
A Proofs

In this appendix, we present the proofs of the results in the main paper. First, we give a summary
of the notation that is used in this appendix. Then, in Section A.1, we present some lemmas that
are useful for proving our main results. In Section A.2, we prove the average generalization bounds
from Section 3.1. In Section A.3, we prove the high-probability results from Section 3.2. Finally, in
Section A.4, we prove the generalization bounds for multiclass classification from Section 4.1.

Notation summary. For i ∈ {1, . . . , n̂}, k ∈ {0, 1}, j ∈ {1, . . . , n}, and l ∈ {0, 1}, we let Zi,k
j,l

denote the lth sample from the jth sample pair in the kth task of the ith task pair. This is illustrated
in Figure 1. Throughout, i denotes a task index, j denotes a sample index, k denotes a selection
within the task pair, and l denotes a selection within the sample pair. Furthermore, we let Zi

j,l =

(Zi,0
j,l , Z

i,1
j,l ) and Zi

j = {Zi,k
j,l }

k=0,1
l=0,1 . The tasks used to form the training set are selected on the basis

of the binary vector Ŝ = (Ŝ1, . . . , Ŝn̂). Within task (i, k), the samples that form the training set
are selected on the basis of Si,k = (Si,k

1 , . . . , Si,k
n ). For convenience, we let Si = (Si,0, Si,1)

and S = (S1, . . . , Sn̂). The training set for task (i, k) is Zi,k
Si,k = (Zi,k

1,Si,k
1

, . . . , Zi,k

n,Si,k
n

). As a

shorthand, Zi,k
Si = Zi,k

Si,k . The collection of all samples is Z = {Zi
j}i=1:n̂

j=1:n . The full data set for

task (i, k) is Zi,k = {Zi,k
j,l }

l=0,1
j=1:n . The full data set for all training tasks is ZŜ = (Z1,Ŝ1 , . . . , Zn̂,Ŝn̂).

The jth training sample for task pair i is Zi
j,Sj

= (Zi,0
j,Sj

, Zi,1
j,Sj

). The jth training sample for all
tasks is Zj,Sj

= (Z1
j,Sj

, . . . , Zn̂
j,Sj

). The training sets for all tasks is ZS = (Z1,S1
, . . . , Zn,Sn

). The

meta-training set is ZŜ
S = (Z1,Ŝ1

S1 , . . . , Zn̂,Ŝ1

Sn̂ ). Finally, the output of the meta learner is U , the output
of the base learner for task (i, k) is W i,k, and we let W i = (W i,0,W i,1) and W = (W 1, . . . ,W n̂).

The conventions that we describe for Zi,k
j,l apply also for the losses λi,k

j,l , the instances Xi,k
j,l , the

predictions F i,k
j,l , and the representations Hi,k

j,l that we consider in this appendix.

A.1 Useful Lemmas

In this section, we present some lemmas that will be useful in the derivations of the main results. We
begin with two change of measure inequalities for functions of random variables.

Lemma 1 (Change of measure inequalities). Let X and Y be two random variables over X and Y
respectively, and let Y ′ be a random variable with the same marginal distribution as Y such that Y ′

and X are independent. Assume that the joint distribution of X,Y is absolutely continuous with
respect to the joint distribution of X,Y ′. Let f : X × Y → [−1, 1] and g : X × Y → [0, 1]
be measurable functions. Furthermore, assume that EX,Y ′ [f(X,Y ′)] = 0. Then, the following
inequalities hold:

|EX,Y [f(X,Y )]| ≤
√
2I(X;Y ), (26)

d(EX,Y [g(X,Y )] || EX,Y ′ [g(X,Y ′)]) ≤ I(X;Y ). (27)

Proof. Donsker-Varadhan’s variational representation of the KL divergence implies that

EX,Y [γf(X,Y )] ≤ I(X;Y ) + logEX,Y ′

[
eγf(X,Y ′)

]
. (28)

Now, f(X,Y ′) is bounded to [−1, 1] and EX,Y ′ [f(X,Y ′)] = 0. Therefore, f(X,Y ′) is a sub-
Gaussian random variable, which implies that

logEX,Y ′

[
eγf(X,Y ′)

]
≤ γ2/2. (29)

Using this upper bound in (28), we obtain

EX,Y [γf(X,Y )]− γ2/2 ≤ I(X;Y ). (30)

By maximizing the left-hand side over γ, we establish (26).
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We now turn to (27). Let dγ(q || p) = γq − log(1− p+ peγ), and note that this function is convex.
By Jensen’s inequality,

dγ(EX,Y [g(X,Y )] || EX,Y ′ [g(X,Y ′)]) ≤ EX,Y [dγ(g(X,Y ) || EY ′ [g(X,Y ′)])] . (31)

By Donsker-Varadhan’s variational representation of the KL divergence,

EX,Y [dγ(g(X,Y ) || EY ′ [g(X,Y ′)])] ≤ I(X;Y ) + logEX,Y ′

[
edγ(g(X,Y ′) || EY ′ [g(X,Y ′)])

]
. (32)

By [22, Eq. (17)], we have

logEX,Y ′

[
edγ(g(X,Y ′) || EY ′ [g(X,Y ′)])

]
≤ 0. (33)

Thus, by combining (31)-(33),

dγ(EX,Y [g(X,Y )] || EX,Y ′ [g(X,Y ′)]) ≤ I(X;Y ). (34)

The desired result follows because supγ dγ(· || ·) = d(· || ·).

Lemma 2 (Conditioning on independent random variables). Consider the random variables X , Y
and Z, where X and Z are independent. Then,

I(X;Y ) ≤ I(X;Y |Z). (35)

Proof. The result follows by using the independence of X and Z (which implies that I(X;Z) = 0),
the chain rule for mutual information, and the non-negativity of mutual information as follows. Note
that

I(X;Y,Z) = I(X;Z) + I(X;Y |Z) = I(X;Y |Z). (36)

Alternatively,

I(X;Y,Z) = I(X;Y ) + I(X;Z|Y ) ≥ I(X;Y ). (37)

Thus,

I(X;Y ) ≤ I(X;Y, Z) = I(X;Y |Z). (38)

Lemma 3 (Full-sample relaxation). Consider n independent random variables X = {Xi}ni=1 and a
random variable Y . Let ϕ be a convex function. Then,

1

n

n∑
i=1

ϕ(I(Xi;Y ) ≤ ϕ

(
I(X;Y )

n

)
. (39)

Proof. Let X<i denote {X1, . . . , Xi−1}. By the chain rule of mutual information,

I(X;Y ) =

n∑
i=1

I(Xi;Y |X<i). (40)

Due to the independence of the Xi, Lemma 2 implies that I(Xi;Y |X<i) ≥ I(Xi;Y ). Combined
with Jensen’s inequality, this implies that

ϕ

(
I(X;Y )

n

)
≥ ϕ

(
n∑

i=1

I(Xi;Y )

n

)
≥ 1

n

n∑
i=1

ϕ(I(Xi;Y )) . (41)

15



Lemma 4 (Sauer-Shelah lemma for the VC and Natarajan dimension). Let gF (·) denote the growth
function of the function class F . Specifically, gF (m) is the maximum number of different ways in
which a data set of size m can be classified using functions from F . For any function class F with
VC dimension dVC,

gF (m) ≤
dVC∑
i=0

(
m

i

)
≤


2dVC+1, m < dVC + 1(
em

dVC

)dVC

, m ≥ dVC + 1
(42)

More generally, for any function class F with range {0, . . . , N − 1} and Natarajan dimension dN ,

gF (m) ≤
dN∑
i=0

(
m

i

)(
N

2

)i

≤


NdN+1, m < dN + 1,((

N

2

)
em

dN

)dN

, m ≥ dN + 1.
(43)

Proof. The first inequality in (43) follows from [36, Cor. 5] and the second follows from [37,
Lemma 10]. The result in (42) follows by setting N = 2 in (43), for which the Natarajan dimen-
sion dN coincides with the VC dimension [36, p. 222].

A.2 Proofs for Section 3.1

Proof of Theorem 1. We start by establishing a task-level generalization bound, i.e., a bound
on
∣∣∣LD − L̃

∣∣∣. By Jensen’s inequality, the convexity of |·| implies that

∣∣∣LD − L̃
∣∣∣ ≤ 1

nn̂

n̂,n∑
i,j=1

EZ,Ŝi

[∣∣∣∣Eλ
i,−Ŝi
j ,S

i,−Ŝi
j

[
λi,−Ŝi

j,−Si
j
− λi,−Ŝi

j,Si
j

]∣∣∣∣] . (44)

Let S′ be an independent copy of S. By symmetry, we see that

E
λ
i,−Ŝi
j ,S′

j
i,−Ŝi

[
λi,−Ŝi

j,−S′
j
i − λi,−Ŝi

j,S′
j
i

]
= 0. (45)

Using (26), we can therefore bound the argument of the expectation in (44) as∣∣∣∣Eλ
i,−Ŝi
j ,S

i,−Ŝi
j

[
λi,−Ŝi

j,−Si
j
− λi,−Ŝi

j,Si
j

]∣∣∣∣ ≤√2IZ,Ŝi(λi,−Ŝi

j ;Si,−Ŝi

j ). (46)

Combining (44) and (46), we obtain the following task-level generalization bound:∣∣∣LD − L̃
∣∣∣ ≤ 1

nn̂

n̂,n∑
i,j=1

EZ,Ŝi

[√
2IZ,Ŝi(λi,−Ŝi

j ;Si,−Ŝi

j )

]
. (47)

This is the first step of the two-step derivation.

