
Biological Learning of Irreducible Representations
of Commuting Transformations

Alexander Genkin* David Lipshutz† Siavash Golkar†
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Abstract

A longstanding challenge in neuroscience is to understand neural mechanisms un-
derlying the brain’s remarkable ability to learn and detect transformations of objects
due to motion. Translations and rotations of images can be viewed as orthogonal
transformations in the space of pixel intensity vectors. Every orthogonal trans-
formation can be decomposed into rotations within irreducible two-dimensional
subspaces (or representations). For sets of commuting transformations, known
as toroidal groups, Cohen and Welling proposed a mathematical framework for
learning the irreducible representations. We explore the possibility that the brain
also learns irreducible representations using a biologically plausible learning mech-
anism. The first is based on SVD of the anti-symmetrized outer product of the
vectors representing consecutive images and is implemented by a single-layer
neural network. The second is based on PCA of the difference between consecutive
frames and is implemented in a two-layer network but with greater biological
plausibility. Both networks learn image rotations (replicating Cohen and Welling’s
results) as well as translations. It would be interesting to search for the proposed
networks in nascent connectomics and physiology datasets.

1 Introduction

The brains of humans and other animals identify objects, such as human faces, regardless of their
location and orientation in the visual field. This requires learning identity-preserving transformations
such as translations, scaling and rotations. Guiding locomotion requires identifying the direction and
speed of the optic flow. Flies, to maintain stable flight, detect relative translational and rotational
motion of their surroundings.

Whereas real-life transformations can be a mixture of translations and rotations, for simplicity,
we consider learning one kind of transformation at a time. A sequence of pairs of images before
and after transformations are streamed to an unsupervised algorithm. The algorithm learns these
transformations and detects their magnitude, which corresponds to the speed times the time step.

Transformations such as rotations and translations of any magnitude can be decomposed into infinites-
imal transformation operators (called generators) and magnitudes. For these so called Lie groups,
generators can be learned from data and magnitudes of transformation determined for each pair of
images, as shown by Rao and Ruderman [14].
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Many transformations can be represented as rotations in the high-dimensional space of vectorized
images. Such rotations can be decomposed into a set of commuting 2D rotations, each characterized
by a generator and a magnitude, and comprise toroidal groups. Learning toroidal groups reduces to
finding an “irreducible representation”—a problem solved by Bethge et al. [3] (for fixed magnitudes)
and Cohen and Welling [5] (for varying magnitudes).

An important problem in neuroscience is to develop biologically plausible algorithms and neural
circuits that learn to detect transformations and their magnitudes. By biological plausibility we
understand the following requirements [4]: (i) the algorithm operates in the online setting where
pairs of images are streamed sequentially while the transformations are learned and the magnitudes
are determined in real time; (ii) previously seen data cannot be stored by the algorithm other than
a highly compressed representation in the synaptic weights; (iii) synaptic weight update (learning)
rules are local, meaning that the weight update at a particular synapse depends only on the activity of
the two neurons it connects.

The generator approach of [14] presents difficulties for biologically plausible neural circuit imple-
mentations. Specifically, detecting transformation magnitude requires multiplying all possible pairs
of pixels taken from the images before and after the transformation weighted by the generator. The
difficulty was overcome in two biologically plausible neural circuits proposed in [1].

In this paper we propose two algorithms for learning irreducible representations of toroidal groups
that exhibit greater biological plausibility than prior work. We construct biologically plausible imple-
mentations that build upon the work from Cohen and Welling [5], which did not address biological
plausibility. In contrast to the generator-based approach [14; 1], using irreducible representations
eliminates the need for the multiplication of inputs. The neural circuits we propose can be searched
for in the nascent connectomics and physiology datasets.

The first proposal is based on computing an average of anti-symmetrized outer products of vectorized
images (bivectors, as in [3]) followed by a singular value decomposition (SVD) to yield irreducible
representations. To perform SVD online, we adapt an algorithm for the SVD of cross-covariance
matrix. When only the top irreducible component is desired, we show how to implement this algorithm
using a biologically plausible model of a single neuron. For multiple irreducible representations
the algorithm relies on deflation. The neural network implementation of the deflation step violates
requirement (iii) of biological plausibility above, which motivates another approach.

