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Abstract

We study a sequential matching problem faced by large centralized platforms where
“jobs” must be matched to “workers” subject to uncertainty about worker skill
proficiencies. Jobs arrive at discrete times with “job-types” observable upon arrival.
To capture the “choice overload” phenomenon, we posit an unlimited supply of
workers where each worker is characterized by a vector of attributes (aka “worker-
types”) drawn from an underlying population-level distribution. The distribution
as well as mean payoffs for possible worker-job type-pairs are unobservables
and the platform’s goal is to sequentially match incoming jobs to workers in
a way that maximizes its cumulative payoffs over the planning horizon. We
establish lower bounds on the regret of any matching algorithm in this setting and
propose a novel rate-optimal learning algorithm that adapts to aforementioned
primitives online. Our learning guarantees highlight a distinctive characteristic
of the problem: achievable performance only has a second-order dependence on
worker-type distributions; we believe this finding may be of interest more broadly.

1 Introduction

Background and motivation. The problem of sequentially matching “jobs” to “workers” under
uncertainty forms the bedrock of many modern operational settings, especially in the online gig
economy, see, e.g., applications such as Amazon Mechanical Turk, TaskRabbit, Jobble, and the
likes. A simpler instance of the problem dates back to [13] where it is referred to as the sequential
stochastic assignment problem (SSAP). A fundamental issue in such settings is that the platform
typically is oblivious (at least initially) to the skill proficiencies of individual workers for specific
task categories. This complexity is further compounded by the large number of workers usually
present on such platforms, tantamount to prohibitively large experimentation costs associated with
acquisition of granular information at the level of an individual worker. This issue is commonly
mitigated by exploiting structure in the problem (if any), or by positing distributional assumptions on
the population of available workers, e.g., workers may be drawn from some distribution D satisfying
certain context-specific desiderata. Such distributional assumptions are vital to designing efficient
algorithms for these systems, and as such, traditional literature has largely relied on the availability of
ex ante knowledge of D or certain key aspects thereof (refer to the literature review in §1.2).

Key research question. An important characteristic of the gig economy is that the population of
workers may undergo distributional shifts over the course of the platform’s planning horizon. These
effects may, many a time, fail to register in a timely manner; as a result, there may be delays in
tailoring appropriately the matching algorithm (calibrated typically using available distribution-level
information) to the changed environment. This has the potential to cause revenue losses as well
as catalyze endogenous worker attrition. Such exigencies necessitate designing algorithms that are
agnostic to D and whose performance is robust to plausible realizations thereof.

The model at a glance. We consider a finite set of possible job-types (denoted by J ), an assumption
we deem appropriate for settings such as those discussed above. In addition, we model workers as
exhibiting discrete skill-levels (aka worker-types), indexed by {1, ...,Kj}, w.r.t. each job-type j 2 J ,
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and make the simplifying assumption that (Kj : j 2 J ) is known a priori. It is not unreasonable
to make this assumption since it is common, in practice, for platforms to deploy pilot experiments
prior to the actual matching phase in order to gather sufficient information on key primitives such
as the size and stability of low-dimensional sub-population clusters, if any exist; one can therefore
safely assume in settings where such structure exists that (Kj : j 2 J ) is well-estimated a priori.
Furthermore, assumptions pertaining to the finiteness of the set of possible job-types and segmentation
of the population of workers based on discretization of skill levels are de rigueur also in the dynamic
matching and the broader operations research literature, see, e.g., [7, 2, 17], etc.

While the demand is constituted by sequential job-arrivals (possibly in batches of stochastic size
and composition), we posit availability of an unlimited number of workers on the supply side. The
latter feature encapsulates the choice overload phenomenon characteristic of many large market
settings where workers are available in a large number relative to the platform’s planning horizon.
To our best knowledge, extant literature on matching under uncertainty is largely limited to “finite”
markets (see the literature review in §1.2), and therefore fails to accommodate this important practical
consideration. In our setting, the population of workers, albeit large, is governed by a fixed distribution
that controls the proportion of each worker-type. Specifically, the Kj distinct worker-types w.r.t.
job-type j are distributed according to ↵j := (↵i,j : i = 1, ...,Kj), where

PKj

i=1 ↵i,j = 1. We note
that this is one possible model of a matching market that is closer in spirit to SSAP [13] as well as
other related formulations thereof; it differs from other models in the matching literature (see §1.2) in
that it tries to capture a salient aspect of large markets, viz., choice overload, as opposed to traditional
aspects such as competition and congestion best elucidated via conventional “finite” market models.

The platform’s goal is to maximize its expected cumulative payoffs over a sequence of n rounds of
matching, subject to worker-types w.r.t. job-types and their distributions {↵j : j 2 J }, as well as
mean payoffs for possible worker-job type-pairs being latent attributes. As is the norm in settings
with incomplete information and imperfect learning, we reformulate this objective as minimizing the
expected cumulative regret relative to an oracle that is privy to aforementioned primitives.