Next, we establish an environment-level bound, i.e., a bound on
∣∣∣L̃− L̂

∣∣∣. Again, by Jensen’s
inequality, the convexity of |·| implies that∣∣∣L̃− L̂

∣∣∣ ≤ 1

nn̂

n̂,n∑
i,j=1

EZ,Si
j

[∣∣∣∣Eλi

j,Si
j

,Ŝi

[
λi,−Ŝi

j,Si
j

− λi,Ŝi

j,Si
j

]∣∣∣∣] . (48)

Symmetry implies that

Eλi

j,Si
j

,Ŝ′
i

[
λ
i,−Ŝ′

i

j,Si
j

− λ
i,Ŝ′

i

j,Si
j

]
= 0. (49)

We again bound the argument of the expectation, using (26), as∣∣∣∣Eλi

j,Si
j

,Ŝi

[
λi,−Ŝi

j,Si
j

− λi,Ŝi

j,Si
j

]∣∣∣∣ ≤√2IZ,Si
j (λi

j,Si
j
; Ŝi). (50)
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Combining the two preceding inequalities, we obtain the following environment-level generalization
guarantee, which is the second step:∣∣∣L̃− L̂

∣∣∣ ≤ 1

nn̂

n̂,n∑
i,j=1

EZ,Si
j

[√
2IZ,Si

j (λi
j,Si

j
; Ŝi)

]
. (51)

We conclude the proof by observing that
∣∣∣LD − L̂

∣∣∣ ≤ ∣∣∣LD − L̃
∣∣∣+ ∣∣∣L̃− L̂

∣∣∣ by the triangle inequality,
and by using (47) and (51) to bound the two terms.

Proof of Corollary 1. We begin with the first sum on the right-hand side of (4). By Jensen’s inequal-
ity,

1

nn̂

n̂,n∑
i,j=1

EZ,Si
j

[√
2IZ,Si

j (λi
j,Si

j
; Ŝi)

]
≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi
j,Si

j
; Ŝi|Z, Si

j). (52)

By Lemma 2 and the independence of Ŝi and (S,R), we conclude that conditioning on S and R does
not increase the mutual information. Hence,√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi
j,Si

j
; Ŝi|Z, Si

j) ≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi
j,Si

j
; Ŝi|Z, S,R). (53)

Since adding more random variables to the argument of the mutual information cannot decrease it,
we have √√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi
j,Si

j
; Ŝi|Z, S,R) ≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λj,Si
j
; Ŝi|Z, S,R), (54)

where λj,Si
j
= {λi

j,Si
j
}n̂i=1. Since the Ŝi are independent, it follows from Lemma 3 that√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λj,Si
j
; Ŝi|Z, S,R) ≤

√√√√ 1

n

n∑
j=1

2I(λj,Si
j
; Ŝ|Z, S,R)

n̂
. (55)

Now, note that given Z, S and R, the losses λj,Si
j

are a function of the output of the meta learner U .
Therefore, √√√√ 1

n

n∑
j=1

2I(λj,Si
j
; Ŝ|Z, S,R)

n̂
≤

√
2I(U ; Ŝ|Z, S,R)

n̂
≤

√
2I(U ; Ŝ|Z, S)

n̂
, (56)

where the last step follows from the independence of U and R. By combining (52)-(56), we can
bound the first sum in the right-hand side of (4) as

1

nn̂

n̂,n∑
i,j=1

EZ,Si
j

[√
2IZ,Si

j (λi
j,Si

j
; Ŝi)

]
≤

√
2I(U ; Ŝ|Z, S)

n̂
. (57)

For the second sum on the right-hand side of (4), we again use Jensen’s inequality to conclude that

1

nn̂

n̂,n∑
i,j=1

EZ,Ŝi

[√
2IZ,Ŝi(λi,−Ŝi

j ;Si,−Ŝi

j )

]
≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi,−Ŝi

j ;Si,−Ŝi

j |Z, Ŝi). (58)
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Since adding more random variables does not decrease the mutual information,√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi,−Ŝi

j ;Si,−Ŝi

j |Z, Ŝi) ≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi,−Ŝi ;Si,−Ŝi

j |Z, Ŝi). (59)

By Lemma 2 and the independence of the Si,−Ŝi

j ,√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi,−Ŝi ;Si,−Ŝi

j |Z, Ŝi) ≤

√√√√ 1

n̂

n̂∑
i=1

2I(λi,−Ŝi ;Si,−Ŝi |Z, Ŝi)

n
. (60)

Since Ri, Ŝi and Si,−Ŝi have the same distribution for all i = 1, . . . , n̂,√√√√ 1

n̂

n̂∑
i=1

2I(λi,−Ŝi ;Si,−Ŝi |Z, Ŝi)

n
=

√
2I(λ1,−Ŝ1 ;S1,−Ŝ1 |Z, Ŝi)

n
. (61)

Finally, given Z and Ŝi, λ1,−Ŝ1 is a function of W 1,−Ŝ1 . Hence,√
2I(λ1,−Ŝ1 ;S1,−Ŝ1 |Z, Ŝi)

n
≤

√
2I(W 1,−Ŝ1 ;S1,−Ŝ1 |Z, Ŝi)

n
. (62)

By combining (58)-(62), we can bound the second term in the right-hand side of (4) as

1

nn̂

n̂,n∑
i,j=1

EZ,Ŝi

[√
2IZ,Ŝi(λi,−Ŝi

j ;Si,−Ŝi

j )

]
≤

√
2I(W 1,−Ŝ1 ;S1,−Ŝ1 |Z, Ŝi)

n
. (63)

The result follows by combining (57) and (63).

Proof of Theorem 2. By Jensen’s inequality, we have∣∣∣LD − L̂
∣∣∣ ≤ 1

nn̂

n̂,n∑
i,j=1

EZ

[∣∣∣Eλi
j ,Ŝi,Si

j

[
λi,−Ŝi

j,−Si
j
− λi,Ŝi

j,Si
j

]∣∣∣] . (64)

Now, let Ŝ′ and S′ be independent copies of Ŝ and S. Note that

Eλi
j ,Ŝ

′
i,S

′
j
i

[
λ
i,−Ŝ′

i

j,−S′
j
i − λ

i,Ŝ′
i

j,S′
j
i

]
= 0. (65)

We can therefore apply (26), with X = λi
j and Y being the pair of random variables (Ŝ′

i, S
′
j
i
), to

bound the argument of the expectation as∣∣∣Eλi
j ,Ŝi,Si

j

[
λi,−Ŝi

j,−Si
j
− λi,Ŝi

j,Si
j

]∣∣∣ ≤√2IZ(λi
j ; Ŝi, Si

j). (66)

Combining (64) and (66), we establish the desired result.

Proof of Corollary 2. By Jensen’s inequality,

1

nn̂

n̂,n∑
i,j=1

EZ

[√
2IZ(λi

j ; Ŝi, Si
j)

]
≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi
j ; Ŝi, Si

j |Z). (67)
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Since adding more random variables does not decrease the mutual information,√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi
j ; Ŝi, Si

j |Z) ≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λ; Ŝi, Si
j |Z), (68)

where λ = {λi
j}i=1:n̂

j=1:n . By the independence of the Si
j for different j, and (Ŝi, S

i) for different i,√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λ; Ŝi, Si
j |Z) ≤

√
2I(λ; Ŝ, S|Z)

nn̂
. (69)

Given Z, the losses λ are a function of W = {W i}n̂i=1. Thus,√
2I(λ; Ŝ, S|Z)

nn̂
≤

√
2I(W ; Ŝ, S|Z)

nn̂
. (70)

Combining (67)-(70), we establish the first inequality in (7). Next, since adding random variables
does not decrease mutual information,√

2I(W ; Ŝ, S|Z)

nn̂
≤

√
2I(U,W ; Ŝ, S|Z)

nn̂
(71)

≤

√
2I(U ; Ŝ, S|Z) + 2I(W ; Ŝ, S|Z,U)

nn̂
(72)

where the second step follows from the chain rule. Since the conditional distribution PWŜS|ZU

factorizes as PŜ|ZU

∏n̂
i=1 PW iSi|ZU , we have that

I(W ; Ŝ, S|Z,U) =

n̂∑
i=1

I(W i;Si|Z,U). (73)

Furthermore, since (Ri, Ŝi, S
i) are identically distributed for all i,

n̂∑
i=1

I(W i;Si|Z,U) = n̂I(W 1;S1|Z,U). (74)

By combining (70)-(74), we get√
2I(W ; Ŝ, S|Z)

nn̂
≤

√
2I(U ; Ŝ, S|Z) + 2n̂I(W 1;S1|Z,U)

nn̂
. (75)

This establishes the second inequality in (7).

