
A Environment Details

A.1 Product Scraping

We use ScraperAPI [35] to extract publicly available product information from amazon.com. We use
five categories (beauty, food, fashion, furniture, electronics) and 313 associated sub-category names
appeared in amazon.com (e.g. “Women’s Loafers & Slip-Ons” in fashion, “Pendants and Chandeliers”
in furniture) to scrape 1, 181, 436 products. We filter products with duplicate titles or product IDs,
but do not perform extra filtering in order to avoid selection bias. Specifically, as amazon.com has its
own content screening process, we did not find any personally identifiable information or offensive
content during random sampling checks.

Products Unique Attributes Avg Attributes Unique Options Avg Options

1,181,436 670 3.1 842,849 0.67

Table 6: Product item statistics.

A.2 Product Attribute Mining

We use TfidfVectorizer from scikit-learn to extract probable bi-grams as attributes from
product title and descriptions for further annotation. We manually inspect these attributes to keep
only the specific and human-readable ones and filter out the rest. An attribute should be suitable in
at least one of the following use: 1) IsGoodFor, 2) HasA (contains), 3) WhichIs, and 4) IsA. For
example, attributes such as “oz ml” and “men women” will be filtered out since it’s unparsable. On
the other hand, “hair color” will also be filtered since it is not specific enough to fit in the above 4
categories. Attributes such as “dry skin” can fit the IsGoodFor in the context of a make-up product
being good for dry skin.

A.3 Search Engine

Each time the agent performs a search, the top 50 items are retrieved and displayed across five search
result pages, where each page contains 10 items and the agent can use actions choose[Prev/Next
page] to navigate across result pages. Figure 2 shows that when searching directly with the instruction
text, the corresponding item appears in the first search page (rank 1-10) nearly 1/3 of the time, but
it cannot be found in any search pages (rank 50+) more than half of the time. This indicates that
while the search engine can decently retrieve items based on lexical matching, directly searching the
instruction is not enough for solving the task, and good query (re)formulation based on the instruction
is important.

A.4 Instruction Collection

We collect human written instructions by providing the workers a product including the title, product
category, and its set of attributes and options (Figure 5, 6). We conduct qualification task by having
each participating workers to work on 2 � 5 examples. We inspect and assign qualification to 213
workers to perform the instruction writing task. We pay for each example 0.15 dollars. We do not
anticipate any potential participant risk.

A.5 Reward Calculation

The type reward rtype consists of 3 elements: 1) course-grain product category match (c = 1 if
matched), 2) fine-grain category match (f = 1 if matched), and 3) product title match. Course-grain
product category refers to the 5 categories described in §3.2. Fine-grain category is the chain of
categories that the product is under on the Amazon website. For example, and eye mask sheet would
be under the Beauty & Personal Care > Skin Care > Eyes > Wrinkle Pads & Patches fine-grain
category. The product title refers to ȳ described in §3.

15

amazon.com
amazon.com
amazon.com

Figure 5: The Amazon Mechanical Turk interface for the instruction writing task. The green box
shows the general instruction for the task and the grey box shows an concrete example.

Figure 6: The Amazon Mechanical Turk interface for the instruction writing task. The blue box shows
the actual annotation interface. The worker is required to check the boxes and write the instructions
in the text field before submission.

rtype =

8
>><

>>:

0, if TextMatch(ȳ, ȳ⇤) = 0
0.1, if TextMatch(ȳ, ȳ⇤) < 0.1
0.5, if TextMatch(ȳ, ȳ⇤) > 0.2 and c = 1 and f = 1,
1, otherwise

(6)

16

Instruction 1: I would like a stained glass wall
lamp with a bronze finish, and price lower than 190
dollars.

Human Actions (r = 0.33, length = 4)
search[stained glass wall lamp] click[item-QCLU
Tiffany Style Lamp Sunflower...] click[wall lamp 3
- 12 inch] click[buy]

Instruction 2
I would like a lead free bracelet birthday cake jar
candle, and price lower than 50.00 dollars.