On the complexity of the problem. Even with a unique job-type, say J = {j0}, and only one
job arriving per period, the ensuing allocation problem is challenging to analyze on account of the
distribution ↵j0 and any statistical properties of the rewards being unknown. In the simplest possible
formulation, Kj0 = 2, and the statistical complexity of the corresponding regret minimization
problem is governed by three principal primitives: (i) the sub-optimality gap �j0 > 0 between
the mean rewards of the optimal and inferior worker sub-populations; (ii) the probability ↵1,j0 of
sampling an optimal worker from the population; and (iii) the planning horizon n. One may aptly
recognize this as an infinitely many-armed bandit problem (where arms are synonymous to workers)
with an arm-reservoir distribution (↵1,j0 , 1� ↵1,j0) and a mean reward gap of �j0 . However,
this model differs from the classical literature on infinite-armed bandits in that its arm-reservoir
distribution is not endowed with any regularity properties (see the literature review in §1.2), instead
we only posit a finite support with cardinality known to the decision maker (in this case, a cardinality
of two), absent however, knowledge of the associated probability masses (in this case, ↵j0,1 and
1� ↵j0,1). In our setting, absence of information on ↵1,j0 significantly exacerbates the difficulty of
analysis as calibrating exploration becomes challenging (on account of a “large” number of arms).
In particular, how many arms must one query from the arm-reservoir in order to have at least one
optimal arm in the queried set with high probability, is difficult to answer if (a lower bound on) the
proportion ↵1,j0 of optimal arms is unknown. Consequently, any finite consideration set may only
contain inferior arms and as a result, any algorithm limited to such a selection will suffer a linear

regret. One may contrast this setting with its classical two-armed counterpart with gap �j0 , where
finiteness of the set of arms (binary action space) makes it possible to design efficient rate-optimal
policies. In our setting, on the other hand, it remains a priori unclear if there even exists a policy
capable of achieving sub-linear regret. The general matching problem naturally is only harder.

1.1 Contributions

In this work, we resolve several foundational questions pertaining to complexity and achievable
performance in the matching problem described earlier, and provide a comprehensive understanding
of various other aspects thereof. Among other things, we propose an algorithm that achieves a
finite-time instance-dependent expected regret of O (log n) after n rounds (the big-Oh subsumes
problem-dependent scaling factors encapsulating its fundamental complexity), and prove that this
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performance cannot be improved w.r.t. n. While the order of regret and complexity of the problem
suggests a great degree of similarity to the classical stochastic finite-armed bandit problem, properties
of the performance bounds and salient aspects of algorithm design are quite distinct from the latter,
as are the key primitives that determine complexity along with the analysis tools needed to study
them. In what follows, we will for expositional reasons assume J = {j0} and a batch size of 1 (jobs
arrive one at a time) whenever |J | = 1. Our theoretical contributions can then be projected along the
following axes:

Complexity of regret when |J | = 1. We establish information-theoretic lower bounds on regret that
are order-wise tight (in the horizon n) in the instance-dependent setting (Theorem 1). In addition,
we establish a uniform lower bound on achievable performance (tight in n) that captures explicitly
the scaling behavior w.r.t. the fraction ↵1,j0 of optimal arms (Theorem 2); this is shown via a novel
non-information-theoretic proof based entirely on convex analysis.

Algorithm design and achievable performance. We propose a policy (Algorithm 2) that is
rate-optimal (in n) for the instance-dependent setting. Our policy relies only on knowledge of
Kj0 , is agnostic to information pertaining to the reward distributions as well as the distribution
(↵i,j0 : i = 1, ...,Kj0) of worker-types. Furthermore, the upper bound depends on the distribution of
worker-types only in sub-logarithmic terms (see below).

Performance bounds for general J . Aforementioned results for |J | = 1 and unit batch size are
then translated to the general (matching) version of the problem described earlier, where J can be any
arbitrary finite set and jobs may arrive in batches of stochastic size and constitution. In the matching
problem, we establish that regret is bounded above by

P
j2J (C1 (µj) log n+ C2 (µj ,↵j) log log n)

under our policy tailored to this setting, where the constants C1(·), C2(·, ·) only depend on their
arguments, µj := (µi,j : i = 1, ...,Kj)1 and ↵j := (↵i,j : i = 1, ...,Kj) (Theorem 4). When
Kj = 2 8 j 2 J , we improve this guarantee to

P
j2J (C1 (µj) log n+ C2 (µj ,↵j)) (Theorem 6).

It is noteworthy that the upper bounds depend on {↵j : j 2 J } only in sub-logarithmic terms. We
believe this finding may be of interest more broadly.

1.2 Literature review

Our work is positioned relative to two major streams of literature; dynamic matching and multi-armed
bandits. Below, we briefly survey each of these areas and remark on the distinctions and novelties in
our model vis-à-vis the extant body of work.

Dynamic matching under uncertainty. There is a recent line of work on simultaneous learning and
matching in bipartite graphs under uncertainty. For a survey of works in this area, see [22, 23, 24,
25, 16, 9, 3], etc. Aforementioned references, by and large, consider an archetypal stable matching
problem under uncertainty in preferences where a heterogeneous collection of jobs (represented by
nodes on one side of a bipartite graph) must be matched to workers (the other side of the graph) with
unknown or noisy preferences over jobs. The matching proceeds iteratively in rounds in a way that
meets certain stability criteria at all times as well as ensures that the true preferences are “learnt” at a
regret-optimal rate. Cited works, however, differ from our paper fundamentally in that their learning
problems are posited over a finite set of workers, which allows for sufficient exploration of each; this
would be infeasible in our setting owing to a “large” population thereof.

In contrast, [17] considers a stationary setting where a stream of heterogeneous jobs must dynamically
be matched to a policy-dependent steady state population of workers in a way that respects capacity
constraints on the supply and demand processes. This paper shares basic similarities with our work
in studying a “large” population model of workers. Their key technical innovation, however, lies in
the way polytope capacity constraints are handled via an intelligent use of shadow prices to create
essentially an unconstrained learning problem that may be solved rate-optimally using conventional
heuristics. It is noteworthy that the algorithm proposed in aforementioned reference requires ex ante
knowledge of {µj ,↵j : j 2 J } in addition to other primitives. Our model, on the other hand, has
a richer learning component that is challenging to address as it is, absence of capacity constraints
notwithstanding. Our primary contribution here lies in establishing fundamental achievability results
for this setting and in the design of novel rate-optimal algorithms that adapt to key primitives online.