Finally, by the chain rule,

I(U ; Ŝ, S|Z) ≤ I(U ; Ŝ, S|Z) + I(U ;Z) = I(U ;Z, Ŝ, S) = I(U ;ZŜ
S ). (76)

Similarly,

I(W 1;S1|Z,U) ≤ I(W 1;S1|Z,U) + I(W 1;Z|U) = I(W 1;S1, Z|U) = I(W 1;Z1
S1 |U). (77)
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By combining (75)-(77), we establish (8). Thus, to summarize, we have shown that

∣∣∣LD − L̂
∣∣∣ ≤

√
2I(W ; Ŝ, S|Z)

nn̂
≤

√
2I(U ; Ŝ, S|Z) + 2n̂I(W 1;S1|Z,U)

nn̂
(78)

≤

√
2I(U ;ZŜ

S ) + 2n̂I(W 1;Z1
S1 |U)

nn̂
. (79)

Proof of Theorem 3. We begin by proving (10). First, we derive a task-level generalization bound.
By Jensen’s inequality, we have

d

(
L̃ || L̃+ LD

2

)
≤ 1

nn̂

n̂,n∑
i,j=1

EZ,Ŝi

E
λ
i,−Ŝi
j ,S

i,−Ŝi
j

d
λi,−Ŝi

j,Si
j

||
λi,−Ŝi

j,−Si
j
+ λi,−Ŝi

j,Si
j

2



 . (80)

Since Si,−Ŝi

j ∈ {0, 1}, λi,−Ŝi

j,−Si
j
+λi,−Ŝi

j,Si
j

= λi,−Ŝi

j,0 +λi,−Ŝi

j,1 does not actually depend on Si,−Ŝi

j . Now,

let S′ be an independent copy of S. It follows that

E
λ
i,−Ŝi
j ,S′

j
i,−Ŝi

[
λi,−Ŝi

j,S′
j
i

]
= E

λ
i,−Ŝi
j

λi,−Ŝi

j,0 + λi,−Ŝi

j,1

2

 . (81)

We can thus use (26) to bound the argument of the expectation as

E
λ
i,−Ŝi
j ,S

i,−Ŝi
j

d
λi,−Ŝi

j,Si
j

||
λi,−Ŝi

j,−Si
j
+ λi,−Ŝi

j,Si
j

2


 ≤ IZ,Ŝi(λi,−Ŝi

j ;Si,−Ŝi

j ). (82)

Combining the two inequalities, we obtain

d

(
L̃ || L̃+ LD

2

)
≤ 1

nn̂

n̂,n∑
i,j=1

I(λi,−Ŝi

j ;Si,−Ŝi

j |Z, Ŝi). (83)

Recall that

d−1
2 (q, c) = sup

{
p ∈ [0, 1] : d

(
q || q + p

2

)
≤ c

}
. (84)

Using d−1
2 (·) to invert (83), we get

LD ≤ d−1
2

L̃,
1

nn̂

n̂,n∑
i,j=1

I(λi,−Ŝi

j ;Si,−Ŝi

j |Z, Ŝi)

 . (85)

Next, we perform similar steps at the environment level. First, by Jensen’s inequality,

d

(
L̂ || L̂+ L̃

2

)
≤ 1

nn̂

n̂,n∑
i,j=1

EZ,Si
j

Eλi

j,Si
j

,Ŝi

d
λi,Ŝi

j,Si
j
||
λi,Ŝi

j,Si
j
+ λi,−Ŝi

j,Si
j

2



. (86)

Let Ŝ′ be an independent copy of Ŝ. By a similar argument as in the proof of the task-level bound,

Eλi

j,Si
j

,Ŝ′
i

[
λ
i,Ŝ′

i

j,Si
j

]
= Eλi

j,Si
j

λi,0
j,Si

j
+ λi,1

j,Si
j

2

 . (87)
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We can therefore again bound the argument of the expectation with (27) to obtain

Eλi

j,Si
j

,Ŝi

d
λi,Ŝi

j,Si
j
||
λi,Ŝi

j,Si
j
+ λi,−Ŝi

j,Si
j

2


 ≤ IZ,Si

j (λi
j,Si

j
; Ŝi). (88)

By combining the two inequalities, we find that

d

(
L̂ || L̂+ L̃

2

)
≤ 1

nn̂

n̂,n∑
i,j=1

I(λi
j,Si

j
; Ŝi|Z, Si

j) (89)

which, through the use of d−1
2 (·), implies that

L̃ ≤ d−1
2

L̂,
1

nn̂

n̂,n∑
i,j=1

I(λi
j,Si

j
; Ŝi|Z, Si

j)

 . (90)

To complete the proof, we use the following observation. Assume that LD ≤ B(L̃), where B(·) is a
non-decreasing function. Then, if L̃ ≤ B̂(L̂), we have LD ≤ B(B̂(L̂)). To apply this observation,
we note that d−1

2 (·, c) is non-decreasing for c > 0. Chaining the two bounds, we obtain

LD ≤ d−1
2

L̃,
1

nn̂

n̂,n∑
i,j=1

I(λi,−Ŝi

j ;Si,−Ŝi

j |Z, Ŝi)

 (91)

≤ d−1
2

d−1
2

L̂,
1

nn̂

n̂,n∑
i,j=1

I(λi
j,Si

j
; Ŝi|Z, Si

j)

 ,
1

nn̂

n̂,n∑
i,j=1

I(λi,−Ŝi

j ;Si,−Ŝi

j |Z, Ŝi)

 . (92)

This establishes (10).

Next, we turn to (11). By Jensen’s inequality, we have

d

(
L̂ || L̂+ L̄+ L̃+ LD

4

)

≤ 1

nn̂

n̂,n∑
i,j=1

EZ

Eλi
j ,Ŝi,Si

j

d
λi,Ŝi

j,Si
j
||
λi,Ŝi

j,Si
j
+λi,Ŝi

j,−Si
j
+λi,−Ŝi

j,Si
j

+λi,−Ŝi

j,−Si
j

4



. (93)

Let Ŝ′ and S′ be independent copies of Ŝ and S respectively. We note that

Eλi
j ,Ŝ

′
i,S

′
j
i

[
λi,Ŝi

j,Si
j

]
= Eλi

j

[
λi,0
j,0+λi,0

j,1+λi,1
j,0+λi,1

j,1

4

]
. (94)

This means that we can apply (27) to the argument of the expectation to get

Eλi
j ,Ŝi,Si

j

d
λi,Ŝi

j,Si
j
||
λi,Ŝi

j,Si
j
+λi,Ŝi

j,−Si
j
+λi,−Ŝi

j,Si
j

+λi,−Ŝi

j,−Si
j

4


≤IZ(λi

j ; Ŝi, S
i
j). (95)

The result in (11) now follows by combining (93) and (95).
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Proof of Corollary 3. Since limx→0+ x log x = 0, we use the convention that 0 log 0 = 0. From the
definition of d(· || ·), we thus get

d
(
0 || p

4

)
= log

1

1− p
4

(96)

from which it follows that
d−1
4 (0, c) = 4− 4e−c. (97)

By the non-negativity of the loss function, LD ≤ LD + L̄+ L̃. Thus, combining (11) with (97), we
obtain the result in (12).

A.3 Proofs for Section 3.2

To derive the simplified result stated in Theorem 4, we assume that the meta learner and base learner
are invariant to the order of the data samples. However, this assumption is only necessary to simplify
the expression, and a similar bound holds more generally without this assumption. Therefore, we first
state and prove this more general result in Theorem 6. Then, we describe how to simplify the result
to obtain Theorem 4. Later, when proving Corollary 6, we will use the more general Theorem 6 as
the basis of the derivation.

Theorem 6. Consider the setting introduced in Section 2. For each j, let Qj,Sj
denote the conditional

distribution of λj,Sj given (Z, Ŝ, S), and let Pj,Sj denote EŜ

[
Qj,Sj

]
. Furthermore, let Qi,−Ŝi denote

the conditional distribution of λi,−Ŝi given (Z, Ŝ, S), and let P i,−Ŝi denote ES−Ŝ

[
Qi,−Ŝi

]
. Then,

with probability at least 1− δ under the draw of (Z, Ŝ, S),

∣∣∣LD − L̂
∣∣∣ ≤

√
1
n

∑n
j=1 2D(Qj,Sj

||Pj,Sj
) + 2 log( 2n

√
n̂

δ )

n̂− 1

+

√∑n̂
i=1 2D(Qi,−Ŝi ||P i,−Ŝi) + 2 log( 2

√
nn̂
δ )

nn̂− 1
. (98)

Proof of Theorem 6. First, let L̃(Z, Ŝ, S) denote the training loss on unobserved tasks,

L̃(Z, Ŝ, S) =
1

nn̂

n̂,n∑
i,j=1

ER̂,Ri

[
ℓ(A(Zi,−Ŝi

Si , Ri, Â(ZŜ
S , R̂)), Zi,−Ŝi

j,−Si
j
)
]
. (99)

We begin by establishing an environment-level bound. Let λj,Sj
be distributed according to Qj,Sj

.
By Jensen’s inequality,

n̂− 1

2

(
L̃(Z, Ŝ, S)− L̂(Z, Ŝ, S)

)2
≤ 1

n

n∑
j=1

Eλj,Sj

 n̂− 1

2

(
1

n̂

n̂∑
i=1

λi,−Ŝi

j,Si
j

− λi,Ŝi

j,Si
j

)2
 . (100)

Now, let λ′
j,Sj

be distributed according to Pj,Sj . By Donsker-Varadhan’s variational representation
of the KL divergence,

1

n

n∑
j=1

Eλj,Sj

 n̂− 1

2

(
1

n̂

n̂∑
i=1

λi,−Ŝi

j,Si
j

− λi,Ŝi

j,Si
j

)2


≤ 1

n

n∑
j=1

D(Qj,Sj ||Pj,Sj ) + logEλ′
j,Sj

exp
 n̂− 1

2

(
1

n̂

n̂∑
i=1

λ′i,−Ŝi

j,Si
j

− λ′i,Ŝi

j,Si
j

)2
 . (101)
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For each j, Markov’s inequality implies that, with probability at least 1−δ under the draw of (Z, Ŝ, S),

D(Qj,Sj
||Pj,Sj

) + logEλ′
j,Sj

exp
 n̂− 1

2

(
1

n̂

n̂∑
i=1

λ′i,−Ŝi

j,Si
j

− λ′i,Ŝi

j,Si
j

)2


≤ D(Qj,Sj
||Pj,Sj

) + logEλ′
j,Sj

,Z,Ŝ,S

1
δ
exp

 n̂− 1

2

(
1

n̂

n̂∑
i=1

λ′i,−Ŝi

j,Si
j

− λ′i,Ŝi

j,Si
j

)2
 . (102)