Human Actions (r = 0.03, len = 4)
search[lead free bracelet birthday cake jar candle]
click[item-Happy Birthday Candle...] click[8 ounce
round tin] click[buy]

Table 7: Two examples of failed human trajectories. A common pattern is impatience: after one
search (even with correct attributes like the right example) the less performant worker commits to the
first selected item. Often, the item does not contain the desired options even though the item’s title
text seem relevant. An expert worker will recognize the need to select the correct options and go back
to refine the searches, while less performant workers simply commit to the current selected item.

Here, TextMatch(ȳ, ȳ⇤) is a simple string match between the selected product title text and the goal
product title text. We use only the words tagged with PNOUN, NOUN, and PROPN tags parsed by
the SpaCy parser in the title text.

A.6 Human Trajectory Collection

We use the HTML environment in Figure 1 to collect human trajectories. We select a pool of 13
workers using qualification tasks where each workers complete 5 examples. The workers that achieve
an average reward more than 0.75 are qualified. The task instruction is shown at the end of Appendix.
We observe a pronounced performance gap between the very high performing workers and average
workers. We use the top 50% of these qualified workers as experts (7 workers in total). We pay for
each completed trajectory 0.7 dollars. In human evaluation, 8 out of the 13 workers participated and
5 among them are in the aformentioned expert pool. The 8 participants achieve an overall score of
75.5 and a success rate of 50.0% We observe non-negligible variance even within the experts—the
best performer achieves a score of 87.4 and success rate of 69.5%, while the lowest performing
worker achieves a score of 45.8 and success rate of 10%. The best performing worker also shows
better consistency—drawing at a standard deviation of 2.3 in score, contrasting the lowest performing
counterpart at 3.1. We provide examples of common human failure cases such as not matching the
option/attribute due to impatience (Table 7), cautioning some caveats of the task with human workers.

A.7 Reward Verification

We randomly select 100 samples each from the pools of trajectories generated by average and expert
MTurk workers. Each trajectory is then manually re-scored against a human criteria; the purpose
of this is to determine how representative the reward function is of a human’s judgment towards
whether the chosen product satisfies the given instructions. The human score calculation procedure
exactly follows the formula laid out in Section A.5 – the attribute, option, price, and type scores
are individually determined, then aggregated to calculate the overall score – except for one main
modification. Instead of the exact matching approach, points are awarded if (1) the picked product’s
attributes, options, or type are lexically similar or synonymous with the goal’s product information
and (2) the desired value is not found verbatim anywhere in the picked product’s descriptions. For
instance, if the value lightweight is specified as a desired attribute for an instruction, but the value
easy carry is found instead in the picked product’s description, then the attribute score for the picked
product is increased to reflect that the lightweight value was found. On the other hand, if cyan is
desired as an option for a goal product, but the user picks blue even though cyan is available as
a choice, then no points are awarded. To ensure the score is calculated without bias, the original
rewards for each trajectory were not compared with the human evaluation scores until the human
evaluation scoring was completed.

For the average trajectories, the automatic task score was 74.9 and our manual score was 76.3 with a
Pearson correlation of 0.856. For expert trajectories, the respective scores were 81.5 and 89.9 with a
Pearson correlation of 0.773. Therefore, the automatic reward seems to provide a reasonably close
lower bound to the actual task performance. We find that for average workers, 87.0% of automatic

17

scores are within a 10% of the manual score, with the main source of error being synonyms or
lexically similar words that don’t get matched correctly in the automatic reward function.

MTurk Type Reward Function Price Type Attribute Result Overall

Average WebShop 95.0 92.9 71.7 50.5 74.9
Human 95.0 93.8 75.3 57.0 76.3

Expert WebShop 100.0 100.0 78.1 56.1 81.5
Human 100.0 100.0 88.2 66.8 89.9

Table 8: Reward Verification Statistics

Table 8 reflects our observation that our reward function is similar to a human’s score, with a
consistent tendency to over-penalize the picked product. For every trajectory’s product, the human
score across all categories (e.g. attributes, options) is always greater than or equal to the original
score. This under-scoring is a result of our reward function’s exact matching criterion. In future work,
we hope to improve our matching functionality such that, within the context of a single product with
respect to the goal instructions, it can identify synonyms and decide whether to award additional
points.

