utilizing energy network as a loss function, as our formulation shows, rather than
the result of task-net mimicking the test-time behaviour of energy network.

4 Experiments

Tasks and Datasets. We demonstrate the effectiveness of SEAL on widely deployed structured
prediction tasks: feature and text-based multi-label classification (MLC), semantic role labeling
(SRL), and image segmentation. Feature-based MLC is a standard evaluation task in previous works
on SPENs (Belanger & McCallum, 2016; Gygli et al., 2017; Tu & Gimpel, 2018). We utilize 7
feature-based MLC datasets which cover various label sizes (ranging from 27 to 4k), training sizes,
and input characteristics (binary, real) as shown in Table 5 to extensively compare baselines and
proposed SEAL approaches: cross-entropy (CE), energy network, SEAL-static, and SEAL-dynamic.
Then we verify that SEAL-dynamic, which outperforms SEAL-static on feature-based MLC, can also
effectively train large pre-trained language models like BERT (Devlin et al., 2019) on text-based MLC
and SRL tasks and convolutional networks on image segmentation. Dataset statistics are described in
Appendix B.

Feature network, loss-net and task-net. In MLC and SRL experiments, to represent input x, we
utilize the same feature network structures TE and TF for the energy and feedforward networks,
which correspond to the loss-net and the task-net for SEAL framework. The energy network utilizes
TE in the manner shown in equation 2. Given a feature network TF that generates features in Rh,
the task-net F�(x) = GTF (x), where G 2 RL⇥h is a matrix consisting of learnable embeddings,
one row of embedding for each label. Specific feature network structures vary by tasks: multi-layer
perceptron for feature-based MLC and BERT for text-based MLC and SRL. In image segmentation
experiments, we follow Gygli et al. (2017) and use a Fully Convolutional Network (FCN) as the
task-net; the loss-net uses the same convolutional layers in the FCN, followed by fully connected
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Table 1: Performance (F1 ") of feature-based MLC datasets. The task-net learned with SEAL-static
and SEAL-dynamic outperforms cross-entropy-trained model most of the time. The SEAL framework
which utilizes an energy network as a loss performs better and faster than an energy network utilized
as a prediction network. Best results per dataset are marked with underline; best results within a
framework (energy network with GBI, SEAL-static, SEAL-dynamic) are marked in bold.

method samples discrete input datasets continuous input datasets mean F1 gain over CE
bibtex delicious genbase cal500 eurlexev expr_fun spo_fun overall �genbase

cross-entropy (CE) x 42.40 ± 0.18 29.89 ± 0.08 47.37 ± 7.47 33.58 ± 0.43 42.19 ± 0.07 37.50 ± 0.18 27.81 ± 0.13 - -

energy network with GBI

SPEN x 42.99 ± 0.16 24.20 ± 0.07 32.13 ± 0.15 37.24 ± 1.07 41.86 ± 0.04 36.74 ± 0.61 27.95 ± 0.18 -2.52 -0.40
DVN x 45.95 ± 0.13 24.87 ± 0.57 77.92 ± 1.00 47.74 ± 0.19 25.49 ± 0.32 31.47 ± 0.43 29.35 ± 0.31 3.15 -1.42
NCE ranking o 12.95 ± 0.53 12.69 ± 0.15 12.40 ± 0.81 33.89 ± 0.49 0.19 ± 0.00 27.74 ± 0.17 18.06 ± 0.38 -20.40 -17.98

SEAL-static

margin x 43.11 ± 0.15 28.08 ± 0.06 57.45 ± 5.17 33.91 ± 0.45 42.15 ± 0.08 38.13 ± 0.17 28.15 ± 0.17 1.46 0.02
regression x 42.29 ± 0.18 30.09 ± 0.08 96.68 ± 0.11 37.63 ± 0.44 42.18 ± 0.07 38.12 ± 0.17 28.42 ± 0.09 7.78 0.86
NCE ranking o 43.03 ± 0.15 30.08 ± 0.05 96.43 ± 0.15 37.82 ± 0.38 42.11 ± 0.11 37.78 ± 0.16 28.29 ± 0.05 7.83 0.95