By the union bound, this implies that, with δ → δ/n, (102) holds for all j simultaneously with
probability at least 1− δ. Thus, with probability at least 1− δ under the draw of (Z, Ŝ, S),

1

n

n∑
j=1

D(Qj,Sj
||Pj,Sj

) + logEλ′
j,Sj

exp
 n̂− 1

2

(
1

n̂

n̂∑
i=1

λ′i,−Ŝi

j,Si
j

− λ′i,Ŝi

j,Si
j

)2


≤ 1

n

n∑
j=1

D(Qj,Sj
||Pj,Sj

)+logEλ′
j,Sj

,Z,Ŝ,S

n
δ
exp

n̂−1

2

(
1

n̂

n̂∑
i=1

λ′i,−Ŝi

j,Si
j

−λ′i,Ŝi

j,Si
j

)2
. (103)

Note that, on the right-hand side of (103), Ŝ is independent from (λ′
j,Sj

, Z, S). Furthermore, for

each (i, j), λ′i,−Ŝi

j,Si
j

− λ′i,Ŝi

j,Si
j

is bounded to [−1, 1] and EŜi

[
λ′i,−Ŝi

j,Si
j

− λ′i,Ŝi

j,Si
j

]
= 0. This implies

that 1
n̂

∑n̂
i=1 λ

′i,−Ŝi

j,Si
j

−λ′i,Ŝi

j,Si
j

is a 1/
√
n̂-sub-Gaussian random variable, from which it follows that [38,

Thm. 2.6.(IV)]

logEλ′
j,Sj

,Z,Ŝ,S

exp
 n̂− 1

2

(
1

n̂

n̂∑
i=1

λ′i,−Ŝi

j,Si
j

− λ′i,Ŝi

j,Si
j

)2
 ≤ log(

√
n̂). (104)

By substituting (104) into (103), we obtain

1

n

n∑
j=1

D(Qj,Sj
||Pj,Sj

) + logEλ′
j,Sj

exp
 n̂− 1

2

(
1

n̂

n̂∑
i=1

λ′i,−Ŝi

j,Si
j

− λ′i,Ŝi

j,Si
j

)2


≤ 1

n

n∑
j=1

D(Qj,Sj
||Pj,Sj

) + log

(
n
√
n̂

δ

)
. (105)

By combining (100)-(105), we get, after some arithmetic,

∣∣∣L̃(Z, Ŝ, S)− L̂(Z, Ŝ, S)
∣∣∣ ≤

√√√√ 1
n

∑n
j=1 2D(Qj,Sj ||Pj,Sj ) + 2 log

(
n
√
n̂

δ

)
n̂− 1

. (106)

We now turn to the task level. Let Q−Ŝ denote the conditional distribution of λ−Ŝ given (Z, Ŝ, S),
and let P−Ŝ denote ES−Ŝ

[
Q−Ŝ

]
. Let λ−Ŝ be distributed according to Q−Ŝ . By Jensen’s inequality,

nn̂− 1

2

(
LD(Z, Ŝ, S)−L̃(Z, Ŝ, S)

)2
≤Eλ−Ŝ

nn̂− 1

2

 1

nn̂

n̂,n∑
i,j=1

λi,−Ŝi

j,−Si
j
− λi,−Ŝi

j,Si
j

2
 . (107)
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Now, let λ′−Ŝ be distributed according to P−Ŝ . By Donsker-Varadhan’s variational representation of
the KL divergence,

Eλ−Ŝ

nn̂− 1

2

 1

nn̂

n̂,n∑
i,j=1

λi,−Ŝi

j,−Si
j
− λi,−Ŝi

j,Si
j

2


≤ D(Q−Ŝ ||P−Ŝ) + logE
λ′−Ŝ

exp
nn̂− 1

2

 1

nn̂

n̂,n∑
i,j=1

λ′i,−Ŝi

j,−Si
j
− λ′i,−Ŝi

j,Si
j

2

 . (108)

By Markov’s inequality, we conclude that with probability at least 1− δ under (Z, Ŝ, S),

D(Q−Ŝ ||P−Ŝ) + logE
λ′−Ŝ

exp
nn̂− 1

2

 1

nn̂

n̂,n∑
i,j=1

λ′i,−Ŝi

j,−Si
j
− λ′i,−Ŝi

j,Si
j

2



≤D(Q−Ŝ ||P−Ŝ)+logE
λ′−Ŝ ,Z,Ŝ,S

1
δ
exp

nn̂− 1

2

 1

nn̂

n̂,n∑
i,j=1

λ′i,−Ŝi

j,−Si
j
−λ′i,−Ŝi

j,Si
j

2

 . (109)

Note that S−Ŝ is independent from (λ′−Ŝ
, Z, Ŝ, SŜ), that for each (i, j), λ′i,−Ŝi

j,−Si
j
−λ′i,−Ŝi

j,Si
j

is bounded

to [−1, 1], and that E
S

i,−Ŝi
j

[
λ′i,−Ŝi

j,−Si
j
− λ′i,−Ŝi

j,Si
j

]
= 0. Thus, it follows that [38, Thm. 2.6.(IV)]

logE
λ′−Ŝ ,Z,Ŝ,S

exp
nn̂− 1

2

 1

nn̂

n̂,n∑
i,j=1

λ′i,−Ŝi

j,−Si
j
− λ′i,−Ŝi

j,Si
j

2

 ≤ log

(√
nn̂
)
. (110)

By substituting (110) into (109), we obtain

D(Q−Ŝ ||P−Ŝ) + logE
λ′−Ŝ

exp
nn̂− 1

2

 1

nn̂

n̂,n∑
i,j=1

λ′i,−Ŝi

j,−Si
j
− λ′i,−Ŝi

j,Si
j

2



≤ D(Q−Ŝ ||P−Ŝ) + log

(√
nn̂

δ

)
. (111)

Since λi,−Ŝi and λi′,−Ŝi′ are losses on separate, unobserved tasks, they are dependent only through U .
Therefore, they are conditionally independent given (Z, Ŝ, SŜ). By the chain rule for the KL
divergence, it follows that

D(Q−Ŝ ||P−Ŝ) =

n̂∑
i=1

D(Qi,−Ŝi ||P i,−Ŝi). (112)

By combining (107)-(112), we get, after some arithmetic, that with probability at least 1 − δ

under (Z, Ŝ, S),

∣∣∣LD − L̃
∣∣∣ ≤

√√√√∑n̂
i=1 2D(Qi,−Ŝi ||P i,−Ŝi) + 2 log

(√
nn̂
δ

)
nn̂− 1

. (113)

By the triangle inequality,
∣∣∣LD − L̂

∣∣∣ ≤ ∣∣∣LD − L̃
∣∣∣+ ∣∣∣L̃− L̂

∣∣∣. By the union bound, (106) and (113)

hold simultaneously with probability at least 1− 2δ under (Z, Ŝ, S). Therefore, with δ → δ/2, they
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hold simultaneously with probability at least 1− δ. Thus, with probability at least 1− δ under the
draw of (Z, Ŝ, S),

∣∣∣LD−L̂
∣∣∣≤
√√√√ 1

n

∑n
j=1 2D(Qj,Sj ||Pj,Sj )+2 log

(
2n

√
n̂

δ

)
n̂− 1

+

√√√√∑n̂
i=1 2D(Qi,−Ŝi ||P i,−Ŝi)+2 log

(
2
√
nn̂
δ

)
nn̂− 1

. (114)

Having established Theorem 6, we now show how to use it to derive Theorem 4 under the assumption
that the meta learner and base learner are invariant to the order of the samples.

Proof of Theorem 4. By the assumptions that the meta learner and base learner are invariant to
the sample order and task index, we can reorder the data set so that maxj D(Qj,Sj ||Pj,Sj ) =

D(Q1,S1
||P1,S1

). With this, 1
n

∑n
j=1 D(Qj,Sj

||Pj,Sj
) ≤ D(Q1,S1

||P1,S1
). Similarly, we

can reorder the data set so that maxi D(Qi,−Ŝi ||P i,−Ŝi) = D(Q1,−Ŝ1

λ ||P 1,−Ŝ1

λ ), implying

that
∑n̂

i=1 D(Qi,−Ŝi ||P i,−Ŝi) ≤ n̂D(Q1,−Ŝ1

λ ||P 1,−Ŝ1

λ ). To obtain the final result, we note that
for n, n̂ ≥ 2, we have 1/(n̂−1) ≤ 2/n̂, log 2 ≤ log(n

√
n̂/δ), 1/(n−1) ≤ 2/n, log 2 ≤ log(

√
nn̂/δ),

and log(
√
nn̂)/nn̂ ≤ log(

√
n)/n. Thus, we get the final result

∣∣∣LD−L̂
∣∣∣≤2

√
2

√√√√D(Q1,S1
||P1,S1

)+log
(

n
√
n̂

δ

)
n̂

+2
√
2

√√√√D(Q1,−Ŝ1 ||P 1,−Ŝ1)+log
(√

n
δ

)
n

. (115)

Thus, the bound holds with C1 = C2 = 2
√
2.

While the simplifying assumption of invariance to the order of samples leads to a simpler result, it
does not hold for all learning algorithms. Therefore, we will use the more general form given in (114)
as the basis of Corollary 6.