1µi,j denotes the mean reward per match between a worker of type i (w.r.t. job-type j) and a type j job.
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Multi-armed bandits. Our problem shares structural similarities with infinitely many-armed bandits,
modulo heterogeneity and multiplicity of pulls. Infinite-armed bandits involve a fixed reservoir

distribution over an uncountable set of arm-types (possible mean rewards) that may be queried
arbitrarily often over the horizon of play. These problems trace their roots to [4] which studied the
Bernoulli reward setting under a Uniform (on [0, 1]) prior on the mean. Subsequent works have
considered more general reservoir distributions, albeit endowed with certain regularity properties, see,
e.g., [26, 6, 8, 10], etc. In terms of the statistical complexity of regret minimization, such regularity
assumptions are tantamount to the minimal achievable regret being polynomial in the horizon (see
above references). In contrast, our model is fundamentally simpler owing to a finite set of arm-types
despite also being endowed with infinitely many arms. However, unlike cited works, the decision
maker in our setting is completely oblivious to the reservoir distribution (or any property thereof)
which substantially exacerbates the difficulty of analysis as well as the hardness of the problem itself.

1.3 Organization of the paper

§2 provides a formal description of the problem and §3 contains results pertaining to lower bounds on
achievable performance for natural policy classes. §4 deals with design and analysis considerations
for rate-optimal policies and also contains our main propositions together with supporting theoretical
guarantees. All other discussion (including auxiliary results and proofs) is deferred to the appendix.

2 Problem formulation

Job-arrival process. The platform faces an arrival stream of jobs (i.i.d. in time) given by
{(⇤j,t : j 2 J ) : t = 1, 2, ...}, where J is finite and ⇤j,t is the number of type j jobs arriving
at time t. Types and multiplicities of jobs are perfectly observable upon arrival. We assume that there
exists some finite constant M > 0 satisfying P

�
maxj2J supt>1 ⇤j,t 6 M

�
= 1. We remark that

our algorithms do not require knowledge of M ; the assumption only serves to simplify analysis.2

Supply of workers. We assume that workers are distributed on the unit interval [0, 1] according
to some probability distribution D that is absolutely continuous w.r.t. the Lebesgue measure on
[0, 1]. Associated with each job-type j 2 J , there exists a permutation �j := {�j(i) : i = 1, ...,Kj}

of {1, ...,Kj}, and a sequence of thresholds 0 =: �0,j < �1,j < ... < �Kj�1,j < �Kj ,j := 1
partitioning the unit interval into Kj disjoint sub-intervals. We posit a payoff model whereby a
worker x 2 (�i�1,j ,�i,j) (for some i 2 {1, ...,Kj}) generates a stochastic reward with mean
µ�j(i),j upon match with a type j job; it is assumed that the Kj mean rewards adhere to the strict
order µ1,j > ... > µKj ,j . We define ↵i,j := P

�
X 2

�
�◆(i,j)�1,j ,�◆(i,j),j

��
, where X ⇠ D and

◆(i, j) 2 {1, ...,Kj} is the unique element satisfying �j (◆(i, j)) = i, as the probability that a worker
sampled at random from D (equivalently, from the population), is ith best for job-type j (generates
mean reward µi,j); such a worker is said to have type i w.r.t. job-type j. Thus, a type 1 worker
w.r.t. job-type j is optimal for jobs of type j. Note that the model allows for staggered optimality of
worker-types associated with different job-types, as Figure 1 below illustrates.

0 1�1,2�1,1

Figure 1: Possible distribution of worker-types for J = {1, 2} and K1 = K2 = 2. The darker
shades represent optimal (type 1) workers while the lighter shades represent inferior (type 2) ones
w.r.t. each job-type. In this example, no worker can simultaneously be optimal for both job-types.

High-level description of the matching problem. Each arriving job may be matched one-to-
one to a worker from the available supply. Each match takes at most one period for execution, a
matched worker thus frees up before the next lot of jobs arrives. Matched jobs leave the system
upon completion and the platform receives a stochastic reward for each completed job; a job that
remains unmatched drops out instantaneously. The platform has information neither on individual

2Though our regret bounds will scale linearly with M as we shall later see, proofs do not as such require batch-
sizes to be almost surely bounded and can be refined to guarantee O (log n) bounds also for ⇤j,t’s supported on
Z+ under appropriate tail behavior. We do not pursue this line of analysis here purely for expositional reasons.
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worker-types w.r.t. job-types nor on their supply distribution, however, it has perfect knowledge of
(Kj : j 2 J ). Subject to this premise, the platform must match incoming jobs to workers in a way
that maximizes its expected cumulative payoffs over a sequence of n rounds of matches.

Adaptive control. For any job that arrives at time t, the platform can match it to: (i) a worker
that has matched before, (ii) a new worker (one without any history of matches) sampled from the
population, or (iii) no worker (job is dropped). A policy ⇡ := (⇡1(·, ·),⇡2(·, ·), ...) is an adaptive rule
that prescribes the allocation ⇡t(·, ·) at time t. Specifically, ⇡t(j, k) denotes the label of the worker
(not its type) that gets matched to the kth job of type j arriving at time t (provided there are at least
k job-arrivals of type j at t and the kth job is not dropped). Upon match, a [0, 1]-valued stochastic
reward with mean µj(⇡t(j,k)),j is realized, where j (⇡t(j, k)) 2 {1, ...,Kj} encodes the type of
worker ⇡t(j, k) w.r.t. job-type j. The realized rewards are independent across matches and in time.