Our second proposal is based on the PCA of time differences of vectorized images. The corresponding
neural network relies solely on local learning rules, which makes it fully biologically plausible by our
definition. The resulting two-layer network decomposes the transformations into their irreducible 2D
rotations in the first layer, and outputs the angle of each 2D rotation in the second layer.

2 Setup

Figure 1: Consecutive video frames with rotated
images are streamed to the learning algorithms.

Consider a stream of consecutive video frames
(Fig. 1) vectorized into d-dimensional pixel-
intensity vectors {xt} satisfying linear relations

xt = Atxt−1. (1)
We focus here on image transformations that
maintain the norm of xt approximately constant.
These include translations, rotations, and more
generally, local deformations, which shuffle pix-
els around without affecting their values signifi-
cantly. This assumption implies that the transfor-
mation matrix At is orthogonal. In this case, we
can decompose At into independent rotations
within orthogonal 2D subspaces, as follows

At = QtΓtQ
⊤
t , Γt = blockdiag(R(θ1t ), . . . ,R(θ

d/2
t )), R(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
. (2)

Here Qt is a d× d orthogonal matrix, Γt is a d× d block-diagonal matrix whose blocks are 2× 2
rotation matrices indexed by θit, i = 1, . . . , d/2, and we have assumed, for simplicity, that d is even.
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Pairs of consecutive column vectors (qt,2i−1,qt,2i) of Qt define orthogonal 2D subspaces and θit
represents the angle of rotation within that 2D subspace. As desired, this canonically separates the
transformation identity (the 2D subspace) from the velocity (the angle of rotation).

Following Cohen and Welling [5], we consider the problem of learning a representation for the
d/2-dimensional commutative subgroup of rotations of the form At = QΓtQ

⊤, where Q is a fixed
orthogonal matrix and Γt is any block-diagonal matrix of the form in equation (2). The subgroup
is commonly referred to as a toroidal subgroup because it is parameterized by the d/2-dimensional
torus {(θ1, . . . , θd/2) : θi ∈ [0, 2π)}. With this simplification, the d/2 mutually orthogonal 2D
subspaces constitute an irreducible representation of the subgroup [5].

The focus of this work is to derive a neurally plausible algorithm for (A) learning the irreducible
representation from a stream of pairs of vectorized video frames {(xt−1,xt)}, and (B) outputting the
angle of rotation θit within the top k 2D subspaces, for some 1 ≤ k ≤ d/2.

3 Learning the irreducible representation from data

We consider learning the irreducible representations from data in the offline setting using two
approaches. The first approach is based on an SVD of the average bivector between consecutive
frames. The second approach is based on PCA of the covariance of the difference between consecutive
frames. The analysis here will be the starting point for the derivations of the online algorithms.

We assume the sequence {xt} is centered and whitened so that ⟨xtx
⊤
t ⟩t = Id. Whitening of sensory

inputs is hypothesized to be a function of early sensory systems [2] so we believe it is reasonable to
assume that the circuit receives pre-whitened inputs. Furthermore, a number of biologically plausible
algorithms for input whitening have been proposed and experimentally observed in some cases
[6; 11; 16].

In addition, we assume that At is independent of xt [14; 3], which holds approximately in many
situations. For instance, most objects can move either left, right or up, down, even though the exact
probabilities of each kind of transformation might depend weakly on object identity.

3.1 Learning on SVD of bivectors of consecutive frames

Given a pair of consecutive frames (xt−1,xt), define the bivector

Bt := xtx
⊤
t−1 − xt−1x

⊤
t = Atxt−1x

⊤
t−1 − xt−1x

⊤
t−1A

⊤
t , (3)

where we have used the relation xt = Atxt−1. The bivector is an anti-symmetric matrix, which is
also commonly referred to as the ‘wedge product’ or ‘exterior product’. Under our assumptions that
xt and At are independent and {xt} is whitened (i.e., ⟨xtx

⊤
t ⟩t = Id), we have

B := ⟨Bt⟩t = ⟨At −A⊤
t ⟩t = QGQ⊤, (4)

where

G := ⟨Γt − Γ⊤
t ⟩t = blockdiag(G1, . . . ,Gk), Gi :=

(
0 −gi
gi 0

)
, gi := 2⟨sin θit⟩t.