SEAL-dynamic

margin (InfNet) x 42.86 ± 0.16 29.75 ± 0.11 96.53 ± 0.21 36.69 ± 0.40 41.83 ± 0.65 37.81 ± 0.14 28.43 ± 0.13 7.59 0.67
regression x 43.74 ± 0.14 29.79 ± 0.05 96.95 ± 0.14 37.97 ± 0.33 41.67 ± 0.08 37.99 ± 0.09 29.02 ± 0.11 8.05 1.13
regression-s o 44.53 ± 0.18 29.87 ± 0.07 96.81 ± 0.20 38.95 ± 0.13 42.37 ± 0.05 37.93 ± 0.12 28.29 ± 0.12 8.29 1.43
NCE ranking o 44.76 ± 0.17 34.67 ± 0.38 97.32 ± 0.81 41.62 ± 0.80 42.77 ± 0.06 38.28 ± 0.09 28.83 ± 0.13 9.64 2.93

Inference speed

(examples/sec)
feedforward 840 2307 1005 1080 317 3801 5231 Average 3.63xGBI 414 599 574 438 162 638 709 speedup

layers which replaces the tranposed convolutional layers in FCN to output scalar scores, instead of
the energy formulation in Eq.(2).

Training. We use separate ADAM optimizers (Kingma & Ba, 2014) for the loss-net (⇥) and the
task-net (�) which optimize parameters in alternating fashion3. We defer specific training details
such as hyperparameters, gpu environment, and number of random seed runs to the Appendix C.1.

4.1 Multi-label classification for feature-based datasets

Multi-label classification (MLC) is a structured prediction task that does not hold an obvious latent
structure in the multivariate space. In addition to including Bibtex and Delicious that were used in
previous works (Belanger & McCallum, 2016; Gygli et al., 2017; Tu & Gimpel, 2018), we carefully
picked smaller (Genbase, Cal500) and larger datasets (Eurlex-ev) as well as datasets with known
taxonomy (Spo_FUN, Expr_FUN) to examine SEAL in various scenarios. The experiment results
(test F1) across 7 feature-based dataset are presented in Table 1: feedforward network trained with
cross-entropy (row 1), energy networks (row 2-4) described in §3 that is evaluated with GBI, task-nets
trained with SEAL-static (row 5-7), and task-nets trained with SEAL-dynamic (row 8-11).

In general, SEAL-static and SEAL-dynamic outperform both cross-entropy (CE) and prediction energy
networks with GBI on almost all datasets with average gains of SEAL-dynamic over CE ranging from
+0.67 to +2.93 F1 points, excluding results on genbase dataset. While the near-perfect performance
of SEAL on genbase is interesting (see Appendix E.2 for detailed analysis), we exclude this excessive
gain for computing the average performance when comparing different models throughout this paper.

Since SEAL uses single forward pass of the task-net for inference, it is as fast as the feedforward
model and 3.63x faster (on average) at inference than the corresponding energy network trained using
GBI. However, in training time, SEAL utilizes about twice the parameter to feedforward model as
it loads both task-net and loss-net and takes about 5x more time to train compared to feedforward
model. In summary, SEAL is better performing than both energy network and feedforward model and
as fast as feedforward model at inference time by utilizing more computations in training time. The
training time, inference time, and parameter size of different methods are reported in Appendix D.

Cross entropy vs SEAL. While cross entropy cannot capture the dependencies between the labels,
we find that global energy of the loss-net visibly captures some of these dependencies. We plot the
gradients of global energy with respect to a pair of labels to analyse pairwise dependencies. These
plots can be found in §5 and the Appendix G.