B Model Details

B.1 Cross Attention Layer

Our cross attention layer follows Seo et al. [42]. Denote the i-th contextualized token embedding
from the observation and action to be oi and ai respectively. The attention between oi and aj is
defined as

↵ij = w1 · oi + w2 · aj + w3 · (oi ⌦ aj) (7)
where ⌦ denotes element-wise product and w1,w2,w3 are learnable vectors. The observation-
contextualized vector for j-th action token is then

caj = w5 · leakyRELU(w4 · [aj , cj ,aj ⌦ cj ,q⌦ cj]) (8)

cj =

P
i exp(↵ij) · oiP

i exp(↵ij)
, q =

P
j0 exp(maxi ↵ij0)aj0P
j0 exp(maxi ↵ij0)

(9)

We then average pool all caj to derive the action score S(o, a):

S(o, a) = w6 ·
1

na

X

jna

caj 2 R (10)

where na is the number of tokens for action a.

B.2 RNN Baseline

Our RNN baseline is inspired by Guo et al. [14], where we use the same attention layer as described
above, but replace the Transformer text encoder with one-layer bi-directional Gated Recurrent Units
(GRU) [9] of hidden dimension 512. Another difference is that we also add an cross attention
between the instruction and action input word embeddings, as we hypothesize it might help option
text matching.

C WebShop Experiment Details

C.1 IL Training Details

The training code for our IL models is adapted from Huggingface glue training example, whose
repository is licensed under Apache License 2.0. We use a training batch size of 1 with 32 gradient
accumulation steps, a learning rate of 2 ⇥ 10�5, and 10 training epochs. The training takes around 2
hours on one RTX 2080 GPU with a GPU memory of around 10GB.

18

https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue_no_trainer.py

Score SR

IL 60.56 (1.94) 29.00 (2.42)
IL (top-1 search) 61.96 (0.47) 30.80 (0.72)
IL (top-1 choice) 45.10 (3.50) 24.93 (3.14)

Table 9: Sampling vs. top-1.

Score SR

IL 60.6 (1.94) 29.0 (2.42)
IL (w/o image) 60.3 (0.47) 28.4 (0.87)

Table 10: Image ablations.

C.2 RL Training Details

We train the RL models using 4 parallel environments for 100, 000 training steps. The backprogation
through time (BPTT) is taken at every 8 steps. We use an Adam optimizer with a learning rate of
10�5 (for Transformer models) or 5 ⇥ 10�4 (for RNN models).

For RL models with the Transformer (BERT) architecture, it takes around 27 hours on one RTX
3090 GPU with a GPU memory of around 20GB. For RL models with the GRU architecture, it takes
around 20 hours on one RTX 2080 GPU with a GPU memory of around 10GB.

To disentangle the effects of learning to search from choosing the right actions, we construct a
Choice oracle that has access to the hidden reward function as well as hidden attributes and options
underlying each product and instruction.§ Given a search query, the

C.3 Sampling vs. Top-1

We show comparisons between using beam search vs. top-1 for both the search model and the choice
model in Table 9. During testing, the search model uses beam search to generate top-5 search queries.
We randomly and uniformly sample from the top-5 queries to increase search diversity in case of
multiple searches. We conduct experiments to instead always use the top-1 search, which shows slight
performance improvement (see table below), and we will include the result in the paper. The choice
model has a fixed set of action candidates at each step (e.g. all available buttons), and we sample
from the choice policy what action to take, as always taking the top action will lead to significantly
detorior performances.