Platform’s objective. The goal of maximizing the expected cumulative payoffs over n rounds
is converted to minimizing the expected regret relative to a clairvoyant policy that prescribes an
“optimal” match for each arriving job. We are thus interested in the following optimization problem

inf
⇡2⇧

ER⇡
n := inf

⇡2⇧
E

2

4
nX

t=1

X

j2J :⇤j,t>1

⇤j,tX

k=1

�
µ1,j � µj(⇡t(j,k)),j

�
3

5 . (1)

Here, ⇧ is the class of non-anticipating policies, i.e., ⇡t+1(·, ·) is adapted to Ft for all t 2 {0, 1, ...},
where Ft := � {(⇤s,⇡s, rs) : s = 1, ..., t} denotes the natural filtration at time t. Here, ⇤s :=
(⇤j,s : j 2 J ), ⇡s is the set of matches implemented at time s and rs is the set of collected rewards.
The expectation in (1) is w.r.t. the randomness in job-arrivals, worker supply, policy, and rewards.

Going forward, we will adopt standard terminology from the multi-armed bandit literature and refer
to workers as “arms” and jobs as “pulls” interchangeably.

3 Lower bounds for natural policy classes

For a succinct illustration of the statistical complexity of our problem setting, it is conducive to
pivot to the paradigmatic case where the arrival stream comprises only of a single job-type (say
j) arriving one at a time, and the population of workers is partitioned into Kj = 2 clusters with
↵1,j 6 1/2 (recall that this is the proportion of the optimal worker-type). In this case, one anticipates
the problem to be at least as hard as the classical two-armed bandit with a mean reward gap of
�j := µ1,j � µ2,j > 0; this is on account of the infinitely many alternatives available to the decision
maker in our setting as opposed to just two. Indeed, we establish this in Theorem 1 via an information-
theoretic approach that delicately handles the combinatorial complexity arising due to probabilities
over countably many arms (proof is provided in Appendix C). In what follows, an instance of the
problem refers to a collection of reward distributions with means (µ1,j , µ2,j) (and gap �j). We will
overload the notation for expected regret slightly to emphasize its instance-dependence.

Theorem 1 (Information-theoretic lower bounds on achievable performance) Suppose that the

arrival process comprises only of a single job-type, say j 2 J , arriving one at a time, i.e., ⇤j,t = 1
for t = 1, 2, ... Also suppose that Kj = 2 and ↵1,j 6 1/2� ✏, where ✏ 2 (0, 1/2) is arbitrary. Let

⇧adm denote the class of admissible
3

policies. Then, the following is true under any ⇡ 2 ⇧adm:

(i) For any �j > 0, there exists a problem instance ⌫ such that ER⇡
n (⌫) > C log n/�j for n

large enough
4
, where C is some absolute constant.

(ii) For any n 2 N, there exists a problem instance ⌫ such that ER⇡
n (⌫) > ✏C 0pn, where C 0

is

some absolute constant.

Distinction from classical MAB. Although the above result bears resemblance to classical
information-theoretic lower bounds for finite-armed bandits, it is noteworthy that our setting has
a fundamentally greater problem complexity that requires a more nuanced analysis vis-à-vis the
finite-armed setting. Traditional proofs, as a result, cannot be translated to our setting in a straight-
forward manner. To see this, note that when ↵1,j is high, a new worker is very likely to be optimal;

3This is a rich policy class containing all “reasonable” algorithms; refer to Definition (1) in Appendix C).
4The dependence on ✏ is subsumed under “n large enough.”
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in the limit as ↵1,j ! 1, the problem becomes degenerate as all policies incur zero expected re-
gret. Thus, the problem cannot be harder than the two-armed bandit with gap �j uniformly over
all values of ↵1,j . While we conjecture ↵1,j < 1 to be a sufficient condition for the existence of
⌦
�
log n/�j

�
instance-dependent and ⌦ (

p
n) instance-independent (minimax) lower bounds (mod-

ulo ↵1,j-dependent scaling factors), there are technical challenges due to probabilistic associations
over countably many arms. The restriction to ↵1,j < 1/2 and admissible policies is then necessary
for tractability of the proof and it remains unclear if this can be generalized further.

Capturing dependence on ↵j . Although the instance-dependent lower bound in Theorem 1 is tight
in n as we shall later see, it fails to provide actionable insights vis-à-vis ↵j . A natural question in
our setting is whether and in what manner does the presence of countably many arms (as opposed
to finitely many) affect achievable regret. In particular, how does the difficulty associated with
finding from the available supply an optimal worker for a given job type (and the dependence on
the distribution ↵j) come into play. Below, we propose a lower bound that explicitly captures this
dependence, albeit with respect to a somewhat restricted policy class.

Theorem 2 (↵j-dependent lower bound) Suppose that the arrival process comprises only of a

single job-type, say j 2 J , arriving one at a time, i.e., ⇤j,t = 1 for t = 1, 2, ... Also suppose that

↵1,j 6 1/2. Denote by ⇧m the class of “memoryless” policies under which the decision to match

an incoming job to a new worker at any time t 2 {1, 2, ...} is independent of Ft�1. Then, for all

problem instances ⌫ with a minimal sub-optimality gap of at least �j > 0, one has

lim inf
n!1

inf
⇡2⇧m

ER⇡
n (⌫)

log n
>

�j

4↵1,j
.