Note that the first term of (115) diverges as n → ∞. This counter-intuitive behavior, which requires
both n and n̂ to be large for the bound to be nonvacuous, is common in PAC-Bayesian bounds for
meta learning [29], and is seemingly an effect of the two-step approach. It is possible to obtain a
different bound where this dependence is not explicit, similar to [28, 31], by simply not applying
Jensen’s inequality to the average over j in (100) nor the average over i in (107). However, the
resulting environment-level KL divergence is different. In particular, if we were to use this alternative
bound to derive minimax bounds in Section 4, the logarithmic dependence on n would be embedded
in this KL divergence. In the proof of Corollary 6, we point out where this difference would come
into play.

We present the alternative bound in the following remark.

Remark 1. Let QS denote the conditional distribution of λS given (Z, Ŝ, S) and let PS = EŜ [QS ].
Then,

∣∣∣LD−L̂
∣∣∣≤2

√
2

√√√√D(QS ||PS)+log
(√

n̂
δ

)
n̂

+2
√
2

√√√√D(Q1,−Ŝ1 ||P 1,−Ŝ1)+log
(√

n
δ

)
n

. (116)

Proof. The proof follows that of Theorem 4, so we only detail the differences: In (100), the average
over j is not moved outside the square when using Jensen’s inequality; Donsker-Varadhan is now
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used to perform a change of measure from QS to PS in (101); and the union bound in (103) is no
longer needed.

We now turn to Theorem 5.

Proof of Theorem 5. Recall that Q denotes the conditional distribution of λ given (Z, Ŝ, S), and
that P denotes EŜ,S [Q]. Let λ be distributed according to Q. By Jensen’s inequality,

nn̂− 1

2

(
LD(Z, Ŝ, S)−L̂(Z, Ŝ, S)

)2
≤Eλ

nn̂− 1

2

 1

nn̂

n̂,n∑
i,j=1

λi,−Ŝi

j,−Si
j
− λi,Ŝi

j,Si
j

2
 . (117)

Next, let λ′ be distributed according to P . By Donsker-Varadhan’s variational representation of the
KL divergence,

Eλ

nn̂− 1

2
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nn̂

n̂,n∑
i,j=1

λi,−Ŝi

j,−Si
j
− λi,Ŝi

j,Si
j

2


≤ D(Q ||P ) + logEλ′

nn̂− 1

2

 1

nn̂

n̂,n∑
i,j=1

λ′i,−Ŝi

j,−Si
j
− λ′i,Ŝi

j,Si
j

2
 . (118)

By Markov’s inequality, we conclude that with probability at least 1− δ under the draw of (Z, Ŝ, S),

D(Q ||P ) + logEλ′

exp
nn̂− 1

2
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n̂,n∑
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j,−Si
j
− λ′i,Ŝi
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≤ D(Q ||P ) + logEλ′,Z,Ŝ,S

1
δ
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j,−Si
j
− λ′i,Ŝi

j,Si
j

2

 . (119)

Now, note that (Ŝ, S) are independent from λ′, Z. Furthermore, λ′i,−Ŝi

j,−Si
j
−λ′i,Ŝi

j,Si
j

is bounded to [−1, 1],

and EŜi,Si
j

[
λ′i,−Ŝi

j,−Si
j
− λ′i,Ŝi

j,Si
j

]
= 0. Thus, 1

nn̂

∑n̂,n
i,j=1 λ

′i,−Ŝi

j,−Si
j
− λ′i,Ŝi

j,Si
j

is a 1/
√
nn̂-sub-Gaussian

random variable, from which it follows that [38, Thm. 2.6.(IV)]

logEλ′,Z,Ŝ,S

exp
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2

 1

nn̂

n̂,n∑
i,j=1

λ′i,−Ŝi

j,−Si
j
− λ′i,Ŝi

j,Si
j

2

 ≤ log

√
nn̂. (120)

By combining (117)-(120), we get

nn̂− 1

2

(
LD(Z, Ŝ, S)−L̂(Z, Ŝ, S)

)2
≤D(Q ||P ) + log

√
nn̂

δ
. (121)

The desired result now follows after some arithmetic.
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A.4 Proofs for Section 4

Proof of Corollary 4. We begin with (20). To establish this inequality, we bound the two sums on
the right-hand side of (4) separately. First, by Jensen’s inequality, we find that

1

nn̂

n̂,n∑
i,j=1

EZ,Si
j

[√
IZ,Si

j

(
λi
j,Si

j
; Ŝi

)]
≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

I
(
λi
j,Si

j
; Ŝi|Z, S

)
. (122)

Let Xi,k
j,l denote the projection of Zi,k

j,l onto X , i.e., Xi,k
j,l contains the unlabelled instances

from Z. The notation for Xi,k
j,l is inherited from the notation for Zi,k

j,l introduced in Section 2.

Let f(A(Z
(i,k)
Si , Ri, Â(ZŜ

S , R̂)), ·) denote the function from F that is selected by Â and A for
task (i, k) on the basis of (Z, Ŝ, S,R, R̂). We let F i,k

j,Si
j

denote the predicted label that the meta learner

and the base learner produce for Xi,k
j,Si

j
. Furthermore, we let F i

j,Si
j
= (F i,0

j,Si
j
, F i,1

j,Si
j
). Again, F i,k

j,l

inherits the notational conventions that we use for Zi,k
j,l . Note that, given Z, the losses λi

j,Si
j

are a

function of F i
j,Si

j
. Thus, by the data-processing inequality,√√√√ 1
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I
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I
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j,Si

j
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)
. (123)

Next, Let h(Â(ZŜ
S , R̂), ·) denote the function from H that is selected by Â on the basis

of (Z, Ŝ, S,R, R̂). We denote the representation that the meta learner induces on Xi
j,Si

j
as Hi

j,Si
j
, the

elements of which is given by, for k ∈ {0, 1},

Hi,k
j,Si

j
= h(Â(ZŜ

S , R̂), Xi,k
j,Si

j
). (124)

Note that, given Z, Si and Ri, the predictions in F i
j,Si

j
are a deterministic function of the intermediate

representations Hi
j,Si

j
. Therefore, using the independence of Ri and Ŝi,√√√√ 1
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I
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≤
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I
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j
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)
, (126)

where Ri disappears from the conditioning due to the independence of Hi
j,Si

j
and Ri. Next, by adding

random variables and using Lemma 3, we get√√√√ 1

nn̂

n̂,n∑
i,j=1

I
(
Hi

j,Si
j
; Ŝi|Z, S

)
≤

√√√√ 1

nn̂

n̂,n∑
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I
(
H

j,Si
j
; Ŝi|Z, S

)
(127)

≤

√√√√ 1
n

∑n
j=1 I

(
Hj,Sj

; Ŝ|Z, S
)

n̂
. (128)

For a given j, Z, and S, the 2n̂ inputs that give rise to H
j,Si

j
are fixed. Thus, the number of possible

different values that H
j,Si

j
can take is at most gH(2n̂), where gH(·) is the growth function of H.
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From this, it follows that

I
(
Hj,Sj

; Ŝ|Z, S
)
≤ H

(
Hj,Sj

|Z, S
)

(129)

≤ log gH(2n̂) (130)

≤ dN log

((
N

2

)
2en̂

dN

)
. (131)

Here, H(Hj,Sj
|Z, S) denotes the conditional entropy of Hj,Sj

given (Z, S), and the last inequality
follows from Lemma 4. Since (129) does not depend on j, we find that√√√√ 1

n

∑n
j=1 I

(
Hj,Sj

; Ŝ|Z, S
)

n̂
≤

√√√√dN log
((

N
2

)
2en̂
dN

)
n̂

. (132)

By combining (122)-(132), we get

1

nn̂

n̂,n∑
i,j=1

EZ,Si
j

[√
IZ,Si

j

(
λi
j,Si

j
; Ŝi

)]
≤

√√√√dN log
((

N
2

)
2en̂
dN

)
n̂

. (133)

Next, we turn to the second sum on the right-hand side of (4). First, by Jensen’s inequality,

1

nn̂

n̂,n∑
i,j=1

EZ,Ŝi

[√
IZ,Ŝi

(
λi,−Ŝi

j ;Si,−Ŝi

j

)]
≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

I
(
λi,−Ŝi

j ;Si,−Ŝi

j |Z, Ŝi

)
. (134)

Note that, given Z, the losses λi,−Ŝi

j are a function of F i,−Ŝi

j . Therefore,√√√√ 1

nn̂

n̂,n∑
i,j=1

I
(
λi,−Ŝi

j ;Si,−Ŝi

j |Z, Ŝi

)
≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

I
(
F i,−Ŝi

j ;Si,−Ŝi

j |Z, Ŝi

)
(135)

≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

I
(
F i,−Ŝi ;Si,−Ŝi

j |Z, Ŝi

)
, (136)

where we used the fact that adding random variables cannot decrease mutual information. By the
independence of Si,−Ŝi

j for different j and Lemma 3,√√√√ 1

nn̂

n̂,n∑
i,j=1

I
(
F i,−Ŝi ;Si,−Ŝi

j |Z, Ŝi

)
≤

√√√√ 1
n̂

∑n̂
i=1 I

(
F i,−Ŝi ;Si,−Ŝi |Z, Ŝi

)
n

. (137)

Now, note that given Z and Ŝi, the 2n inputs that give rise to F i,−Ŝi are fixed. Recall that gF (·)
denotes the growth function of F . Then,√√√√ 1

n̂

∑n̂
i=1 I

(
F i,−Ŝi ;Si,−Ŝi |Z, Ŝi

)
n

≤

√√√√ 1
n̂

∑n̂
i=1 H

(
F i,−Ŝi |Z, Ŝi

)
n

(138)

≤

√
1
n̂

∑n̂
i=1 gF (2n)

n
(139)

≤

√√√√ 1
n̂

∑n̂
i=1 dVC log

(
2en
dVC

)
n

, (140)
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where we used Lemma 4. By combining (134)-(140), we get

1

nn̂

n̂,n∑
i,j=1

EZ,Ŝi

[√
IZ,Ŝi

(
λi,−Ŝi

j ;Si,−Ŝi

j

)]
≤

√√√√ 1
n̂

∑n̂
i=1 dVC log

(
2en
dVC

)
n

. (141)

The result in (20) now follows by combining (4), (133) and (141).