3The code we used to train and evaluate our models is available a https://github.com/iesl/
seal-neurips-2022
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Energy network vs. SEAL-static. There is a high variability in the performance of the energy
network with GBI. For instance, while SPEN and DVN surpass CE models with large margins for
half of the datasets, they underperform on the rest of the datasets with similar margins. Further, even
though DVN has the best performance on three datasets, its average performance (-genbase) is lower
than CE. Nonetheless, in SEAL-static, when the identical energy network is utilized as a loss-net, the
performances increase in a stable manner (0.42-2.26 F1 on average) with faster (1.8x-7.4x) inference
time. This trend is most evident with the NCE ranking loss, where the energy network trained with it
drastically fails to provide a good energy surface for predicting output with GBI, whereas it provides
a useful loss surface for training task-net.

We believe there are two factors for this stable improvement of SEAL-static. One is that injection of
an energy surface as a loss is a softer injection of gradients compared to it being used as a surface for
inference. The second factor is a synergy between cross-entropy and the energy surface. Even when
certain regions of the energy surface are less accurate, the cross-entropy signal could compensate
for the erroneous surface. Thus, we claim that an energy network as a loss is a more stable way of
utilizing it compared to GBI.

SEAL-static vs. SEAL-dynamic. As seen in Table 1, with an average gain of 0.47 to 1.97 F1 points,
SEAL-dynamic is always on par or better than the corresponding SEAL-static. This confirms our
hypothesis that it is helpful for the loss surface to consider the current state of the task-net as opposed
to estimating the global energy landscape. Lastly, SEAL-dynamic not only brings better performance
but also simplifies the engineering as both loss-net and task-net can be trained from scratch. We
observed that binary cross entropy in LF stabilizes the learning signal even in the early stage when
loss-net might not be well-trained.

In summary, the SEAL framework outperforms CE loss and energy networks with GBI. We observe
the generality of the SEAL framework as all of the energy loss types benefit working with SEAL,
although more effective types of energy loss exist. SEAL-dynamic brings extra gain in performance to
SEAL-static and among them, the NCE ranking loss shows the most notable improvement. Lastly,
as can be seen with the example of the NCE ranking loss, an energy network that serves as a poor
prediction network does not necessarily correlate to a poor energy loss for SEAL.

4.2 Multi-label classification for large text datasets

Table 2: Test F1 for AAPD

method F1 "
BERT (cross-entropy) 73.97
LACO (Zhang et al., 2021) 74.90
SEAL-dynamic (NCE) 74.95±0.31

To test the effectiveness of SEAL on large language models, we
finetune pre-trained BERT as the feature network TE and TF

on text MLC datasets. Considering the computational expense
of running hyper-parameter searches on BERT, we compare the
best-performing SEAL from Table 1, SEAL-dynamic with NCE
ranking, with baselines: BERT finetuned with cross-entropy
and the state-of-the-art text-MLC model (LACO) (Zhang et al.,
2021). Following LACO, we experiment with the Arxiv Aca-
demic Paper Dataset (AAPD) (Yang et al., 2018) which consists
of computer science papers with annotations of 54 topics. Table 2 shows that SEAL-dynamic with
the NCE ranking loss is effective on pre-trained models that utilizes large text datasets as well.
SEAL-dynamic again improves task-net trained with cross entropy and performs on par with MLC-
specific model architecture. To efficiently work with large pre-trained models, we further studied
utilizing BERT-adapter models on three additional text-based datasets (Appendix F) which also
showed SEAL-dynamic-NCE model outperforming cross-entropy and InfNet.

4.3 Semantic role labeling

To examine SEAL on capturing label dependencies at a sequence level, we perform experiments on
semantic role labeling (SRL) (Palmer et al., 2010) using standard benchmark (CoNLL-12) (Pradhan
et al., 2013). SRL aims to annotate the predicate-argument structure on plain text extracting who did
what to whom. Because the argument roles in a sentence are dependent to each other, injection of
structural priors has shown improvements in performance (Lee et al., 2019; Mehta et al., 2020; Li
et al., 2020). To apply SEAL, we utilize pre-trained BERT as the feature network TE and TF . To
capture the energy on variable-length output, we modify Eglobal