Discussion. The proof is located in Appendix D. Several comments are in order. (i) The class ⇧m, in
particular, includes policies that front-load exploration, i.e., sample upfront a pre-specified number of
workers from the population and then deploy a regret minimizing algorithm of choice on the set of
workers so obtained. This includes several natural approaches to the problem as we shall later see. (ii)
The foremost noticeable aspect of Theorem 2 that differs from Theorem 1 is that it provides a uniform
lower bound over all instances that are at least �j-separated in the mean reward, as opposed to merely
establishing their existence. (iii) The presence of �j in the numerator in Theorem 2 unlike traditional
information-theoretic bounds where �j resides in the denominator suggests that while this bound
may be vacuous if �j is “small,” it certainly becomes most relevant when �j is “well-separated.” In
that sense, Theorem 1 and 2 provide a tool to separate regimes of �j where one bound captures the
dominant effects vis-à-vis the other. (iv) A novelty of Theorem 2 lies in its proof, which differs from
classical lower bound proofs in that it is based entirely on ideas from convex analysis as opposed to
the information-theoretic and change-of-measure techniques hitherto used in the literature.

Remarks. (i) It is not impossible to avoid 1/↵1,j-scaling in the instance-dependent logarithmic
regret. We will later show via an upper bound for our algorithm CAB-K that the ↵1,j-dependence
can, in fact, be relegated to sub-logarithmic terms (CAB-K samples new workers from the population
adaptively based on the sample-history of onboarded workers and therefore does not belong to ⇧m).
Importantly, this will establish a somewhat surprising fact that the instance-dependent logarithmic
bound in Theorem 1 is optimal w.r.t. to its dependence on ↵1,j (the scaling w.r.t. �j , however, may
not be best possible as forthcoming upper bounds will suggest). (ii) Theorem 2 holds also for any
worker supply where the optimal mean reward w.r.t. job-type j is at least �j-separated from the rest,
the nature of the set of possible worker-types (countable or uncountable) notwithstanding.

4 Designing adaptive policies for matching

The approach we adopt in this paper directly addresses the fact that there is an unlimited supply of
available workers at all times. A natural design then is to tailor sub-routines specific to job-types in J

and instantiate them at the first arrival of each type. Specifically, if jobs of type j arrive at {t1, t2, ...},
then the platform should call the sub-routine specific to job-type j only at aforementioned times,
independent of other job-arrivals. This leads to the meta-algorithm MATCH (see Algorithm 1) for the
matching problem. In what follows, ALG refers to an arm-allocation rule w.r.t. a fixed job-type that
prescribes one arm upon each invocation. ALG can be thought of as a horizon-free sampling strategy
for a countably many-armed bandit problem with one pull per period. When multiple jobs (say L) of
the same type (say j) arrive at the same time, we instantiate (if necessary) new parallel threads of
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ALG specific to job-type j so there exist a total of L type j threads when the next lot of jobs arrives. In
the following, Lj denotes the running count of the number of parallel threads of ALG for type j jobs.

Algorithm 1 MATCH

1: Input: (i) J , (ii) (Kj : j 2 J ), and (iii) ALG.
2: Initialization: Set Lj = 0 for each j 2 J .
3: for t 2 {1, 2, ...} do
4: for j 2 J do
5: if ⇤j,t > 1 then
6: if ⇤j,t 6 Lj then
7: Match the ⇤j,t type j jobs to the first ⇤j,t threads of ALG for type j jobs.
8: else
9: Match the first Lj type j jobs to the Lj available threads of ALG for type j jobs.

10: Instantiate ⇤j,t � Lj new threads of ALG for the remaining ⇤j,t � Lj jobs.
11: Update Lj  ⇤j,t.

Discussion of MATCH. An immediate observation from Algorithm 1 is that ALG must be anytime,
i.e., it should not depend on the horizon of play since the number of job arrivals (over the platform’s
planning horizon) of each type is not known a priori. Keeping this objective in mind, we shift our
focus to designing an arm-allocation rule ALG w.r.t. a fixed job-type, say type j, that: (i) prescribes
one pull per period, (ii) depends only on Kj , (iii) is adaptive to the mean reward vector µj and the
supply distribution ↵j , and (iv) is horizon-free. Once such an ALG is designed, its composition with
MATCH will transfer learning guarantees to the original matching problem.

4.1 Shifting focus to adaptive sequential sampling strategies tailored to a specific job-type

Going forward, we will assume that jobs belong to a common fixed type and arrive one at a time.
With slight abuse of notation, the supply of available workers is characterized by K worker-types
with distinct means µ := (µi : i = 1, ...,K) adhering to µ1 > ... > µK . The maximal and
minimal sub-optimality gaps are given by �̄ := µ1 � µK and � := µ1 � µ2 respectively, and the
minimal reward gap is � := min16i<i06K (µi � µi0). The distribution of worker-types is denoted
by ↵ := (↵i : i = 1, ...,K), where ↵i is the probability of sampling a type i arm (characterized by
mean µi) from the population. The learning horizon is n. The decision maker only knows K and is
oblivious to (µ,↵, n).

The specific setting described above was first studied in [18] for K = 2 for which a UCB-styled
algorithm with O (log n) regret was proposed. The analysis of said algorithm leveraged certain
concentration properties of the UCB1 policy [1] that were recently discovered in the context of a
two-armed bandit with equal arm-means (see Theorem 4(i) in [18]). Currently, there is no known
algorithm for the general setting with K > 2 arm-types. We discuss in the appendix why properties of
UCB1 critical to O (log n) regret in [18] do not hold for K > 2; consequently, a natural adaptation of
their algorithm to K > 2 will likely fail to generalize O (log n) bounds.5 To our best knowledge, the
general countable-armed bandit (CAB) setting with K > 2 types remained open in prior literature.

