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Abstract

Model attributions are important in deep neural networks as they aid practitioners
in understanding the models, but recent studies reveal that attributions can be
easily perturbed by adding imperceptible noise to the input. The non-differentiable
Kendall’s rank correlation is a key performance index for attribution protection. In
this paper, we first show that the expected Kendall’s rank correlation is positively
correlated to cosine similarity and then indicate that the direction of attribution is
the key to attribution robustness. Based on these findings, we explore the vector
space of attribution to explain the shortcomings of attribution defense methods
using ℓp norm and propose integrated gradient regularizer (IGR), which maximizes
the cosine similarity between natural and perturbed attributions. Our analysis
further exposes that IGR encourages neurons with the same activation states for
natural samples and the corresponding perturbed samples. Our experiments on
different models and datasets confirm our analysis on attribution protection and
demonstrate a decent improvement in adversarial robustness.

1 Introduction

Recently, the explainable artificial intelligence (XAI) has revived since deep neural networks (DNNs)
are applied to more security-sensitive tasks such as medical imaging [27], criminal justice [5] and
autonomous driving [20]. As one of the XAI tools, model attributions explain and measure the
relative impact of each feature on the final prediction. With more non-expert practitioners being
involved, it is more important for them to understand and reliably interpret the mechanism behind
the outputs. Besides, EU regulators also start to enforce General Data Protection Regulation for
more transparent interpretations on decision making based on AI [10]. Therefore, the trustworthy
attribution is becoming even more crucial.

Although numerous attribution methods have been proposed in recent studies [25, 26, 29, 35, 37], it
has been pointed out that they are vulnerable to attribution attacks. Different from standard adversarial
attacks [3, 9, 18, 22, 31] that focus on misleading classifiers to incorrect outputs, Ghorbani et al. [8]
shows that it is possible to generate visually indistinguishable images which are significantly different
on their attributions, but with the same predicted label. Dombrowski et al. [6] emphasizes on targeted
attack that manipulates the attributions to any predefined target attributions while keeping the model
outputs unchanged. There are also black-box attacks applied on text explanations [14]. Common
adversarial defense mechanisms such as adversarial training [21] and distillation [23] are not able to
tackle the attribution attacks; instead, researchers turn their focus on the attribution itself.

As the differences between natural and perturbed attributions are measured by Kendall’s rank
correlation [15], which reflects the ordinal importance among features, i.e., the proportion of order
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Figure 1: A visualization of integrated gradients of perturbed images by restricting ℓ1 distance. The
three perturbed attributions (the bottom images of the 2nd–4th columns) have the same ℓ1 distance
(d = 0.7) to the original attribution (the bottom image of the first column). While ℓ1 distance
remains unchanged, Kendall’s rank correlations are not guaranteed to be close. However, the cosine
similarities reflect the changes of the Kendall’s rank coefficients.

alignment of attributions between original and perturbed images, a straightforward practice to protect
the attributions against such adversaries is to maximize their Kendall’s rank correlation. Since
Kendall’s rank correlation is not differentiable, in previous studies, it is replaced by its differentiable
alternatives, such as ℓp-distance regularizers [2, 4]. However, ℓp-distance regularizers are not ideal
for Kendall’s rank correlation. As shown in Fig. 1, we found that given fixed ℓ1-distance between
original and perturbed attributions, their Kendall’s rank correlations are drastically different, which
indicates ℓ1-distance is unstable as a measure of attribution similarity. Besides, there are also non-ℓp
based regularizers, such as using Pearson’s correlation, as the surrogate measurement of Kendall’s
rank correlation [13], it is shown to be unstable to measure the attribution.

In this paper, we discover that cosine similarity, as a measurement emphasizing the angle between
two vectors, is consistent with Kendall’s rank correlation. We present a theorem stating that cosine
similarity is positively correlated with the expected Kendall’s rank correlation. Based on the discovery
of angular perspective, we then explain the shortcomings of ℓp-norm based attribution robustness
methods and propose integrated gradients regularizer (IGR), an attribution robustness training
regularizer that optimizes on the cosine similarity between natural and perturbed attribution. Our
further analysis shows that optimizing cosine similarity encourages neurons with the same activation
states. The contributions of this work are summarized as follows:

• We theoretically show that, under certain assumptions, Kendall’s rank correlation between
two vectors is positively correlated to their cosine similarity.

• We characterize a novel geometric perspective related to the angles between attribution vec-
tors that explains the connection between adversarial robustness and attribution robustness
for attribution methods fulfilling the axiom of completeness [29].

