
A Properties of the discrepancy of synergy patterns as a legitimate1

pseudometric2

Proposition A.1. By the definition 4.1, dsp is a legitimate pseudometric on Λ which can be proved3

by examining following properties:4

i) dsp(p1, p2) ≥ 0,5

Proof. As Chowdhury & Mémoli [1] show, the Gromov-Wasserstein discrepancy is a pseudo-6

metric on G, where G denotes the collection of measure graphs, leading to dgw(G
πππ1 , Gπππ2) ≥ 0.7

Following the definition in Eq. (2), proving dsp(p1, p2) ≥ 0 is trivial since all elements are8

non-negative.9

ii) dsp(p, p) = 0,10

Proof. Similarly, based on dgw(G
πππ, Gπππ) = 0, we can choose ϱ carefully as ϱ0 with11

P(Gπππ1 , Gπππ2 = G) = δ(G) and P(Gπππ1 = G,Gπππ2) = δ(G) everywhere, where δ is the Dirac12

distribution. Hence we have:13

dsp(p, p) =

[∫
dgw(G

πππ1 , Gπππ2) dϱ

]
ϱ=ϱ0

=

∫
0 · dϱ = 0

14

iii) dsp(p1, p2) = dsp(p2, p1),15

Proof. To avoid unnecessary confusion, we notate the joint distribution of the L.H.S as ϱl and16

that of the R.H.S. as ϱr, respectively. Denote ϱl = ϱ12 as one of the joint distributions when the17

infimum of the L.H.S. is reached:18

dsp(p1, p2) =

[∫
dgw(G

πππ1 , Gπππ2) dϱl

]
ϱl=ϱ12

We show that the infimum of the R.H.S. is reached when ϱr = ϱ21 by contradictions, where ϱ2119

can be obtained by exchanging the probabilities of Gπππ1 and Gπππ2 in ϱ12. Suppose there exists20

ϱr = ϱ′21 such that:21 [∫
dgw(G

πππ2 , Gπππ1) dϱr

]
ϱr=ϱ′

21

<

[∫
dgw(G

πππ2 , Gπππ1) dϱr

]
ϱr=ϱ21

Then we can update the joint distribution for the L.H.S. with ϱl = ϱ′12 by exchanging the22

probabilities of Gπππ1 and Gπππ2 in ϱ′21 similarly. Based on the property of the Gromov-Wasserstein23

discrepancy: dgw(Gπππ1 , Gπππ2) = dgw(G
πππ2 , Gπππ1), we have:24 [∫

dgw(G
πππ1 , Gπππ2) dϱl

]
ϱl=ϱ′

12

=

[∫
dgw(G

πππ2 , Gπππ1) dϱr

]
ϱr=ϱ′

21

<

[∫
dgw(G

πππ2 , Gπππ1) dϱr

]
ϱr=ϱ21

=

[∫
dgw(G

πππ1 , Gπππ2) dϱl

]
ϱl=ϱ12

This contradicts the claim that ϱl is one of the joint distributions when the infimum of the L.H.S.25

is reached. Hence, we can derive:26

dsp(p2, p1) = inf
ϱr∈Γ[p2,p1]

∫
dgw(G

πππ2 , Gπππ1) dϱr

=

[∫
dgw(G

πππ2 , Gπππ1) dϱr

]
ϱr=ϱ21

=

[∫
dgw(G

πππ1 , Gπππ2) dϱl

]
ϱl=ϱ12

= dsp(p1, p2)
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Name Description Value

γ Discounted factor 0.99
ε anneal time Time-steps for ε to anneal from εs to εf, where ε is the probability for agents choosing random actions. 100000
εs Initial ε at start 1
εf Final ε 0.05
Nenv The number of parallel environments 1
|DRL| The size of the replay buffer for MARL learning 5000
Nrnn Dimension of RNN cells 256
lr Learning rate 0.001
Nbatch Batch size 128
ttarget Time interval for updating the target network 200
Gmax Clipping value for all gradients 10
|D| The size of the graph buffer for SPD 10000
tstart The start steps for employing SPD to obtain pseudo-reward 5000
α The factor of the regularized term in Eq. (6) 0
B1, B2 The size of the SPG batches 50
N iter

Sinkhorn The number of the iterations for Sinkhorn-Knopp algorithm 50
N iter

KM The number of the iterations for Kuhn–Munkres algorithm 100

Table 1: Hyper-parameters.

which finishes the proof.27

iv) dsp(p1, pχ) + dsp(p2, pχ) ≥ dsp(p1, p2).28

Proof. We prove the triangle inequality by contradictions similar to iii). Suppose that29

∃pχ, s.t. dsp(p1, pχ) + dsp(p2, pχ) < dsp(p1, p2). Denote the joint distributions for the in-30

fimum of the discrepancy of synergy patterns as ϱ1χ, ϱ2χ and ϱ12 respectively. Let ϱχ2 be the31

joint distribution by exchanging the probability of Gπππ2 and Gπππχ . Then we can use ϱ1χ and ϱχ232

to find the probabilities of Gπππ1 and Gπππ2 corresponding to the same Gπππχ , obtaining the new33

joint distribution ϱ′12. By the triangle inequality of the Gromov-Wasserstein discrepancy, we can34

write:35 [∫
dgw(G

πππ1 , Gπππ2) dϱ

]
ϱ=ϱ′

12

≤
[∫

dgw(G
πππ1 , Gπππχ) dϱ

]
ϱ=ϱ1χ

+

[∫
dgw(G

πππχ , Gπππ2) dϱ

]
ϱ=ϱχ2

=

[∫
dgw(G

πππ1 , Gπππχ) dϱ

]
ϱ=ϱ1χ

+

[∫
dgw(G

πππ2 , Gπππχ) dϱ

]
ϱ=ϱ2χ

= dsp(p1, pχ) + dsp(p2, pχ)