We close this gap in the literature by proposing a policy CAB-K (see Algorithm 2) that achieves
O (log n) regret in the general K-typed setting. CAB-K operates based on the Explore-then-Commit
principle with adaptive stopping and re-initialization times. It is noteworthy that CAB-K is not horizon-
free; in particular, knowledge of the horizon is critical for appropriate calibration of its stopping
and re-initialization thresholds. However, this is not a constraining characteristic and we will use a
doubling trick dubbed HF (Algorithm 3) to make it horizon-free with an anytime O (log n) guarantee.

Discussion of CAB-K. At any time, the algorithm computes two thresholds of O
�p

m logm
�

and
O
�p

m log n
�

for the
�K
2

�
pairwise-difference-of-reward processes, m being the per-arm sample

count. If the envelope of said process is dominated by the former threshold, the concerned pair likely
contains arms of the same type (equal means). The explanation stems from the Law of the Iterated
Logarithm (see [14], Theorem 8.5.2): the envelope of a zero-drift length-m random walk grows as
O
�p

m log logm
�
. In the aforementioned scenario, the algorithm discards the entire consideration

5We will, however, propose a version in the appendix that is asymptotically optimal (achieves o(n) regret).
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Algorithm 2 CAB-K
1: Input: Horizon of play n.
2: Set budget T = n.
3: Initialize new epoch: Query K new arms; call it consideration set A = {1, 2, ...,K}.
4: Play each arm in A once; observe rewards {Xa,1 : a 2 A}.
5: Update budget: T  T �K.
6: Per-arm sample count m 1.
7: Generate

�K
2

�
independent standard Gaussian random variables {Za,b : a, b 2 A, a < b}.

8: while T > K do
9: if 9 a, b 2 A, a < b s.t. |Za,b +

Pm
k=1 (Xa,k �Xb,k)| < 4

p
m logm then

10: Permanently discard A and repeat from step (3).
11: else
12: if |

Pm
k=1 (Xa,k �Xb,k)| > 4

p
m log n 8 a, b 2 A, a < b then

13: Permanently commit to arm a⇤ 2 argmaxa2A {
Pm

k=1 Xa,k}.
14: else
15: Play each arm in A once; observe rewards (X1,m+1, ..., XK,m+1).
16: m m+ 1.
17: T  T �K.

set and ushers in a new epoch. This is done to avoid the possibility of incurring linear regret should
an optimal arm be missing from the consideration set (e.g., when all arms are type 2). In the other
scenario that all pairwise-difference-of-reward processes dominate O

�p
m log n

�
, the consideration

set is likely to contain arms of distinct types (no two have equal means) and the algorithm simply
commits to the empirically best arm. Lastly, if neither threshold is crossed (signifying insufficient
learning), the sample count for each arm is advanced by one, and the entire process repeats.

Reason for introducing the Gaussian corruption. Centered Gaussian noise is added to all pairwise-
difference-of-reward processes in step (9) of CAB-K to avoid the possibility of incurring linear regret
should the support of the reward distributions be a “very small” subset of [0, 1]. To illustrate this
point, suppose that K = 2 and the rewards associated with the types are deterministic with a gap
of � < 2

p
2 log 2. Then, as soon as the algorithm queries a consideration set containing one arm

each of the two types and the per-arm count reaches 2, the difference-of-reward statistic will satisfy���
P2

j=1 (X1,j �X2,j)
��� = 2� < 4

p
2 log 2 and the consideration set will be discarded. On the other

hand, if both arms are of the same type (simultaneously optimal or inferior), the algorithm will still
re-initialize as soon as the per-arm count reaches 2.6 This will force the algorithm to keep querying
new arms from the reservoir at rate that is linear in time, which is tantamount to incurring linear regret
in the horizon. The addition of centered Gaussian noise hedges against this risk by guaranteeing that
the difference-of-reward process essentially has an infinite support at all times even when the reward
distributions might be degenerate. This rids the regret of its fragility w.r.t. the support of reward
distributions. The next proposition crystallizes this discussion.

Proposition 1 (Persistence of heterogeneous consideration sets) Let {Xa,k : k = 1, 2, ...} be a

collection of independent samples from an arm of type a 2 {1, 2, ...,K} =: A, and

{Za,b : a, b 2 A, a < b} be a collection of
�K
2

�
independently generated standard Gaussians. Then,

P

0

@
\

m>1

\

a,b2A,a<b

(�����Za,b +
mX

k=1

(Xa,k �Xb,k)

����� > 4
p
m logm

)1

A >
�̄ (f (T0))

2
=: ��,K > 0,

(2)

where �̄(·) is the tail of the standard Gaussian CDF, and T0 := max
�⌃�

64/�2
�
log2

�
64
�2

�⌥
,CK

�

with CK := inf
n
p 2 N :

P1
m=p

1
m8 6 1

2K2

o
. Lastly, f(x) := x+ 4

p
x log x for all x > 1.

The proof is provided in Appendix E; this meta-result is key to the upper bound stated in Theorem 3.

6
���
Pm

j=1 (X1,j �X2,j)
��� = 0 identically in this case for any m 2 N while 4

p
m logm > 0 only for m > 2.
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Interpretation of ��,K . First of all, note that ��,K admits a closed-form characterization in terms of
standard functions and satisfies ��,K > 0 for � > 0 with lim�!0 ��,K = 0. Secondly, ��,K depends

exclusively on � and K, and represents a lower bound on the probability that CAB-K will never discard
a consideration set containing arms of distinct types.