• Under the angular perspective, we propose integrated gradients regularizer (IGR) to robustly
train neural networks. Our method is proved to encourage neurons with the same activation
states for natural and corresponding perturbed images.

• The experimental results show that the proposed IGR regularizer can be embedded into
adversarial training methods to improve their performance in terms of both attribution and
adversarial robustness and outperform the state-of-the-art attribution protection methods.

The remainder of this paper is organized as follows. We first introduce the notations and previous
related works in Section 2. The content starts with the theorem disclosing the relationship between
Kendall’s rank correlation and cosine similarity in Section 3. Based on that, we discuss the vector
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space of attribution in Section 4 and describe the proposed IGR as well as its property regarding
neuron activations in Section 5. Section 6 presents our experimental results and the paper concludes
in Section 7.

2 Preliminaries and related work

Let {(x(i), y(i))}ni=1 denote data points sampled from the distribution D, where x(i) ∈ Rd are input
data and y(i) ∈ {1, . . . , k} are labels. A non-bold version xi denotes the i-th feature of vector x,
and the capitalized version X denotes a random variable. A classifier is the mapping from input
space to the logits f : Rd → Rk parameterized by θ, where fj(x) is the j-th entry of f(x), and the
classification result of input x is given by the index of maximum logit ŷ = argmax1≤j≤k(fj(x)).

2.1 Attribution methods

Model attribution, denoted by g(x), studies the importance that the input features contribute to-
wards the final result. The mostly used attribution methods include perturbation-based [35, 37]
and backpropagation-based methods [1], including gradient-based attribution methods [25, 26]. In
particular, integrated gradients (IG) [29], one of the gradient-based methods, computes the attribution
using the line integral of gradients from a baseline image a to the input image x weighted by their
difference, i.e.,

g(x)i = (xi − ai)×
∫ 1

0

∂fy(a+ α(x− a))

∂xi
dα. (1)

IG satisfies the axiom of completeness which guarantees
∑

i g(x)i = fy(x)− fy(a). We omit the
baseline image a in the later parts of this paper, and it is chosen to be a black image, i.e., 0, if not
specifically stated.

2.2 Attribution robustness

Recent studies reveal the vulnerability of neural networks that, similar to adversarial examples,
imperceptible perturbations added to natural images would have significantly different attribution
while their classification results remain unchanged [8]. Heo et al. [12] manipulates the model
parameters instead of input images to disturb attributions and remains high accuracy on classifications.
Dombrowski et al. [6] makes targeted attack that changes original attributions to any predefined
attributions and gives a theoretical explanation to this phenomenon.

Engstrom et al. [7] points out that robust optimization enhances model representations and inter-
pretability. Chen et al. [4] and Boopathy et al. [2] use ℓ1-norm to constrain the distance between
attributions of natural and perturbed images. Sarkar et al. [24] proposes a contrastive regularizer
that emphasizes a skewed distribution on true class attribution while a uniform one on negative
class attribution. Ivankay et al. [13] directly optimizes Pearson’s correlation and Singh et al. [28]
uses a triplet loss to minimize the upper bound of the attribution distortion. Although the previous
techniques present promising results, none of them exploits the angle between attributions explicitly
for attribution protection. The method introduced in this work leverages the relationship between
Kendall’s rank correlation and cosine similarity with a theoretical support for attribution robustness.

3 Kendall’s rank correlation and cosine similarity

Kendall’s rank correlation, often denoted by τ , is a measurement of the ordinal relationship between
two quantities, where two quantities have higher τ when they have more concordant pairs. Formally,
Kendall’s rank correlation between two vectors x and x′ can be explicitly computed by

τ =
2

d(d− 1)

∑
i<j

sign(xi − xj)sign(x′
i − x′

j), (2)

where d is the dimension of the vectors. As Kendall’s rank correlation is an important metric to
quantify the differences between perturbed and natural attributions, we begin by presenting the
relationship between Kendall’s rank correlation and cosine similarity. It should be highlighted that all
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the previous attribution robustness studies [2, 4, 8, 13, 28, 33] use Kendall’s rank correlation as a key
performance index to evaluate the effectiveness of their methods.

To enhance attribution robustness, it is equivalent to force the perturbed attribution to have a higher
Kendall’s rank correlation with the original one. However, as Kendall’s rank correlation is not
differentiable, it is difficult to directly optimize it. It is necessary to find an alternative that either
approximates to or has a consistent behavior with Kendall’s rank correlation. The following theorem
states that cosine similarity is an appropriate replacement as a regularization term since it is positively
related to the Kendall’s rank correlation (Fig. 2a).