C.4 Image Ablation

We train 3 trials with different random seeds for both the IL model and the ablated IL model
without images, with performances over 500 test cases (10). Removing image only slightly hurts
the overall performance, but significantly reduces the variance. This is reasonable as our current
instruction and reward setups only use textual information, and we believe future efforts to incorporate
visual information into the task setup will better challenge models’ visual understanding, and make
pre-trained vision-language models such as CLIP more useful.

D Sim-to-real Details

D.1 Sim-to-real Transfer Details

To test how well our IL agent trained in WebShop performs on amazon.com (ebay.com similarly),
we wrote a series of scripts that generally achieve two steps - translate a real Amazon URL into our
IL model’s input (text observation, set of valid actions) and map the model’s output back to a real
Amazon URL. The following procedure is repeated until the IL model generates a "buy now" action:

§A similar search oracle is also possible but harder to design since the search space is infinite. One possible
oracle is to search for the underlying product name for each instruction, but that makes choice trivial as the
underlying product is then almost always the first search result.

19

amazon.com
ebay.com

• Amazon URL ! Amazon HTML ! Amazon Page Information: Using ScraperAPI [35], we
first get the HTML source code for a given Amazon page, then extract information relevant
to rendering the equivalent page in the WebShop environment (e.g. title, price, options).

• Amazon Page Information ! WebShop HTML ! Text Observation: Given the scraped
information, we generate the corresponding WebShop page in HTML mode, then transform it
into a simple mode text observation.

• Amazon Page Information ! Valid Action Set: From the scraped information, we determine
what valid actions the model can take (i.e. search[Red shoes], choose[Size 9]). This
logic is captured as a mapping of page type to permissible actions.

• Text Observation, Valid Action Set ! IL Model ! Amazon URL: Given the text observation
and allowed of valid actions, the IL model produces an action. This action is then used to
construct a corresponding Amazon URL via a set of mapping rules, and the loop is repeated.
This continues until the model generates a "buy now" action, terminating the loop.

D.2 Sim-to-real Transfer Results

The resulting numbers in Table 5 closely cohere to the reported numbers of WebShop found in
Figure 4, suggesting that the WebShop has promise for developing grounded agents that can operate
on real web environments. Between the two websites, transfer to Amazon is better than eBay as
we note that (i) eBay has a larger product gap from WebShop, e.g. some item categories like food
are disallowed in eBay. (ii) the eBay search engine seems weaker, and would sometimes display no
results for lengthy instructions. The following Table 11 is an example of a trajectory generated by the
IL agent searching on the real Amazon website.

Instruction: I want to find white blackout shades that are 66 inches in width and 66 inches in
height. They need to be easy to install..

search[white blackout shades 66 inches in width and 66 inches height, easy to install] click[item -
Easy Up & Down 100% Blackout Pleated Window Shades Temporary Window Blinds 36in x 64in
(Fits Window Width 18"-36") 2pcs-Pack Operating with Pull Cord Easy Trimming & Installing]
click[features] click[back to search] search[white blackout shades that are 66 inches in width and
66 inches height] click[item - Redi Shade Inc 1617201 Original Blackout Pleated Paper Shade
Black 36” x 72” 6-Pack] click[< prev] click[Shade + Strips, White] click[buy]

Table 11: An example trajectory (showing only actions) from the IL agent on the real Amazon website.
We omit instructions and some human actions for instruction and trim item names for readability.
Red denotes options and blue denotes attributes.

It is evident that the exploratory behavior and patterns learned and exhibited by the agent within the
WebShop environment is not lost in this transfer. These results point to the opportunity for sim-to-real
trained agents to transfer to other real-world web tasks despite the domain shift in both data (products)
and dynamics (search engine) With that said, the gap between human and model performance also
encourage us to look into expanding on the current limitations in our work regarding both the model
and the WebShop environment.

E Potential Societal Impacts and Limitations

WebShop is designed to minimize human efforts in data collection and processing, but there are
still potential concerns regarding diversity, fairness, and representation. Developing RL agents
that interact with the web also bear safety concerns, especially when transferring from simulation
to real-world websites. We also discuss other limitations regarding the semantics of current task
(instruction/reward).