⇥ in equation 2 to use self-attention
layers. We defer more detailed task description, data statistics, and energy architecture to appendix.
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We compare SEAL-dynamic (NCE) on BERT-base against two models: one model trained with
cross-entropy loss and another model trained with structured tuning framework (Li et al., 2020) where
both models utilize BERT-base with CRF layers (Lafferty et al., 2001). Structured tuning enforces the
model to learn the SRL-specific constraint (unique core role) through differentiable constraint loss.
Unique core role violation refers to model predicting a type of core argument more than once when
it should be unique. To examine effectiveness of SEAL in capturing output dependencies, we report
unique-core-role violation rate (UCR) in percentage along with F1 score. While SEAL-dynamic does
not enforce any specific constraints nor utilize CRF layers, it shows notable reduction in constraint
violation and higher improvement in performance.

Table 3: Results on CoNLL-12. We report F1 and
unique core role violation (UCR) in percentage.

Dev Test

method F1 " UCR # F1 " UCR #
BERT-CRF 85.92 1.41 85.97±0.14 1.32
Structured tuning 86.18 0.78 86.12±0.06 0.79

SEAL-dynamic 86.94 ± 0.07 0.92±0.02 86.90±0.06 0.91±0.03

Table 4: Test mean image IoU for Weiz-
mann Horse segmentation.

method Mean IoU "
FCN (cross-entropy) 77.80±0.59

DVN with GBI 72.93±0.52

SEAL-dynamic (regression) 79.23±0.35

SEAL-dynamic (NCE) 76.78±0.60

4.4 Image segmentation

We evaluate SEAL on binary image segmentation using the Weizmann Horse Image dataset (Borenstein
& Ullman, 2004). This task requires a model to learn to predict detailed structures of horse shapes
from a scarce 160 training images of a low 32⇥32 resolution. Following Gygli et al. (2017), we
implement Fully Convolutional Network (FCN) (Long et al., 2015) as our feedforward baseline and
DVN (Gygli et al., 2017) as our energy network baseline. Given a 3-channel L-pixel RGB image
input x, FCN outputs the probability ỹ 2 [0, 1]L that each pixel belongs to a horse object; a binary
segmentation mask can be obtained through 1(ỹ � 0.5). In contrast, DVN takes a pair of image
x and soft segmentation mask ỹ to output their compatibility score and resort to gradient-based
inference for prediction. Following Gygli et al. (2017), we train DVN by plugging the soft IoU score

s(ỹ,y⇤) =

PM
i=1 min(ỹi, y⇤i )PM
i=1 max(ỹi, y⇤i )

, while IoU(y,y⇤) =
y \ y⇤

y [ y⇤ for y,y⇤ 2 {0, 1}L, (10)

into the Eq.(7). For training with the SEAL framework, we adopt the FCN and DVN architectures
for the task-net and the loss-net respectively. In our experiment, we examine SEAL-dynamic with
regression which uses the same energy loss as DVN and SEAL-dynamic with the NCE loss because it
performs the best in multiple other experiments. More dataset and model details are in Appendix B;
experiment details are in Appendix C.2.

Table 4 shows test performances of FCN trained by cross-entropy, DVN, and FCN trained with
SEAL-dynamic. Similar to §4.1, we observe that the GBI procedure in DVN training and inference is
slow and unstable (Appendix B.3 for more details). While DVN does not outperform feedforward
model learned with cross-entropy, the same energy network structure used as a loss-net in SEAL-
dynamic (regression) improves the mean IoU of FCN by 1.43 IoU point and has less variance across
random-seed runs. Additionally, we find that SEAL-dynamic with the NCE loss proposed for MLC
does not improve FCN. This is likely because many negative samples in NCE are non-realistic as we
sample each pixel independently and do not take into account the prior that nearby pixels on image
are likely to be in the same class. We leave the exploration of other energy network architectures and
sampling strategies in the image domain as future work.