Theorem 3 (Upper bound on the regret of CAB-K) For any horizon of play n > 1, the expected

regret of the policy ⇡ given by CAB-K is bounded as

ER⇡
n 6 CK3�̄

��,K

 
log n

�2
+

1

K!
QK

i=1 ↵i

!
,

where ��,K is as defined in (2) and C is some absolute constant.

Discussion. The dependence on the minimal reward gap � is not an artifact of our analysis but, in
fact, reflective of the operating principle of the algorithm. CAB-K keeps querying new consideration
sets of size K until it determines with high enough confidence that no two arms have the same type
(equal means); this is the genesis of � in the upper bound. Importantly, equipped just with knowledge
of K, it remains unclear if there exists an alternative strategy that does not rely on assessing pairwise
differences among the queried arms. Another prominent feature of the upper bound is its O(1)-
dependence on ↵. This essentially means that the difficulty associated with sampling an optimal
arm from an infinite reservoir containing finitely many arm-types is of a second order, which starkly
contrasts the findings in [12]. Cited paper assumes ex ante knowledge of a lower bound on ↵1

(proportion of optimal arms) and posits no structure on sub-optimal arm-types. Under this premise, a
first-order difficulty of sampling optimal arms from the reservoir is established (to wit, the logarithmic
term depends on ↵1). However, whether this would hold also for the subset of problems where
the reservoir only contains a finite universe of arm-types (with known cardinality) was left open.
Theorem 3 essentially settles this problem. The proof of Theorem 3 is provided in Appendix F.

Remarks. (i) Possible improvements. CAB-K, in its present form, indulges in wasteful exploration by
discarding entire consideration sets upon re-initialization. It is possible to be parsimonious in this re-
gard and we leave the pursuit of such algorithms to future work. (ii) More on ��,K . Notice that when
K = 2 and ↵1 6 1/2, the upper bound in Theorem 3 assumes the form C��1

�,2 (log n/� + �/↵1),
where C is some absolute constant. Thus, ��1

�,2 captures the relative increase in problem complexity
(vis-à-vis the paradigmatic two-armed bandit with gap �) attributable to an unlimited supply of arms
of the two types. To what extent may this factor be shaved off remains an interesting open problem.
(iii) Comparison with lower bounds. One should also contrast Theorem 3 with the lower bound in
Theorem 2; by allowing for policies that query the arm-reservoir adaptively, we could achieve a regret
performance robust to ↵ (second-order dependence). This also leads to the somewhat remarkable
conclusion that the lower bound in Theorem 1 is optimal w.r.t. its dependence on ↵. (iv) Anytime
guarantees. A horizon-free version of CAB-K may be obtained by passing it to the HF operator given
in Algorithm 3; a logarithmic bound for the resulting composition HF(CAB-K) is stated in Theorem 8.

4.2 Transferring learning guarantees to the matching problem

Theorem 4 (Achievable performance under MATCH � HF(CAB-K)) Denote by ⇡ the composi-

tion of MATCH with HF(CAB-K). Then, its expected regret after any number n > 1 of rounds satisfies

ER⇡
n 6 CM

X

j2J

"
K3

j �̄j

��j ,Kj

 
log n

�j
2 +

log log (n+ 2)

Kj !
QKj

i=1 ↵i,j

!#
,

where ��j ,Kj is as defined in (2) with �  �j := min16i<i06Kj (µi,j � µi0,j) and K  Kj ,

�̄j := µ1,j � µKj ,j , and C is some absolute constant.

Discussion. The foremost noticeable aspect of Theorem 4 is that achievable regret depends on
{↵j : j 2 J } (collection of worker-type distributions w.r.t. job-types), surprisingly, only through
sub-logarithmic terms. Moreover, when Kj = 2 8 j 2 J , we improve this to an O(1)-dependence
(see Theorem 6 in the appendix). We conjecture that the O (log log n) factor in the upper bound can,
in fact, be shaved off also for Kj > 2; pursuits in this direction are left to future work. Among other
things, characterizing the minimax complexity of this setting remains a challenging open problem in
light of the multiplicative factors that appear in Theorem 4 (fundamentally different from finite-armed
problems). Numerical experiments showing O (log n) achievable regret are provided in the appendix.

9



Acknowledgments and Disclosure of Funding

The authors thank the anonymous reviewers for their constructive feedback on the initial version of
this paper. The authors declare an absence of any competing interests, financial or otherwise.

References
[1] AUER, P., CESA-BIANCHI, N., AND FISCHER, P. Finite-time analysis of the multiarmed

bandit problem. Machine learning 47, 2-3 (2002), 235–256.
[2] BANERJEE, S., GOLLAPUDI, S., KOLLIAS, K., AND MUNAGALA, K. Segmenting two-sided

markets. In Proceedings of the 26th International Conference on World Wide Web (2017),
pp. 63–72.

[3] BASU, S., SANKARARAMAN, K. A., AND SANKARARAMAN, A. Beyond log2(t) regret for
decentralized bandits in matching markets. In International Conference on Machine Learning

(2021), PMLR, pp. 705–715.
[4] BERRY, D. A., CHEN, R. W., ZAME, A., HEATH, D. C., SHEPP, L. A., ET AL. Bandit

problems with infinitely many arms. The Annals of Statistics 25, 5 (1997), 2103–2116.
[5] BESSON, L., AND KAUFMANN, E. What doubling tricks can and can’t do for multi-armed

bandits. arXiv preprint arXiv:1803.06971 (2018).
[6] BONALD, T., AND PROUTIERE, A. Two-target algorithms for infinite-armed bandits with

bernoulli rewards. In Advances in Neural Information Processing Systems (2013), pp. 2184–
2192.