Note that gi can be zero if the distribution of θit is symmetric about zero. Therefore, to use this
approach, we assume that gi ̸= 0 for i = 1, . . . , k.

To learn the column vectors of Q = [q1, . . . ,qd], it will be convenient to write the SVD of B in
terms of Q. To this end, we assume, without loss of generality, that g1 ≥ · · · ≥ gd/2 ≥ 0. Then we
have the following lemma, whose proof is deferred to Supplement A.
Lemma 1. The SVD of B can be written as B = UΣV⊤, where

U := Q, Σ := diag(g1, g1, . . . , gd/2, gd/2), V := [v1, . . . ,vd],

and (v2i−1,v2i) = (q2i,−q2i−1) for i = 1, . . . , d/2.

In other words, each pair of left- and right-singular vectors of B, (ui,vi), spans one of the 2D
mutually orthogonal subspaces. Therefore, to learn the irreducible representation, it suffices to learn
pairs of left- and right-singular vectors of B. Moreover, the first pair of left- and right-singular vectors
spans the same subspace as the second pair of left- and right-singular vectors, and same with the third
and fourth pairs, and so on. Therefore it is sufficient to learn only a subset such as all odd-numbered
pairs.
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3.2 Learning on PCA of differences between consecutive frames

We now present an alternative method for learning the column vectors of Q, by performing PCA on
the covariance of the discrete time derivatives defined by ẋt := xt − xt−1. Under our assumptions
that At is independent of xt and the vectors xt are whitened, we have

⟨ẋtẋ
⊤
t ⟩t = 2Id − ⟨At +A⊤

t ⟩t = Q(2Id − ⟨Γt + Γ⊤
t ⟩t)Q⊤ = QΓ̂Q⊤, (5)

where Γ̂ = diag(γ1, γ1, . . . , γk, γk) and γi := 2 − 2⟨cos θit⟩t. Importantly, the column vectors of
Q are eigenvectors of ⟨ẋtẋ

⊤
t ⟩t with associated eigenvalues γi and, assuming that γ1 > · · · > γd/2,

each γi corresponds to a unique 2D subspace. Therefore the transformations with the largest angles
can be found by performing PCA on ⟨ẋtẋ

⊤
t ⟩t. Note that under this approach, γi = 0 if and only if θit

is identically zero.

It is worth noting that, under the whitening assumption on xt, performing PCA on the discrete time
sums xt +xt−1 learns features that are ‘temporally slow’ [10], which is hypothesized to be useful for
learning objects [17]. From this perspective, learning transformations can be viewed as a complement
of learning objects.

4 Biological algorithms based on SVD of the average bivector

To compute the SVD of B, consider the following optimization problem:

max
U,V

Tr(U⊤BV) s.t. U⊤U = V⊤V = Id, (6)

whose solution is the pair of matrices of left- and right-singular vectors of B. To solve this online we
adapt an algorithm for SVD of cross-covariance matrix [7].

4.1 Finding the subspace with largest rotation velocity

Start with an optimization problem for finding the top pair of singular vectors:

max
u,v

u⊤Bv s.t. ∥u∥ = ∥v∥ = 1 . (7)

In the online setting optimization is performed by projected stochastic gradient descent:

u← u+ ηtBtv

∥u+ ηtBtv∥
, v← v − ηtBtu

∥v − ηtBtu∥
, (8)

where ηt > 0 is the learning rate, Bt is used as the current approximation of B, and we have used the
anti-symmetric property B⊤

t = −Bt.

Normalization steps are hard to map onto a biological circuit, so following the idea from Oja’s
algorithm [13]: assuming small enough learning rates, update equations can be expanded using a
Taylor series in ηt. In this case, the iteration takes the form:

u← u+ ηt
(
Btv − (u⊤Btv)u

)
, (9a)

v← v + ηt
(
−Btu+ (v⊤Btu)v

)
. (9b)

A convergence proof for this algorithm is given in Supplement B.