Diversity and representation in data collection. We chose five common categories from amazon.

com and scrape all products using all subcategories to minimize bias. However, our data is still biased
toward the website country (USA) and website language (English), and may only represent a subset
of all possible products that users potentially want to buy. Having this limitation in mind, the design
of WebShop allows the product data to be easily updated for different representations of real-world
usage.

20

amazon.com
amazon.com

Bias in data processing. Currently our attribute labeling is manually done and may be biased by
the labeller’s own experience (e.g. more knowledge toward product attributes like sports rather than
makeup). An more automatic alternative would be to employ trained NLP models (e.g. relation
extraction) to extract product attributes, which might be less biased than one labeller. Our reward
design is general and could be updated to weight more toward attributes, options, price, etc.

Safety for developing web agents. Unlike recent work [33] that directly employs agents on the
World Wide Web (WWW), WebShop aims to provide a realistic simulation environment to train
agents in a controllable and safe manner. In our preliminary sim-to-real experiments, the agent could
only update the current webpage’s url in two fixed and safe ways (i.e. search for results, open an
item), and any form sending action (e.g. click options or buy) is held within the sim-to-real interface
for later reward calculation. As a result, only navigation is done on the real-world website. For future
deployment to real-world websites with more advanced functions, we believe a good specification of
possible model behaviors is key to avoid harmful actions.

Limitations in the current task. Our current instructions are still limited by the attributes and
options used. While attributes are simple and sometimes too generic (e.g. “easy to use”), the options
might get too specific (e.g. “d17(dedicated right, back)”). Therefore, an agent might sometimes use
a special option as cues to find the product, while ignoring other parts of the instruction. To better
leverage images and texts (including reviews written by human users, which are not used in current
work) of products for more semantic and challenging instructions is an important future direction
from WebShop.

Instruction for Human Trajectory Collection

The following pages display the human trajectory collection document mentioned in §A.6.

21

The WebShop Task
Thank you for taking part in this project! In this task, you need to buy a designated product
given an instruction on our Amazon Shopping Game site. You will get a score in the end
indicating how close you are. Please try to score as high as you can.

If you find in some cases the scoring seems weird/unfair, please reach out. We will look into
the cases.

Please read the following instructions carefully before you start.

Instructions
1) Go to the home page. The instruction will immediately show up on the landing page.

2) Given this instruction, please write a search query that would produce search results
matching the description.

Please do not copy-paste the entire instruction. We encourage you come up with more
targeted queries, see the result, and search again if needed.
Example:

- Instruction:
I need a 9.5 rubber soled hiking shoe made of lightweight vinyl
acetate.

- Bad query: (copy pasting)
9.5 rubber soled hiking shoe made of lightweight vinyl acetate

- Ideal query: (1st attempt)
rubber soled hiking shoe vinyl acetate (say the results are not great)

- Ideal query: (2nd attempt)
hiking shoe lightweight vinyl acetate (the results are better)

- Ideal query: (3nd attempt)
lightweight climbing shoe vinyl (gives promising results)

Essentially, you need to hack the search engine a little bit.

Note that our search engine is limited. Tricks that work on Google Search such as adding
quotation marks around the query wonʼt work.

Click Search a�er filling out the search bar like below.

3) Upon clicking Search, you will be sent to a page of results. The below screenshot is an
example of the results displayed from the example query in Step 2. Each page shows up to 10
results. Click the Next button to see more results.

4) Click on any of the blue product title text (i.e. “B092F97B24” in above screenshot) to see a
product detail page, like the below.

Guidelines for searching for matching products:

● Some pages have Options (i.e. Size, Color in above screenshot). If the instructions
contain such information, please select the corresponding options (even if the title /
features / desc. / reviews may already contain such info). In most cases, if you find
the options verbatim as in the instruction, youʼve likely found the right product.