Theorem 1. Given a random vector Y = (y1, y2, . . . , yd) where yi follows a positive-valued
distribution, and two arbitrary vectors with the same dimension, X,X ′ ∈ Rd that xi, x

′
i ≥ 0, assume

that there exists a sequence S = {Xi}Ni=1 with X = X0 and X ′ = XN , where the vectors satisfy the
condition that cos(Xi, Y ) ≥ cos(Xi+1, Y ), and each Xi+1 can be induced from its previous vector
Xi through one of the following two operations,

(i) arbitrarily exchanging two entries of Xi

(ii) multiplying one entry in Xi by α ∈ (0, 1]

Then Kendall’s rank correlations of Y with X and X ′ have the property that E [τ(X,Y )] ≥
E [τ(X ′, Y )], where the expectation is taken over Y satisfying cos(Xi, Y ) ≥ cos(Xi + 1, Y ).

The full proof and discussions can be found in Appendix A. In the scenario of attribution robustness,
under the above assumption, we denote Y as the natural attribution g(x), and X and X ′ as two
perturbed attributions g(x′) and g(x′′). If the perturbed attribution has a greater cosine similarity
with natural attribution, then their expected Kendall’s rank correlation is also greater. Explicitly
speaking, if cos(g(x′), g(x)) ≥ cos(g(x′′), g(x)), then E [τ(g(x′), g(x))] ≥ E [τ(g(x′′), g(x))].
This theorem provides a theoretical foundation that supports using cosine similarity for attribution
protection because it directly links to Kendall’s rank correlation.

4 Characterization of geometric perspective on attributions

In the last section, we have indicated the relationship between cosine similarity and Kendall’s rank
correlation. In this section, we use this relationship to explain (i) the drawbacks of attribution
protections based on ℓp-norm, e.g., minθ ∥g(x) − g(x̃)∥p in Chen et al. [4], where x is a natural
sample and x̃ is a perturbed sample; (ii) the inappropriateness of standard adversarial training for
attribution protection and (iii) the limitation of the cosine similarity, i.e., minθ (1− cos(g(x), g(x̃)))
for standard adversarial protection. In this discussion, g(x) and g(x̃) are considered as vectors, and
as stated in Theorem 1, a smaller angle between them implies higher attribution robustness. The
attribution method g is assumed to fulfill the axiom of completeness1, i.e., fy(x)−fy(a) =

∑
i g(x)i.

If g(x)i ≥ 0 for all i, ∥g(x)∥2 =
√∑

i g(x)
2
i ≤

∑
i g(x)i = fy(x). In other words, ∥g(x)∥2 is the

lower bound of fy(x) and larger ∥g(x)∥2 implies higher classification accuracy. Thus, minimizing
the angle between g(x) and g(x̃) and maximizing their magnitudes would respectively enhance their
attributional and adversarial robustness.

Fig. 2b shows a two-dimensional projection for the ease of illustration, where each 2D point represents
an attribution of an input. Higher-dimensional cases can be extended in a similar manner. In
Fig. 2b, g(x) is the original attribution of x and the others are its perturbed counterparts. Given two
attributions, g(x′) and g(x′′), where ∥g(x) − g(x′)∥ = ∥g(x) − g(x′′)∥ but cos(g(x), g(x′)) >
cos(g(x), g(x′′)), according to Theorem 1, τ(g(x), g(x′)) is likely larger than τ(g(x), g(x′′)),
implying that the attribution of x′ is likely closer to the attribution of x than that of x′′. It explains
the results in Fig. 1 and point (i), i.e., drawbacks of attribution protection based on ℓp-norm.

The standard adversarial training maximizes fy(x̃), where x̃ is an adversarial example. In Fig. 2b,
x′′′ has large ∥g(x′′′)∥2, implying that fy(x′′′) is also large. In other words, the classification label
of x′′′ is well protected. However, standard adversarial training does not explicitly minimize the
angle between g(x) and g(x′′′). It implies that τ(g(x), g(x′′′)) can be small and x′′′ can attack the
attribution successfully. It should be mentioned that adversarial training does improve attribution

1Without loss of generality, we assume fy(a) = 0 and use ℓ2-norm as the illustration.
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Figure 2: (a) Visualization of Kendall’s rank correlation and cosine similarity using simulated data.
Given a fixed vector u with dimension of 10,000, one thousand random vectors vi are sampled and
their corresponding τ and cos with y are calculated and plotted. The positive correlation can be
observed and is later proved by Theorem 1. (b) 2D illustration of comparison of attribution trained
by ℓp-norm and cosine similarity. The axises are two dimensions of attribution. The solid ball and
dashed ball represent two networks. Solid ball represents the untrained attribution surface g and
dashed ball is the trained surface g∗.

robustness because it smooths the decision surface [33] although it is not the most ideal one. It
explains the point (ii).