We now turn to (21). First, by Jensen’s inequality,

1

nn̂

n̂,n∑
i,j=1

EZ

[√
2IZ(λi

j ; Ŝi, Si
j)

]
≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λi
j ; Ŝi, Si

j |Z) (142)

≤

√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λ; Ŝi, Si
j |Z), (143)

where in the second step, we used that adding random variables does not decrease mutual information.
Next, by the independence of the Si

j over j and of the (Ŝi, S
i) over i,√√√√ 1

nn̂

n̂,n∑
i,j=1

2I(λ; Ŝi, Si
j |Z) ≤

√
2I(λ; Ŝ, S|Z)

nn̂
. (144)

Now, note that given Z, the losses λ are a function of the predictions F = {F i
j}i=1:n̂

j=1:n . Hence,√
2I(λ; Ŝ, S|Z)

nn̂
≤

√
2I(F ; Ŝ, S|Z)

nn̂
(145)

≤

√
2I(F,H; Ŝ, S|Z)

nn̂
(146)

where H = {Hi
j}i=1:n̂

j=1:n and the second step follows by adding random variables. By the chain rule,√
2I(F,H; Ŝ, S|Z)

nn̂
≤

√
2I(H; Ŝ, S|Z) + 2I(F ; Ŝ, S|Z,H)

nn̂
(147)

≤

√
2H(H|Z) + 2H(F |Z,H)

nn̂
. (148)

Since H is given by the elementwise application of some h ∈ H to X = {Xi
j}1:n̂j=1:n , it can take at

most gH(4nn̂) different values, similar to previous arguments. This implies that

H(H|Z) ≤ log(gH(4nn̂)) ≤ dN log

((
N

2

)
4enn̂

dN

)
, (149)

where the last inequality is again due to Lemma 4. Given H and Z, the predictions F can take at
most (gF (2n))2n̂ different values, since the 2n inputs to each of the 2n̂ task-specific functions are
fixed. This implies that

H(F |H,Z) ≤ 2n̂ log(gF (2n)) ≤ 2n̂dVC log

(
2en

dVC

)
, (150)

where we again used Lemma 4. The desired result follows by combining (6) with (142)-(150).
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Proof of Corollary 5. By the same steps as in (142)-(150), we find that

1

nn̂

n̂,n∑
i,j=1

I(λi
j ; Ŝi, S

i
j |Z) ≤ dN log

((
N

2

)
4enn̂

dN

)
+ 2n̂dVC log

(
2en

dVC

)
. (151)

By combining this with (12), we find that

LD ≤
4dN log

((
N
2

)
4enn̂
dN

)
+ 8n̂dVC log

(
2en
dVC

)
nn̂

. (152)

This establishes the desired result.

Proof of Corollary 6. First, we establish (23). As mentioned in the proof of Theorem 4, we start the
derivation from the more general bound given in (114) rather than the simplified bound given in (15).
We begin by bounding D(Qj,Sj

||Pj,Sj
). Recall that Qj,Sj

denotes the conditional distribution
of λj,Sj

given (Z, Ŝ, S) and Pj,Sj
= EŜ

[
Qj,Sj

]
. Let λj,Sj

be distributed according to Qj,Sj
. By

Jensen’s inequality,

D(Qj,Sj ||Pj,Sj ) = Eλj,Sj

[
log

Qj,Sj
(λj,Sj

)

Pj,Sj (λj,Sj )

]
≤ logEλj,Sj

[
Qj,Sj

(λj,Sj
)

Pj,Sj (λj,Sj )

]
. (153)

By Markov’s inequality, with probability at least 1− δ under the draw of (Z, Ŝ, S),

D(Qj,Sj
||Pj,Sj

) = Eλj,Sj

[
log

Qj,Sj
(λj,Sj

)

Pj,Sj (λj,Sj )

]
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(
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δ
Eλj,Sj

,Z,Ŝ,S

[
Qj,Sj

(λj,Sj
)

Pj,Sj (λj,Sj )

])
. (154)

Since λj,Sj is a discrete random variable, Qj,Sj (λj,Sj ) ≤ 1. Hence,

log

(
1

δ
Eλj,Sj

,Z,Ŝ,S

[
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(λj,Sj
)

Pj,Sj (λj,Sj )

])
≤ log
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Eλj,Sj

,Z,Ŝ,S

[
1

Pj,Sj (λj,Sj )

])
. (155)

Recall that EŜ

[
Qj,Sj

]
= Pj,Sj . Let λ′

j,Sj
be distributed according to Pj,Sj . Since the argument of

the expectation is now independent of Ŝ,

log

(
1

δ
Eλj,Sj

,Z,Ŝ,S

[
1
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(λj,Sj

)

])
= log
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[
1
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(156)

≤ log

(
1

δ
sup
Z,S

Eλ′
j,Sj

[
1

Pj,Sj
(λj,Sj

)

])
. (157)

Now, let Λj,Sj (Z, S) denote the set of all possible values that λ′
j,Sj

can take given (Z, S). Then,

log

(
1

δ
sup
Z,S

Eλ′
j,Sj

[
1

Pj,Sj
(λj,Sj

)

])
= log
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δ
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)
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 (158)

= log

(
1

δ
sup
Z,S

∣∣Λj,Sj (Z, S)
∣∣) . (159)

Now, note that since λj,Sj is averaged over R, it is a function of Hj,Sj
given (Z, S). Furthermore,

the inputs Xj,Sj
are fixed. Therefore, as argued in the proof of Corollary 4, the number of different

values that Hj,Sj
can take given (Z, S) is at most gH(2n̂).3 Thus, by combining (153)-(159), we get

D(Qj,Sj ||Pj,Sj ) ≤ log

(
gH(2n̂)

δ

)
≤ dN log

((
N

2

)
2en̂

dN

)
+ log

1

δ
. (160)

3If we had instead used the result of Remark 1 and followed analogous steps, we would instead get gH(2nn̂)
as an upper bound of the KL divergence.

30



Next, we turn to D(Q−Ŝ ||P−Ŝ). Recall that Q−Ŝ denotes the conditional distribution of λ−Ŝ

given (Z, Ŝ, S), and P−Ŝ = ES−Ŝ

[
Q−Ŝ

]
. Let λ−Ŝ be distributed according to Q−Ŝ . Again, by

Jensen’s inequality,

D(Q−Ŝ ||P−Ŝ) = Eλ−Ŝ

[
log

Q−Ŝ(λ−Ŝ)

P−Ŝ(λ−Ŝ)

]
≤ logEλ−Ŝ

[
Q−Ŝ(λ−Ŝ)

P−Ŝ(λ−Ŝ)

]
. (161)

By Markov’s inequality, with probability at least 1− δ under the draw of (Z, Ŝ, S),

D(Q−Ŝ ||P−Ŝ) = Eλ−Ŝ

[
log
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]
≤ log
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[
Q−Ŝ(λ−Ŝ)

P−Ŝ(λ−Ŝ)

])
. (162)

Since λ−Ŝ is a discrete random variable, Q−Ŝ(λ−Ŝ) ≤ 1. Therefore,

log

(
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δ
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[
Q−Ŝ(λ−Ŝ)
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])
≤ log

(
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[
1

P−Ŝ(λ−Ŝ)

])
. (163)

Now, let λ′−Ŝ be distributed according to P−Ŝ . Since the argument of the expectation is now
independent of S−Ŝ ,

log

(
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δ
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[
1
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= log
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[
1
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(164)

≤ log

(
1

δ
sup
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E
λ′−Ŝ

[
1

P−Ŝ(λ−Ŝ)

])
. (165)

Now, let Λ−Ŝ(Z, S) denote the set of all possible values that λ′−Ŝ can take given (Z, Ŝ, SŜ). Then,

log

(
1

δ
sup

Z,Ŝ,SŜ

E
λ′−Ŝ

[
1

P−Ŝ(λ−Ŝ)

])
= log

1

δ
sup

Z,Ŝ,SŜ

∑
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P−Ŝ(λ−Ŝ)
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 (166)

= log

(
1

δ
sup

Z,Ŝ,SŜ

∣∣∣Λ−Ŝ(Z, S)
∣∣∣) . (167)

Note that, given Z, the losses λ−i,Ŝi are a function of the predictions F i,−Ŝi . Furthermore,
given (Z, Ŝ, SŜ), the inputs Hi,−Ŝi are fixed. This is the case since U is independent from S−Ŝ . Thus,
similar to previous arguments, given (Z, Ŝ, SŜ), F i,−Ŝi can take at most gF (2n) different values for
each i. Therefore, F−Ŝ can take at most gF (2n)n̂ values. Thus, by combining (161)-(167), we get

D(Q−Ŝ ||P−Ŝ) ≤ log

(
gF (2n)

n̂

δ

)
≤ n̂dVC log

(
2en

dVC

)
+ log

1

δ
, (168)

where we used Lemma 4. Thus, by using a union bound, we can combine (114), (160), and (168),
with δ → δ/3, to conclude that with probability at least 1− δ under the draw of (Z, Ŝ, S),

∣∣∣LD−L̂
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√√√√2dN log
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N
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)
2en̂
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2en
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)
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nn̂
δ
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. (169)
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Under the assumption that n, n̂ ≥ 2, by similar arguments as in the proof of Theorem 4, we find
that, for some constants C1 and C2,

∣∣∣LD−L̂
∣∣∣≤C1

√√√√dN log
((

N
2

)
n̂
dN

)
+ log
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δ
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n̂
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√√√√dVC log
(

n
dVC

)
+ log

(√
n
δ

)
n

. (170)

This establishes (23).