● Do not use the product image to determine whether the instructionʼs information
matches the product.

An example:
● Given instruction: “Find me a pair of ankle socks that are blue and size 11”

Between this product… And this product…

TITLE: Ankle socks for casual wear, sports,
and leisure. Pack of 4, 8, or 12

DESC: 100% made in the USA. These socks
are good for any occasion.
FEATURES: Made with cotton, breathable
fabric. Machine washable okay.

OPTIONS:
● Sizes: 8, 9, 10, 11, 12
● Color: red, green, black, white, blue

TITLE: Kirkland athletic socks with rubber
soles and heels. Easy slip on

DESC: Costco wholesale socks, limited
stock.
FEATURES: Polyester and Rayon fabric.
Guaranteed long lasting or your money
back.

OPTIONS: None

The le� hand is a better match because the productʼs title, features, description, and
options reflect the instructionʼs information.

While the right hand product appears to be a pair of blue ankle socks, because this
information is not reflected in the text, we do not consider this a match.

Therefore, feel free to use the product image as a reference when looking for matches, but
keep in mind that the experiment weʼre running accounts for a textʼs

5) Decide whether the product is a match

A match should
● Contain all of the instructionʼs information in the product detail pageʼs text (i.e. title,

description, feature, options)
● Have options (if they exist), which correspond to the product info, be selected.

A match does not account for
● The product image

● You think it is a match! → Click the Buy Now button on the product detail page
● You think it is not a match OR another product might be a better match…

○ Click on the Back button to go to the original list of search results (page 3). From
here, repeat steps 3-4 until you find a product that matches best.

○ Click on the Back to Search button. This will take you back to the search bar
page (page 2). If you feel none of the results are good matches, try another
search query.

6) Once you clicked Buy Now, you will see your score (wonʼt be used to decide the pay), and a
code you need to paste in the MTurk interface. And youʼre done!

Tips
Patterns that o�en result in HIGH scores:

● Refine search queries until promising products show up
● Explore different product pages (go to next page if needed) to see if options and

different aspects are covered
● Make sure all aspects in the instructions are covered by either the title, description

page, or the feature page.
● Make sure all options are found almost verbatim in the product page

Patterns that o�en result in LOW scores:

● Low effort copy-paste the entire instructions as the search query
● Always click the first item without checking if the aspects in the instructions are

covered
● Click items that obviously donʼt have any option matches

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6 Discussion and
Appendix.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section 6 Discussion and Appendix.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See
supplementary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Data splits are described in the Section 5 first paragraph. Hyper-
parameters and training details are in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Figure 3 includes error bars, Table 2 includes min/max
statistics along with averages.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In appendix training details.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Citations include

ScraperAPI, Flask, OpenAI Gym, BERT, BART, A2C.
(b) Did you mention the license of the assets? [Yes] Discussed in appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

In the supplementary materials.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] Discussed in appendix, we only scrape publicly available data
from the Internet.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Discussed in Appendix.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] In appendix.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [Yes] Discussed in Appendix.
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [Yes] Discussed in Appendix.

28

	Introduction
	Related Work
	The WebShop Environment
	Task Formulation
	Environment Implementation
	Research Challenges

	Methods
	Rule Baseline
	Imitation Learning (IL)
	Reinforcement Learning (RL)

	Experiments
	Setup and task verification
	Results
	Analysis
	Zero-shot Sim-to-real Transfer

	Discussion
	Environment Details
	Product Scraping
	Product Attribute Mining
	Search Engine
	Instruction Collection
	Reward Calculation
	Human Trajectory Collection
	Reward Verification

	Model Details
	Cross Attention Layer
	RNN Baseline

	WebShop Experiment Details
	IL Training Details
	RL Training Details
	Sampling vs. Top-1
	Image Ablation

	Sim-to-real Details
	Sim-to-real Transfer Details
	Sim-to-real Transfer Results

	Potential Societal Impacts and Limitations