5 Further analysis

In this section, we analyze (1) whether gradient of loss-net rightly captures multivariate dependencies,
(2) the effect of ranking loss, and (3) we provide pointers to the data-specific analysis and discussion
on the effect of samples in Appendix E.

Visualization of gradients In order to inspect the learning signal provided to the task-net by the
loss-net, we plot a single component of the gradient from the global energy of the loss-net, i.e.
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@Eglobal
⇥

@yk
(yi, yk). In Figure 2, we inspect the global energy function of DVN trained on the expr_fun, a

dataset that provides a taxonomy on the output space. We first plot the discussed gradient component
when lk have positive association with li, i.e., li ! lk4 (2b). Contrasting this with the case when
lk does not have a significant association with li (2c), we see that the gradient of the global energy
rightly captures the presence and absence of association between the labels. In contrast, binary
cross-entropy is incapable of capturing label-to-label association (2a) which is obvious when we
inspect its gradient as shown in Appendix A. See Appendix G for more examples and for detailed
description of plotting procedure.

(a) BCE w/ and w/o assoc. (b) energy w/ positive assoc. (c) energy w/o significant assoc.

Figure 2: Given there exists a positive association li ! lk between two labels, the gradient @Eglobal
✓

@yk

is plotted (b) and compared with the gradient of BCE (a) when true lk = 1. The gradient of global
energy is also plotted (c) for the case when there is no significant association between the two labels.

Effect of applying a ranking loss directly on F� With the large improvement that SEAL-NCE
achieves, we examine whether the gain is coming from our SEAL framework or simply from the
power of a ranking loss itself that can also be applied to the task-net F� directly (i.e. s(x,y;⇥) =P

i logP (yi|x;�t) in equation 8). We conduct this ablation study over relatively small datasets:
genbase, cal500, and delicious. While we observe a near +10 F1 point in genbase, we see a decrease
in performance on cal500 (-1.0 F1) and delicious (-2.3 F1) compared to the plain cross-entropy model.
With these experiments, we first reaffirm that genbase is an outlier dataset where capturing structure
can significantly increase the performance. Second, we conclude that the ranking loss without an
loss-net is not very effective and that the loss-net indeed plays a major role in the SEAL framework.

6 Conclusion

We propose SEAL, a framework that can adopt a structured energy network as a trainable loss function
for training a feedforward network. We show that SEAL is a general framework that can work with
various loss functions, such as margin-based, regression-based, and NCE ranking losses, and with
different architectures, such as MLPs, CNNs, and pretrained models (BERT). Through extensive
experiments on feature-based, text-based MLC, SRL, and image segmentation, we show that SEAL
provides an effective way to utilize an energy network and a cross-entropy loss together: performing
better, faster, and in a more stable manner when combined. Lastly, through the ablation study, we
examine how the loss-net captures the dependencies among output variables. This research opens
up doors for various future work, including but not limited to, exploration of different architectures
of energy network; application of learned loss-nets in semi-supervised setups. In the long horizon,
we are interested in whether general pretrained scoring neural networks, such as BLEURT (Sellam
et al., 2020) and BERT-score (Zhang et al., 2019), could serve as a loss function when it can provide
backpropagatable gradients to the output space of a feedforward network.

Acknowledgments and Disclosure of Funding

This work was partially supported by New Faculty Startup Fund from Seoul National University, IBM
Research AI through the AI Horizons Network and the Chan Zuckerberg Initiative under the project
Scientific Knowledge Base Construction. Additional support was provided by the NSF under Grant
Number IIS-2106391, and the Office of Naval Research (ONR) via Contract No. N660011924032
under Subaward No. 123875727 from the University of Southern California.

4We get label-label dependency from true taxanomy of expr_fun.

10



References

Aly, R., Remus, S., and Biemann, C. Hierarchical multi-label classification of text with capsule
networks. In ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics,
Proceedings of the Student Research Workshop, pp. 323–330, 2019. ISBN 9781950737475. doi:
10.18653/v1/p19-2045.