We now turn to (24). Let λ be distributed according to Q. First, by Jensen’s inequality,

D(Q ||P ) = Eλ

[
log

Q(λ)

P (λ)

]
≤ logEλ

[
Q(λ)

P (λ)

]
. (171)

By Markov’s inequality, with probability at least 1− δ under the draw of (Z, Ŝ, S),

D(Q ||P ) = Eλ

[
log

Q(λ)

P (λ)

]
≤ log

(
1

δ
Eλ,Z,Ŝ,S

[
Q(λ)

P (λ)

])
. (172)

Since λ is a discrete random variable, Q(λ) ≤ 1. Hence,

D(Q ||P ) = Eλ

[
log

Q(λ)

P (λ)

]
≤ log

(
1

δ
Eλ,Z,Ŝ,S

[
1

P (λ)

])
. (173)

Recall that EŜ,S [Q] = P . Let λ′ be distributed according to P . Since the argument of the expectation
is now independent of (Ŝ, S),

log

(
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δ
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[
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≤ log
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δ
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[
1
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≤ log

(
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δ
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Eλ′

[
1

P (λ′)
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. (175)

Let Λ(Z) denote the set of all possible values that λ′ can take given Z. Then,

log

(
1

δ
sup
Z

Eλ′

[
1

P (λ′)

])
= log

1

δ
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∑
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P (λ′)
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 (176)

= log

(
1

δ
sup
Z

|Λ(Z)|
)
. (177)

Since the map from predictions to losses is surjective, |Λ(Z)| is bounded by the number of possible
predictions F given Z. We can bound this as follows. First, the number of possible different values
for H given Z is at most gH(4nn̂). Given a fixed H , the number of possible values that F can
take is at most (gF (2n))2n̂, since the 2n inputs to each of the 2n̂ task-specific functions are fixed.
Therefore, the total number of possible values for F given Z is at most gH(4nn̂)(gF (2n))

2n̂. Hence,

log

(
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δ
sup
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|Λ(Z)|
)

≤ log(gH(4nn̂)) + 2n̂ log(gF (2n)) + log
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δ
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≤ dN log
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)
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)
+ log

1

δ
(179)
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where we used Lemma 4. Substituting this into (18), using a union bound and letting δ → δ/2, we
find that with probability at least 1− δ under the draw of (Z, Ŝ, S),∣∣∣LD(Z, Ŝ, S)−L̂(Z, Ŝ, S)

∣∣∣
≤

√√√√2dN log
((

N
2

)
4enn̂
dN

)
+ 4n̂dVC log

(
2en
dVC

)
+ 2 log 2

δ + 2 log
(

2
√
nn̂
δ

)
nn̂− 1

. (180)

Assuming that n, n̂ ≥ 2, the desired result in (21) follows by upper-bounding constants by using
similar arguments as in the proof of Theorem 4.

B Bound for the Excess Risk

We now turn to excess risk bounds. In Corollary 7, we present the formal statement of the excess risk
bound in Section 4.2. In Corollary 8, we state an excess risk bound for a randomly drawn new task,
which obviates the need of a task diversity assumption.

In order to derive excess risk bounds, we need to introduce some technical tools. First, we need
to consider oracle algorithms, that is, algorithms that output minimizers of the population loss.
Specifically, the oracle meta learner knows the task distribution D, while the oracle base learner
knows the indexed set of in-task distributions {Dτ : τ ∈ T }. While these algorithms have access to
the data distributions, and are thus not of practical interest, they are useful as a proof technique, and can
be analyzed in the same way as realistic algorithms. Second, in order to allow the oracle base learner
to minimize the population loss for a given task, we need to extend the input to the base learner to
include the identity of the task τ ∈ T . Thus, the base learner is a mapping A : Zn×T ×R×U → W .
For the case of a base learner that minimizes the empirical risk, the task identity is irrelevant, so the
input from T does not affect the output. Conversely, for an oracle base learner, the training samples
are irrelevant, so only the input from T affects the output. Finally, our information-theoretic bounds
pertain to a test loss, rather than the population loss. While these are equal for average bounds, there
is a small discrepancy for the high-probability bounds. In order to handle excess risk bounds and
oracle algorithms that depend on the population loss, we need to convert between the two by using a
Hoeffding bound, as discussed in [23, Thm. 3]. The extra terms that this additional step leads to are
typically negligible compared to the dominant complexity terms.

For concreteness, we focus only on high-probability excess risk bounds derived on the basis of the
one-step square-root bound in Corollary 6. However, note that excess risk bounds based on the
other high-probability bounds can be obtained by suitably substituting these alternative bounds in the
proofs. Average excess risk bounds can also be derived by an analogous procedure. First, using the
task diversity assumption of [5], we derive an excess risk bound for a fixed target task.

Corollary 7. Consider the setting of Corollary 6 and a fixed task τ0. Let Z0 ∈ Z2×m be a matrix
of 2m samples generated independently according to Dτ0 , the data distribution for task τ0. Let S0

be an m-dimensional random vector with elements generated independently from a Bern(1/2)
distribution, and let the training set Z0

S0 and test set Z0
−S0 be constructed in the same way as the

training and test sets for tasks 1, . . . , n̂. To simplify notation, let Z0,0 = Z0,1 = Z0. Denote the
population loss for the ith observed task when using the base learner A′ with the representation h′ as

LD(i,A′, h′) = ERi,Z̃∼Dτ
i,Ŝi

[
ℓ
(
A′
(
Zi,Ŝi

Si , τi,Ŝi
, Ri, h

′
)
, Z̃
)]

. (181)

Similarly, denote the population loss for the ith unobserved task when using the base learner A′ with
the representation h′ as

LD(−i,A′, h′) = ERi,Z̃∼Dτ
i,−Ŝi

[
ℓ
(
A′
(
Zi,−Ŝi

Si , τi,−Ŝi
, Ri, h

′
)
, Z̃
)]

. (182)
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Let A∗ denote an oracle learner that satisfies LD(i,A∗, h′) = minA′ LD(i,A′, h′) for all h′.
Assume that h∗ = arg minh′ minA′ LD(i,A′, h′) for all τi,Ŝi

and that h∗ ∈ H. Thus, the same

representation h∗ is optimal for all tasks. Let Â and A be empirical risk minimizers, and let ĥ =

Â(R̂, ZŜ
S ). Finally, assume that the supersample satisfies a task-diversity assumption, so that for

some ν and ϵ,

sup
τ0

LD(0,A∗, ĥ)− LD(0,A∗, h∗) ≤ ν−1
(
LD(−1: n̂,A∗, ĥ)− LD(−1: n̂,A∗, h∗)

)
+ ϵ. (183)

Then, there exist constants C1 and C2 such that, with probability at least 1 − δ under the draw
of (Z, Ŝ, S, Z0, S0), we have

LD(0,A, ĥ)−LD(0,A∗, h∗) ≤ C1

√√√√dVC log
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)
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)
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nn̂
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)
nn̂

+ ϵ. (184)

Proof. We will use the following shorthands. When using the algorithm A′ for task i based on the
representation h′, we let LD(i,A′, h′) denote the population loss, L̂(i,A′, h′) denote the training
loss, and L̃(i,A′, h′) denote the test loss on a test set of the same size as the training set. Formally,

LD(i,A′, h′) = ERi,Z̃∼Dτ
i,Ŝi

[
ℓ
(
A′
(
Zi,Ŝi

Si , τi,Ŝi
, Ri, h

′
)
, Z̃
)]

, (185)

L̂(i,A′, h′) =
1

n

n∑
j=1

ERi

[
ℓ
(
A′
(
Zi,Ŝi

Si , τi,Ŝi
, Ri, h

′
)
, Zi,Ŝi

j,Si
j

)]
, (186)

L̃(i,A′, h′) =
1

n

n∑
j=1

ERi

[
ℓ
(
A′
(
Zi,Ŝi

Si , τi,Ŝi
, Ri, h

′
)
, Zi,Ŝi

j,−Si
j

)]
. (187)

As a shorthand, we let LD(1: n̂,A′, h′) = 1
n̂

∑n̂
i=1 LD(i,A′, h′), and we use the same convention

for L̂(1: n̂,A′, h′) and L̃(1: n̂,A′, h′). Furthermore, to indicate losses on unobserved tasks we negate
the task index. Thus,

L̂(−i,A′, h′) =
1

n

n∑
j=1

ERi

[
ℓ
(
A′
(
Zi,−Ŝi

Si , τi,−Ŝi
, Ri, h

′
)
, Zi,−Ŝi

j,Si
j

)]
, (188)

with analogous notation for the test and population losses.

The base learner A that we consider is an empirical risk minimizer, which satisfies for all h′

L̂(i,A, h′) = min
A′

L̂(i,A′, h′). (189)

For our analysis, we use an oracle learner A∗, which outputs the minimizer of the population loss for
the given task. While this is not a realistic learning algorithm in practice, as it depends on the data
distribution, it is useful as an analysis tool. Formally, for all h′,

LD(i,A∗, h′) = min
A′

LD(i,A′, h′). (190)

Finally, we let ĥ be a representation that minimizes the empirical risk over the n̂ training tasks and h∗

be an optimal representation, i.e.

ĥ ∈ arg min
h′

L̂(1: n̂,A, h′). (191)

h∗ ∈ arg min
h′

LD(i,A∗, h′). (192)
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By assumption, h∗ is the same for any task τi,k.