[7] BUI, L., JOHARI, R., AND MANNOR, S. Clustered bandits. arXiv preprint arXiv:1206.4169

(2012).
[8] CARPENTIER, A., AND VALKO, M. Simple regret for infinitely many armed bandits. In

International Conference on Machine Learning (2015), pp. 1133–1141.
[9] CEN, S. H., AND SHAH, D. Regret, stability, and fairness in matching markets with bandit

learners. arXiv preprint arXiv:2102.06246 (2021).
[10] CHAN, H. P., AND HU, S. Infinite arms bandit: Optimality via confidence bounds. arXiv

preprint arXiv:1805.11793 (2018).
[11] CHAUDHURI, A. R., AND KALYANAKRISHNAN, S. Quantile-regret minimisation in infinitely

many-armed bandits. In UAI (2018), pp. 425–434.
[12] DE HEIDE, R., CHESHIRE, J., MÉNARD, P., AND CARPENTIER, A. Bandits with many optimal

arms. In Advances in Neural Information Processing Systems (2021), vol. 34, pp. 22457–22469.
[13] DERMAN, C., LIEBERMAN, G. J., AND ROSS, S. M. A sequential stochastic assignment

problem. Management Science 18, 7 (1972), 349–355.
[14] DURRETT, R. Probability: theory and examples, vol. 49. Cambridge university press, 2019.
[15] HOEFFDING, W. Probability inequalities for sums of bounded random variables. Journal of the

American Statistical Association 58, 301 (1963), 13–30.
[16] JAGADEESAN, M., WEI, A., WANG, Y., JORDAN, M., AND STEINHARDT, J. Learning equi-

libria in matching markets from bandit feedback. Advances in Neural Information Processing

Systems 34 (2021).
[17] JOHARI, R., KAMBLE, V., AND KANORIA, Y. Matching while learning. Operations Research

69, 2 (2021), 655–681.
[18] KALVIT, A., AND ZEEVI, A. From finite to countable-armed bandits. In Advances in Neural

Information Processing Systems (2020), vol. 33, pp. 8259–8269.
[19] KALVIT, A., AND ZEEVI, A. A closer look at the worst-case behavior of multi-armed bandit

algorithms. In Advances in Neural Information Processing Systems (2021), vol. 34, pp. 8807–
8819.

[20] LAI, T. L., AND ROBBINS, H. Asymptotically efficient adaptive allocation rules. Advances in

applied mathematics 6, 1 (1985), 4–22.
[21] LATTIMORE, T., AND SZEPESVÁRI, C. Bandit algorithms. Cambridge University Press, 2020.

10



[22] LIU, L. T., MANIA, H., AND JORDAN, M. Competing bandits in matching markets. In
International Conference on Artificial Intelligence and Statistics (2020), PMLR, pp. 1618–
1628.

[23] LIU, L. T., RUAN, F., MANIA, H., AND JORDAN, M. I. Bandit learning in decentralized
matching markets. Journal of Machine Learning Research 22, 211 (2021), 1–34.

[24] SANKARARAMAN, A., BASU, S., AND SANKARARAMAN, K. A. Dominate or delete:
Decentralized competing bandits with uniform valuation. arXiv preprint arXiv:2006.15166

(2020).
[25] SANKARARAMAN, A., BASU, S., AND SANKARARAMAN, K. A. Dominate or delete:

Decentralized competing bandits in serial dictatorship. In International Conference on Artificial

Intelligence and Statistics (2021), PMLR, pp. 1252–1260.
[26] WANG, Y., AUDIBERT, J.-Y., AND MUNOS, R. Algorithms for infinitely many-armed bandits.

In Advances in Neural Information Processing Systems (2009), pp. 1729–1736.
[27] ZHU, Y., AND NOWAK, R. On regret with multiple best arms. Advances in Neural Information

Processing Systems 33 (2020), 9050–9060.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Full proofs are

provided in the appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]

11



(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12


	Introduction
	Contributions
	Literature review
	Organization of the paper

	Problem formulation
	Lower bounds for natural policy classes
	Designing adaptive policies for matching
	Shifting focus to adaptive sequential sampling strategies tailored to a specific job-type
	Transferring learning guarantees to the matching problem

	Additional discussion
	Numerical experiments
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 1
	Proof of Theorem 3
	Lower bounding P( . 1 2 D )
	Proof that 2 is almost surely finite on D

	Upper bounding E[ . min(K2,n) D ]
	Upper bounding E[ . K1 Dc ]
	Upper bounding P( . CID )
	Upper bounding P( . 1 2 Dc )
	Putting everything together

	Exponential doubling for ``anytime'' algorithms with logarithmic regret
	Proof of Theorem 7
	Proof of Theorem 8

	Proof of Theorem 4
	A first-order optimal algorithm for countable-armed bandits with bold0mu mumu K2K22005/06/28 ver: 1.3 subfig packageK2K2K2K2
	Proof of Theorem 9
	Proof of bold0mu mumu E[ .min(, n) Dc OPT ] = o(n)E[ .min(, n) Dc OPT ] = o(n)2005/06/28 ver: 1.3 subfig packageE[ .min(, n) Dc OPT ] = o(n)E[ .min(, n) Dc OPT ] = o(n)E[ .min(, n) Dc OPT ] = o(n)E[ .min(, n) Dc OPT ] = o(n)

	Proof of Theorem 5

	Auxiliary results used in the analysis of CAB-K(UCB)
	Proof of Lemma 3
	Proof of Lemma 4

	More Explore-then-Commit policies for countable-armed bandits