Belanger, D. and McCallum, A. Structured prediction energy networks. In 33rd International Confer-
ence on Machine Learning, ICML 2016, volume 3, pp. 1545–1554, 2016. ISBN 9781510829008.

Biewald, L. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/.
Software available from wandb.com.

Borenstein, E. and Ullman, S. Learning to segment. In European conference on computer vision, pp.
315–328. Springer, 2004.

Chen, L.-C., Schwing, A., Yuille, A., and Urtasun, R. Learning deep structured models. In
International Conference on Machine Learning, pp. 1785–1794. PMLR, 2015.

Devlin, J., Chang, M. W., Lee, K., and Toutanova, K. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. NAACL HLT 2019 - 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies - Pro-
ceedings of the Conference, 1:4171–4186, 2019. URL http://arxiv.org/abs/1810.04805.

Ghamrawi, N. and McCallum, A. Collective multi-label classification. In Proceedings of the 14th
ACM international conference on Information and knowledge management, pp. 195–200, 2005.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. Generative adversarial nets. Advances in neural information processing systems, 27,
2014.

Gutmann, M. and Hirayama, J.-i. Bregman divergence as general framework to estimate unnormalized
statistical models. arXiv preprint arXiv:1202.3727, 2012.

Gygli, M., Norouzi, M., and Angelova, A. Deep value networks learn to evaluate and iteratively
refine structured outputs. In 34th International Conference on Machine Learning, ICML 2017,
volume 3, pp. 2160–2170, 2017. ISBN 9781510855144. URL https://goo.gl/8OLufh.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., Attariyan,
M., and Gelly, S. Parameter-efficient transfer learning for NLP. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/houlsby19a.html.

Huang, C., Zhai, S., Talbott, W., Martin, M. B., Sun, S.-Y., Guestrin, C., and Susskind, J. Addressing
the loss-metric mismatch with adaptive loss alignment. In International Conference on Machine
Learning, pp. 2891–2900. PMLR, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Lafferty, J., McCallum, A., and Pereira, F. C. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. 2001.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. A tutorial on energy-based learning.
Predicting structured data, 1(0), 2006.

Lee, J. Y., Mehta, S. V., Wick, M., Tristan, J.-B., and Carbonell, J. Gradient-Based Inference for
Networks with Output Constraints. Proceedings of the AAAI Conference on Artificial Intelligence,
33:4147–4154, 2019. ISSN 2159-5399. doi: 10.1609/aaai.v33i01.33014147. URL www.aaai.org.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. Rcv1: A new benchmark collection for text
categorization research. Journal of machine learning research, 5(Apr):361–397, 2004.

11

https://www.wandb.com/
http://arxiv.org/abs/1810.04805
https://goo.gl/8OLufh
https://proceedings.mlr.press/v97/houlsby19a.html
www.aaai.org


Li, T., Jawale, P. A., Palmer, M., and Srikumar, V. Structured tuning for semantic role labeling. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
8402–8412, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
acl-main.744. URL https://aclanthology.org/2020.acl-main.744.

Li, Y., Tarlow, D., and Zemel, R. Exploring compositional high order pattern potentials for struc-
tured output learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 49–56, 2013.

Long, J., Shelhamer, E., and Darrell, T. Fully convolutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440,
2015.

Ma, Z. and Collins, M. Noise contrastive estimation and negative sampling for conditional models:
Consistency and statistical efficiency. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 3698–3707, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1405. URL https:

//aclanthology.org/D18-1405.

Mehta, S. V., Lee, J. Y., and Carbonell, J. Towards semi-supervised learning for deep semantic role
labeling. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2018, pp. 4958–4963, 2020. ISBN 9781948087841. URL https://github.

com/allenai/allennlp.

Müller, A. C. Methods for learning structured prediction in semantic segmentation of natural images.
2014.

Palmer, M., Gildea, D., and Xue, N. Semantic role labeling. Synthesis Lectures on Human Language
Technologies, 3(1):1–103, 2010.

Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., and Gurevych, I.
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