In the proof, we need to convert between test losses and population losses. By definition, test data
is independent from the hypothesis, so standard concentration inequalities can be applied to bound
the difference between the test and population loss. The following lemma follows immediately from
Hoeffding’s inequality [38, Prop. 2.5], as argued in [23, Thm. 3].

Lemma 5. Let L̃(i,A′, h′) be a test loss based on m samples. Then, with probability at least 1− δ,

∣∣∣L̃(i,A′, h′)− LD(i,A′, h′)
∣∣∣ ≤

√
log 2

δ

2m
. (193)

Proof. The test loss L̃(i,A′, h′) is the average of m independent samples of a bounded random
variable with mean LD(i,A′, h′). Therefore, the result follows by Hoeffding’s inequality [38,
Prop. 2.5].

This result allows us to convert between test losses and population losses at the cost of a term that is
typically negligible in comparison to the complexity terms.

With these tools and notations in place, we are ready to derive excess risk bounds. The aim is to
upper-bound the excess risk by an expression consisting of differences between training and test
losses, for which we can apply our generalization bounds. Starting from the excess risk on task τ0,
which is our fixed target task, we get

LD(0,A, ĥ)−LD(0,A∗, h∗)=LD(0,A, ĥ)−LD(0,A∗, ĥ)+LD(0,A∗, ĥ)−LD(0,A∗, h∗)

≤ LD(0,A, ĥ)− LD(0,A∗, ĥ) +D. (194)

Here, D = supτ0 LD(0,A∗, ĥ) − LD(0,A∗, h∗) is the worst-case representation difference [5],
which we will later bound using a task diversity assumption. Next, by Lemma 5, with probability at
least 1− 2δ,

LD(0,A, ĥ)− LD(0,A∗, ĥ) +D ≤ L̃(0,A, ĥ)− L̃(0,A∗, ĥ) +D + 2

√
log 2

δ

m
. (195)

Next, we use the risk decomposition

L̃(0,A, ĥ)− L̃(0,A∗, ĥ) (196)

=L̃(0,A, ĥ)− L̂(0,A, ĥ) + L̂(0,A, ĥ)− L̂(0,A∗, ĥ) + L̂(0,A∗, ĥ)− L̃(0,A∗, ĥ) (197)

≤L̃(0,A, ĥ)− L̂(0,A, ĥ) + L̂(0,A∗, ĥ)− L̃(0,A∗, ĥ), (198)

where the last step follows because L̂(0,A, ĥ) ≤ L̂(0,A∗, ĥ), since A is an empirical risk minimizer.
Notice that the resulting expression is the difference between test and training losses on task τ0
for two different algorithms. These terms are simply the generalization gaps for a conventional
learning setting. These terms can be bounded by applying Corollary 6, but for the case where n̂ = 1

and H = {ĥ}, which implies that dN = 0. We conclude that there exists a constant C1 such that,
with probability at least 1− δ,

L̃(0,A, ĥ)−L̂(0,A, ĥ)+L̂(0,A∗, ĥ)−L̃(0,A∗, ĥ) ≤ C1

√√√√dVC log
(√

m
dVC

)
+log

(√
m
δ

)
m

. (199)

It remains to bound D. First, by the task diversity assumption,

D = sup
τ0

LD(0,A∗, ĥ)− LD(0,A∗, h∗) (200)

≤ ν−1
(
LD(−1: n̂,A∗, ĥ)− LD(−1: n̂,A∗, h∗)

)
+ ϵ. (201)
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We note here that, while the way that [5] uses the assumption of task diversity requires that the
difference between the minimum population losses for task τ0 based on ĥ and h∗ is controlled by the
corresponding risks for tasks 1: n̂, i.e., the tasks upon which ĥ is chosen, we instead assume that it is
controlled by the corresponding losses for tasks −1: n̂, i.e., tasks that are independent from ĥ. In this
sense, the diversity assumption that we use is arguably weaker.

By a risk decomposition, we get

LD(−1: n̂,A∗, ĥ)− LD(−1: n̂,A∗, h∗) (202)

=LD(−1: n̂,A∗, ĥ)− LD(−1: n̂,A, ĥ) + LD(−1: n̂,A, ĥ)− LD(−1: n̂,A∗, h∗) (203)

≤LD(−1: n̂,A, ĥ)− LD(−1: n̂,A∗, h∗), (204)

where the last step follows since LD(−1 : n̂,A∗, ĥ) ≤ LD(−1 : n̂,A, ĥ). By Lemma 5, with
probability 1− 2δ,

LD(−1: n̂,A, ĥ)− LD(−1: n̂,A∗, h∗) ≤ L̃(−1: n̂,A, ĥ)− L̃(−1: n̂,A∗, h∗) + 2

√
log 2

δ

2n
. (205)

By a risk decomposition, we find that

L̃(−1: n̂,A, ĥ)− L̃(−1: n̂,A∗, h∗)

≤L̃(−1: n̂,A, ĥ)−L̂(1: n̂,A, ĥ)+L̂(1: n̂,A, ĥ)−L̂(1: n̂,A∗, h∗)+L̂(1: n̂,A∗, h∗)−L̃(−1: n̂,A∗, h∗)

≤L̃(−1: n̂,A, ĥ)−L̂(1: n̂,A, ĥ)+L̂(1: n̂,A∗, h∗)−L̃(−1: n̂,A∗, h∗), (206)

where the last step follows since L̂(1: n̂,A, ĥ) ≤ L̂(1: n̂,A∗, h∗). Now, notice that the resulting
expression consists of the differences between the unobserved test losses and observed training losses
for two different learning algorithms. This means that we can apply Corollary 6 to find that there
exists a constant C2 such that, with probability at least 1− δ,

L̃(−1: n̂,A, ĥ)−L̂(1: n̂,A, ĥ)+L̂(1: n̂,A∗, h∗)−L̃(−1: n̂,A∗, h∗)

≤ C2

√√√√dN log
((

N
2

)
nn̂
dN

)
+ n̂dVC log

(
n
dVC

)
+ log

(√
nn̂
δ

)
nn̂

. (207)

Thus, by putting it all together, using a union bound to combine the probabilistic inequalities, we find
that there exists constants C1, C2, C3 such that, with probability at least 1− δ,

LD(0,A, ĥ)−LD(0,A∗, h∗) ≤ C1

√√√√dVC log
(√

m
dVC

)
+log

(√
m
δ

)
m

+ C2ν
−1

√√√√dN log
((

N
2

)
nn̂
dN

)
+ n̂dVC log

(
n
dVC

)
+ log

(√
nn̂
δ

)
nn̂

+ ϵ, (208)

where we note that the penalty terms arising from the union bound and converting between test and
population losses have been absorbed using the constants.

Thus, under the assumption of task diversity, we obtained an excess risk bound for a fixed target task,
as was done in [5]. However, if we are interested in bounding the excess risk for a new, randomly
drawn task, rather than a fixed target, task diversity is not necessary. In the following corollary, we
demonstrate this by deriving an excess risk bound with respect to the population loss for a new,
random task. While we only present a bound based on Corollary 6, similar excess risk bounds can be
derived for the average case and from the other high-probability bounds.
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Corollary 8. Consider the setting of Corollary 6. Assume that A is an empirical risk minimizer,
that A∗ is an oracle algorithm, and let

ĥ ∈ arg min
h′

L̂(1: n̂,A, h′), (209)

h∗ ∈ arg min
h′

LD(−i,A∗, h′). (210)

Then, there exists a constant C such that, with probability at least 1− δ under (Z, Ŝ, S),

LD(−i,A, ĥ)−LD(−i,A∗, h∗)≤C

√√√√dN log
((

N
2

)
nn̂
dN

)
+n̂dVC log

(
n
dVC

)
+log

(√
nn̂
δ

)
nn̂

. (211)

Proof. We begin with the risk decomposition

LD(−i,A, ĥ)−LD(−i,A∗, h∗)=LD(−i,A, ĥ)−L̂(1: n̂,A, ĥ)+L̂(1: n̂,A, ĥ) (212)

− L̂(1: n̂,A∗, h∗) + L̂(1: n̂,A∗, h∗)− LD(−i,A∗, h∗)

≤LD(−i,A, ĥ)−L̂(1: n̂,A, ĥ)+L̂(1: n̂,A∗, h∗)−LD(−i,A∗, h∗),

where we used that L̂(1: n̂,A, ĥ) ≤ L̂(1: n̂,A∗, h∗). Next, by Lemma 5,

LD(−i,A, ĥ)−L̂(1: n̂,A, ĥ)+L̂(1: n̂,A∗, h∗)−LD(−i,A∗, h∗)

≤ L̃(−1: n̂,A, ĥ)−L̂(1: n̂,A, ĥ)+L̂(1: n̂,A∗, h∗)−L̃(−1: n̂,A∗, h∗) + 2

√
log(2δ)

2nn̂
. (213)

This expression consists of the differences between the unobserved test losses and observed training
losses for two different learning algorithms. We can thus use Corollary 6 to conclude that there exists
a constant C such that, with probability at least 1− δ,

L̃(−1: n̂,A, ĥ)−L̂(1: n̂,A, ĥ)+L̂(1: n̂,A∗, h∗)−L̃(−1: n̂,A∗, h∗) + 2

√
log(2δ)

2nn̂

≤ C

√√√√dN log
((

N
2

)
nn̂
dN

)
+ n̂dVC log

(
n
dVC

)
+ log

(√
nn̂
δ

)
nn̂

. (214)

Here, the penalty term from the conversion between population and test loss has been absorbed into
the constant C. From this, the desired result follows.
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