Since the matrix B is anti-symmetric, the singular vectors resulting from this optimization, u and v,
are orthogonal, and define the 2D subspace with the largest average sine of the angle of rotation. Now
each input vector xt can be projected on the 2D subspace, and we denote the projected coordinates
as at := u⊤xt, bt := v⊤xt. Using the definition of Bt from Eq. (3) and substituting at, bt into the
objective yields:

u⊤Bv = u⊤⟨Bt⟩tv = ⟨atbt−1 − at−1bt⟩t = ⟨yt⟩t, (10)
where yt := atbt−1 − at−1bt. This suggests two linear neurons with common input and weights u
and v generating output streams at and bt, followed by a circuit known as a Hassenstein-Reichardt
detector [15]; see Fig. 2(a). Now the angle of rotation θt can be recovered:

θt = arcsin

 yt√
a2t + b2t

√
a2t−1 + b2t−1

 .
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Figure 2: Biologically plausible implementations of the SVD algorithm. (a) The Hassenstein-
Reichardt circuit calculates bivectors of consecutive inputs. Neuron a (b) projects input vectors
onto the synaptic weight vector u (v). Then the delayed and non-delayed signals from a and b are
multiplied and the products are ultimately subtracted, Eq. (10). (b) A neuron learning the subspace
with largest rotation velocity. Left (right) dendritic branches receive synapses projecting the input
onto the vector u (v) and perform high- (low-) pass filtering (HPF and LPF in the figure) resulting in
dendritic current α (β). The two dendritic currents are divided in the soma.

4.2 Full dimension: finding multiple subspaces

Subsequent singular vector pairs can be found by deflation. Recall the identities for anti-symmetric
SVD: u2i−1 = v2i,u2i = −v2i−1, σ2i−1 = σ2i = gi as in Lemma 1. We can thus rewrite SVD
using odd indexes only:

B =
∑
i

σiuiv
⊤
i =

∑
j:odd

(ujv
⊤
j − vju

⊤
j )g(j+1)/2 =

∑
j:odd

(uju
⊤
j + vjv

⊤
j )B . (11)

Then ui,vi for i odd, which is all we need, can be found as solution of an optimization problem
similar to Eq. (7), but for the “deflated” matrix:

max
u,v

u⊤
(
I−

∑
j:odd,j<i

(uju
⊤
j + vjv

⊤
j )
)
Bv s.t. ∥u∥ = ∥v∥ = 1 . (12)

Algorithm 1: The SVD algorithm with deflation
for i = 1 to k do
ui,vi ← random, ∥ui∥ = ∥vi∥ = 1 {Initialize}

end for
for t = 1, 2, . . . do
Bt ← xtx

⊤
t−1 − xt−1x

⊤
t

D← 0 {current deflation estimate}
for i = 1 to k do
ui ← ui + ηt[Btvi − uiu

⊤
i Btvi −DBtvi]

vi ← vi + ηt[−Btui + viv
⊤
i Btui +DBtui]

D← D+ uiu
⊤
i + viv

⊤
i {update deflation estimate}

ait ← u⊤
i xt, bit ← v⊤

i xt

θit ← arcsin

(
ai
tb

i
t−1−ai

t−1b
i
t√

ai
t
2+bit

2
√

ai
t−1

2+bit−1
2

)
end for

end for
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A straightforward deflation algorithm would find singular vector pairs one by one, corresponding
to decreasing singular values. The goal however is to find all of them in parallel, in an online and
neurally plausible manner. On every time step, the algorithm will perform one step of the iterations
from Eqns. (9a) and (9b) in a loop on sequentially deflated matrices, using current estimates of
singular vectors. Using again Bt as the current approximation of B, this yields Algorithm 1. Proof
of convergence can be found in the Supplement B.

4.3 Biological SVD

The circuit in Fig. 2(a) above is not realizable inside a neuron because of the crossing pathways. It
also cannot be realized with two neurons, as the original Hassenstein-Reichardt detector, because
then the synaptic weight updates in one neuron would require information only available in the other
neuron, violating the principle of locality. To overcome these difficulties we propose a modification
of the bivector expression:

B̃t = (xt − xt−1)(xt + xt−1)
⊤ . (13)

This is similar to what was used in [1], but with important difference: the expectation under our
assumptions is the same as in Eq. (4) (though individual matrices are no longer anti-symmetric).
Projected on the 2D subspace of interest are now the difference and sum of vectors: αt := u⊤(xt −
xt−1) and βt := v⊤(xt + xt−1). Substituting into the objective, we can rewrite: u⊤B̃tv = αtβt.