< dsp(p1, p2)

which contradicts the claim that dsp(p1, p2) is the infimum. Hence we have ∀pχ, dsp(p1, pχ) +36

dsp(p2, pχ) ≥ dsp(p1, p2).37

B Details for experiments and reproducibility38

B.1 Description for the MPE environment in Sec. 5.139

Multi-agent Particle Environment (MPE) [3, 6] consists of n agents and l landmarks in a 2D world.40

Each agent has to resolve to select the action from its discrete action space to move around. In41

practice, the experiments in Sec. 5.1 are carried out in the customed scenario SimpleTag, which is a42

predator-prey environment with n = 4, l = 1. In the original scenario, there are 1 good agent that can43

move faster to keep itself away from the others and 3 adversaries trying to hit the good agent. Besides,44

there is a obstacle blocking the way denoted by 1 landmark. To customize the environment for URL45

experiments, we discard the extrinsic reward from the environment. Instead, we are concerned about46

the diversity of agents’ formations driven by learned coordination policies.47

B.2 Details about hardware and reproducibility48

The hardware An AMD Ryzen 3975WX CPU with 32-Cores and three RTX-3090-11G GPUs are49

employed to run all the experiments with five random seeds. As for MPE, it takes around 10 hours for50
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Figure 1: Position trajectories of Z = 20 synergy patterns, and the number of each sub-figure is the
id z of the synergy pattern. The transparency of the circle denotes the time in the episode and the
more transparent circle is at the smaller time step.

106 time steps to train 10 joint policies with SPD. Besides, SPD takes around 36 hours for 4× 10651

time steps in GRF to train 20 joint policies.52

Code and reproducibility Our entire code 1 is opened for reproducing all the experiments. To53

reproduce the results, please refer to the instruction file “README.md”.54

Training details We adopt QMIX [4] as our MARL algorithm to learn synergy patterns. Recurrent55

Neural Network (RNN) is used in the policy to alleviate the partial observability. The mixing network56

has one hyper-layer as described in QMIX with 64 units. The optimizer to optimize the neural57

networks is “Adam”. Each URL algorithm is deployed to learn different joint policies (Z = 1058

for MPE and Z = 20 for GRF) and mixing networks every time. We summarize most of the59

hyper-parameters for the two experiments in Sec. 5 in Table. 1.60

C Visualization for learned synergy patterns in GRF61

To comprehensively illustrate the diversity of synergy patterns learned by SPD, we directly visualize62

the Z = 20 learned joint policies in GRF. During this procedure, The agents 1, 2, 3 are controlled by63

the learned policies and the opponents are built-in AI. Fig. 1 shows the position trajectories of the64

agents and the opponents by different learned joint policies. The results demonstrate that the agents65

can learn useful synergy patterns, such as dribbling (z = 1, 2, 3, 7, . . . ), collaborating to maintain the66

formations (z = 4, 8, 18), and passing-and-shooting (z = 6), with only pseudo-reward from SPD.67

1We custom the code from https://github.com/hijkzzz/pymarl2 [2] to carry out the experiments in
this paper.
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Name Description

Synergy Pattern The perennial coordinated behaviour of agents.
Synergy Pattern Graph (SPG) Gsp(V,WWW,µµµ, ζ), a.k.a. SPG element A graph, where vi ∈ V is the vertex for agent i ∈ I and the weight

ωij ∈WWW of edge {i, j} depicts agents’ relative relations.
Synergy Pattern Function ζ A general function which could depict agents’ relative relations.
SPG batch λ̄ A batch of SPG sampled from the distribution of SPG.
Discrepancy of Synergy Patterns dsp The discrepancy between two distributions of SPG.
Proximal Discrepancy of Synergy Patterns d̄sp The sum of the dgw between two SPG batches.

Table 2: Concepts in SPD.

D Discrimination of proposed concepts68

We summarize the concepts mentioned in this work in Table 2 for a clearer understanding.69

E Evaluation on SMAC70

Figure 2: Comparison of our approach SPD against baseline algorithms on three SMAC maps.

We also assess SPD on SMAC [5] to demonstrate the efficacy of the learnt joint policies and offer71

a more thorough perspective of the effect of the URL training. As for our method SPD, we follow72

the same URL training procedure in Sec. 5.2 and use QMIX as our training method as well. The73

Z = 20 pre-trained policies are learned by QMIX on the same maps as the downstream tasks without74

external reward but only pseudo-reward provided by SPD for 106 time steps, and are tested before75

MARL training on the downstream tasks to choose parameters as the initialization. During the MARL76

training, each algorithm is carried out with 5 random seeds.77

We evaluate each algorithm on three maps: 3m, 2m_vs_1z and 3s5z_vs_3s6z (super-hard). The78

results are shown in Fig. 2. On the map 2m_vs_1z with normal difficulty, SPD performs similarly79

to the baseline QMIX, while it learns more efficiently compared to QMIX on map 3m. We believe80

the fact that these two maps can be explored by ϵ-greedy strategy sufficiently and do not need81

well-performed team behaviour may account for this. Since we use QMIX as our training algorithm,82

the performance is limited by it and is surpassed by CDS and QPLEX. However, SPD significantly83

outperforms the baseline QMIX and reach similar performance as CDS on the super-hard map84

3s5z_vs_3s6z, which demonstrates that SPD do learn the relationship of agents and encourage team85

behaviour. Such results suggest that the role of SPD is more pronounced in tasks where there is a86

greater need for cooperation. In addition, combining exploration-based algorithms, such as CDS,87

with SPD may achieve better performance and foreshadow future research directions.88
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