This suggests a neuron with two dendritic branches both connecting to the same set of inputs, Fig. 2(b).
The first has synapses with weights u that also calculate temporal differences (perform low-pass
filtering); the second one has synapses with weights v that also perform high-pass filtering. The
neuron performs division in the soma and outputs yt = αt/βt = tan θt, from which the angle can be
computed. We assume the activity is suppressed when βt is too small for reliable calculation of the
ratio. That means the neuron has a “blind spot” when (xt + xt−1) is close to orthogonal to v.

The neural dynamics are described by the equations:

αt ← u⊤(xt − xt−1)

βt ← v⊤(xt + xt−1)

yt ← αt/βt ,

(14)

and synaptic plasticity rules are derived using a Taylor approximation in the learning rate, as in
Eqs. (9a)–(9b):

u← u+ ηt
(
βt(xt − xt−1)− αtβtu

)
,

v← v + ηt
(
αt(xt + xt−1) + αtβtv

)
.

(15)

5 Biological algorithm based on PCA of time differences

In this section, we derive a two-layer network that outputs the angles θ1, . . . , θk. The first layer of our
network projects the inputs x1, . . . , xd onto the top k 2D subspaces defined by the pairs of column
vectors span(q1,q2), . . . , span(q2k−1,q2k), and the second layer computes the angles of rotation
within each 2D subspace.

5.1 Derivation of the first layer

Recall that for each i = 1, . . . , k, the vectors (q2i−1,q2i) are eigenvectors of the covariance matrix
⟨ẋtẋ

⊤
t ⟩t associated with eigenvector γi. To project the inputs xt onto the 2D subspaces, we adopt

the similarity matching objective introduced in [12]. We assume the first layer of the network has
2k neurons whose activities at time t are encoded in the vector yt ∈ R2k. Define the data matrices
X := [x1, . . . ,xT ], Y := [y1, . . . ,yT ], Ẋ := [ẋ1, . . . , ẋT ] and Ẏ := [ẏ1, . . . , ẏT ], where recall
that the dot represents a discrete time derivative, e.g., ẋt = xt − xt−1. Let Ẋ = QΣP⊤ denote the
SVD of the data matrix. We start with the PCA objective function [12]

min
Y
−2Tr(Ẋ⊤ẊẎ⊤Ẏ) + Tr(Ẏ⊤Λ−1ẎẎ⊤Λ−1Ẏ), (16)
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Figure 3: A two-layer network for learning transformations using the PCA algorithm. In the first
layer, inputs are projected onto multiple subspaces. In the second layer, the rotation angles θ1t , . . . , θ

k
t

are computed according to Algorithm 2.

where Λ = diag(λ1, λ1, . . . , λk, λk) is any fixed diagonal matrix with λ1 > · · · > λk. Suppose that
the diagonal elements γi of the matrix Γ̂ (see Eq. (5)) obey γ1 > γ2 > · · · > γk. Then the optimal
solutions to (16) are given by

Yopt = ΛRQ⊤X, (17)

where R is any block-diagonal matrix with 2×2 blocks that are orthogonal matrices, see [12, Lemma
1]. In particular, the optimal solution is the projection of the data matrix X onto the 2D subspaces
defined by the pairs of column vectors of Q.

Directly optimizing (16) will not result in an online algorithm due to the sample covariance terms
1
T ẊẎ⊤ and 1

T ẎẎ⊤. Therefore, to obtain an online algorithm, we encode the sample covariances
in the matrices W ∈ R2k×d and M ∈ R2k×2k by substituting in with the following Legendre
transforms

1

T 2
Tr(Ẋ⊤ẊẎ⊤Ẏ) = min

W∈R2k×d

{
2

T
Tr(Ẏ⊤WẊ)− Tr(WW⊤)

}
1

T 2
Tr(Ẏ⊤Λ−1ẎẎ⊤Λ−1Ẏ) = min

M∈R2k×2k

{
2

T
Tr(Ẏ⊤MẎ)− Tr(ΛM⊤ΛM)

}
,

to obtain
min

Y∈R2k×T
min

W∈R2k×d
max

M∈R2k×2k
L(W,M,Y), (18)

where

L(W,M,Y) = − 4

T
Tr(Ẏ⊤WẊ) + 2Tr(W⊤W) +

2

T
Tr(Ẏ⊤MẎ)− Tr(ΛM⊤ΛM). (19)

After interchanging the order of optimization, we arrive at the objective
min

W∈R2k×d
max

M∈R2k×2k
min

Y∈R2k×T
L(W,M,Y). (20)

In the offline setting, we first optimize over Ẏ and find that Ẏ = M−1WẊ, or equivalently,
Y = M−1WX. We then take a gradient descent-ascent step with respect to (W,M):

W←W + η

(
1

T
ẎẊ⊤ −W

)
, M←M+ η

(
1

T
ẎẎ⊤ −ΛMΛ

)
. (21)

In the network the matrix W plays the role of feedforward synaptic weights and the matrix M encodes
the recurrent lateral synaptic weights. In the online setting, at each time step t, the network receives
an input xt and computes the output yt by running the recurrent neural dynamics to equilibrium:

dyt(γ)

dγ
= Wxt −Myt(γ) ⇒ yt = M−1Wxt. (22)

The network then computes ẏt := yt − yt−1 and the synaptic weights are updated according to the
local learning rules

W←W + η(ẏtẋ
⊤
t −W), M←M+ η(ẏtẏ

⊤
t −ΛMΛ). (23)
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5.2 Derivation of the second layer

The first layer of the network consists of 2k neurons and it transforms the inputs so that the 2D
subspaces are represented by pairs of neurons. The second layer of the network consists of k
neurons with each neuron computing an angle θit. The ith neuron of the second layer receives inputs
(y2i−1

t−1 , y2i−1
t , y2it−1, y

2i
t ) from the (2i − 1)st and 2ith neurons of the first layer, which satisfy the

relation [
y2i−1
t

y2it

]
=

[
cos θit − sin θit
sin θit cos θit

] [
y2i−1
t−1

y2it−1

]
. (24)

Therefore,

θit = arctan

(
y2i−1
t−1 y2it − y2it−1y

2i−1
t

y2i−1
t−1 y2it + y2it−1y

2i−1
t

)
, (25)

which we define to be the output of the ith neuron in the second layer. For each i = 1, . . . , k, the
computation y2i−1

t−1 y2it − y2it−1y
2i−1
t can be implemented in a circuit that resembles the Hassenstein-

Reichardt detector, Figure 2(a).

Algorithm 2: The PCA algorithm
initialize W, M positive definite, x0 = 0, y0 = 0
for t = 1, 2 . . . do
yt = M−1Wxt

W←W + η((yt − yt−1)(xt − xt−1)
⊤ −W)

M←M+ η((yt − yt−1)(yt − yt−1)
⊤ −ΛMΛ)

for i = 1, . . . , k do

θit = arctan

(
y2i−1
t−1 y2i

t −y2i
t−1y

2i−1
t

y2i−1
t−1 y2i

t +y2i
t−1y

2i−1
t

)
end for

end for

6 Simulations

Simulations here are intended to demonstrate the following properties of our algorithms. The
first property is their ability to learn arbitrary toroidal groups from data and estimate the speed
of transformations. The second property is the ability to generate filters that match theoretical
predictions. Finally, we verify that the network output is indeed informative of the transformation by
performing reconstruction of the transformed image.

For an arbitrary toroidal group the algorithm must correctly recover 2D subspaces and estimate
rotation angles. We created random toroidal groups with three 2D subspaces in 10-dimensional
space. An orthogonal matrix Q defining the group was generated randomly, then rotations angles in
each subspace were generated with independent normal distributions with means 0.3, 0.2, 0.1, and
corresponding standard deviations 0.4, 0.3, 0.2. These rotations were applied to vectors generated
from a standard normal distribution in 10 dimensions. In total, 106 samples and rotations were
generated and given as input to both algorithms. Learning rates were manually selected to be 5 · 10−4

for both algorithms. This was repeated 10 times with random initialization. Simulation results are
shown in Fig. 4. Subspace fit loss is evaluated as one minus cosine of the angle between the true and
estimated planes. Angle estimates are depicted for the last 1000 iterations and pooled randomly from
all 10 runs. This experiment took 14 minutes total on a MacBook Pro with 3.5 GHz Dual-Core Intel
Core i7 processor.

To study filters, i.e., pairs of vectors for each 2D subspace generated by our algorithms, we experiment
with image rotations and translations. As opposed to rotations of abstract vectors above, here 2D
subspace angles are correlated. We used natural images from the Van Hateren database [8] and
randomly selected 106 patches of size 16 × 16 from image frames. The resulting images were then
rotated each by random angles around the center using bi-linear approximation and ignoring pixels
outside the central circle. The obtained image pairs were used as inputs to SVD algorithm, seeking
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(a) (b) (c) (d)

Figure 4: Learning of toroidal group in vector space. (a) and (b): Convergence of the subspace fit loss
versus number of iterations. Blended area shows the range between maxima and minima across all
10 runs; dense line shows mean across runs, median-filtered over 500 iterations. (c) and (d): Angle
estimation for each subspace.

(a) (b) (c) (d)

Figure 5: Filters learned by our algorithms. (a) Filters obtained by the SVD algorithm for rotations
of 2D images; left (right) singular vectors are shown in the top (bottom) half. (b) Angular power
spectrum for each filter in (a). (c) Filters obtained by the PCA algorithm for translations of 1D images.
(d) The power spectrum of each quadrature pair from (c).

20 top pairs of filters. The resulting filter images are presented in Fig. 5(a); they are similar to those
obtained from theory in [3], also to those obtained from random images in [5].

Next we provide a quantitative evaluation of the obtained filters versus theoretical predictions. Ideally,
in polar coordinates the angular part of Fourier spectrum would have a sharp peak. The estimated
angular parts of the spectrum for each filter are shown in Fig. 5(b). Details of this estimation and also
additional experiments with rotation of images are presented in Supplement C.

Sub-pixel translations of 1D images can be approximated by cyclic shifts, which are rotations of the
image vector. We generated 25 × 105 15-pixel 1D images from the standard normal distribution.
Top 4 filter pairs obtained by PCA algorithm are shown in Fig. 5(b); they look like Fourier pairs, as
expected, and power spectrum of each pair in Fig. 5(c) confirms that. Execution took 5 minutes.

We next demonstrate that the transformations learned by our network on one set of images can
be used to transform another set of images. To this end, we use the data from the image rotation
experiment above and, using a multi-layer perceptron, fit a function that would predict a transformed
image xt given the source image xt−1 and the output θ̂t of Algorithm 1. This function is then
applied to completely different images: digits from the MNIST dataset [9]. We compare digit images
transformed this way to directly rotating images with bilinear interpolation of pixel values (the ground
truth), Figure 6. The details of this experiment and additional results are presented in Supplement D.

All code for these experiments is included in the Supplementary material.

9



Figure 6: Top row: digit rotations using the transformation learned by the SVD algorithm; Bottom
row: digit transformations using image rotation (ground truth).

7 Contributions and limitations

The main contribution of this work is the derivation of two biologically plausible online algorithms
that can learn toroidal groups of transformations, detect transformations and measure their velocity.
By assuming an irreducible representation, as used in [3; 5], we show that a toroidal group can be
learned using SVD of the average bivector between vectorized frames before and after transformation,
or alternatively using PCA of differences between these vectorized frames. Direct computation
of bivector or covariance matrices would involve multiplication of inputs, which is biologically
implausible. This is avoided here by representing and learning singular vectors and PCA weight
vectors as synaptic weights.

The SVD approach involves modification of a previously known online algorithm for SVD of
cross-covariance matrix, and for the case of the top irreducible component we devise a biologically
plausible implementation. The approach based on PCA applies a previously developed algorithm
for PCA to a new context. The two-layer network that is obtained fully adheres to the principles
of biological plausibility outlined in [4]. The ability of algorithms to learn subspaces, measure
speed of transformations, generate filters approximating theoretical predictions, and produce output
sufficiently informative to generate transformed images, is validated by simulations.

Our work is limited in that we only consider transformations that can be seen as rotations of vectors.
This covers important cases of image rotations and sub-pixel shifts but omits several other types.
Another limitation comes from the assumption that all transformations observed by our networks
come from one commutative group (toroid). We intend to overcome these limitations in our continuing
work.

Our work generates experimentally testable hypotheses that can be searched for in nascent connec-
tomics and physiological datasets from various species and brain regions. The relation of our model
to actual neurobiological circuits in living organisms is only conjectural and there remain hurdles
in turning our algorithms into biologically realistic models. However, our approach can potentially
prove beneficial for neuromorphic hardware.
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