Point (iii) can be explained similarly. Since the cosine similarity, or minθ (1− cos(g(x), g(x̃)), does
not necessarily enlarge the magnitude of g(x̃), it cannot improve network robustness against standard
adversarial attack. Fig. 2b shows two networks (the dashed circle and solid circle). cos(g(x), g(x̃)) =
cos(g(x), g∗(x̃)), which implies that the two networks perform the same on attribution protection,
but ∥g∗(x̃)∥ > ∥g(x̃)∥, meaning g∗ is more robust against the standard adversarial attack from x̃,
while g is more vulnerable.

To protect against both attribution attack and adversarial attack, in the following section, the proposed
IGR is optimized with adversarial loss together, where the former minimizes the angle between
attribution vectors to perform attribution protection, and the latter maximizes their magnitude to offer
standard adversarial protection.

5 Integrated gradients regularizer (IGR)

Based on the above analysis, in this section, we introduce the integrated gradients regularizer (IGR),
which regularizes the cosine similarity between natural and perturbed attributions.

5.1 IGR robust training objective

Since Kendall’s rank correlation and cosine similarity are positively related, we suggest to improve
attribution robustness, especially integrated gradients, by maximizing the cosine similarity between
natural and perturbed attributions, or equivalently, minimizing 1 − cos(IG(x), IG(x̃)). Therefore,
we propose the following training objective function incorporating the IGR

Ligr = ED[L(x̃, y;θ) + λ (1− cos(IG(x), IG(x̃))], (3)

where L is a standard loss function used in robust training, and λ is a hyper-parameter. We will later
show in Section 6 that L can be chosen from existing loss function in robust training, and our IGR
will further improve the robustness upon baseline methods.

In practice, the integral inside IG definition can be numerically computed by its Riemann sum, and
IG is approximated by

ÎG(x)i = xi ×
1

m

m∑
k=1

∂fy(
k
mx)

∂xi
. (4)
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Similar to adversarial training, optimizing the above objective function in Eq. (3) requires perturbed
example x̃ that maximally diverts its IG from the original counterpart. Such examples can be found
by maximizing the proposed regularizer within its ℓp-ball with radius ε, i.e.,

x̃ = argmax
x̃∈Bε(x)

(1− cos(IG(x), IG(x̃))) . (5)

It is noticed that computing the adversarial loss L(x̃, y;θ) itself relies on x̃, which can be obtained
from adversarial attacks, i.e., x̃ = argmaxx̃ L(x̃, y;θ). Thus, here we reuse these x̃ in IGR to avoid
repeatedly using gradient descent methods to find the optimum in Eq. (5) and speed up the training.
For example, if L is the standard adversarial training loss function, we directly use the examples
generated from PGD attack. The computation cost of IGR is similar to previous proposed methods.

The use of Pearson’s correlation regularizer in Ivankay et al. [13] as the replacement of Kendall’s
rank correlation is the closest method to ours. Ivankay et al. [13] suggests that Pearson’s correlation
regularizer keeps the ranking of feature constant. However, the statement is not supported by any
theoretical justification while we give a theorem that shows cosine similarity is positively related to
Kendall’s rank correlation. Besides, the Pearson’s correlation is an unstable metric for attributions
with small variances. For a fixed vector, two slightly different inputs δ can have drastically different
Pearson’s correlation, which easily fluctuate from −1 to 1. The detailed discussion can be found in
Appendix B.

5.2 IGR induces more consistent neuron activation states

An interesting discovery about IGR is related to neuron activations. We found that the activation
functions in ReLU networks trained with IGR are more often with the same neuron activation states
for natural sample and corresponding perturbed sample. For deep networks with ReLU activations, if
the pre-ReLU value is positive (negative) for natural sample, the probability of pre-ReLU value being
positive (negative) for corresponding perturbed sample would increase when trained with IGR. To
analyze this phenomenon, a single-layer neural network with ReLU activation is studied. The results
from this single-layer neural network can be extended to deep networks by stacking multiple layers.

Recall that x ∈ Rd is an input image, and the network function f is parameterized by (W ,u, c) ∈
Rd×m×Rm×R, where Wi is the column vector of W , wij is the ij-th entry of matrix W and ui is
the i-th entry of vector u, i.e., f(x) = u⊤ReLU(W⊤x) + c. Then, the following proposition holds.
Proposition 1. Given a single-layer neural network with ReLU activation, and with the above
parameterization, if, for all i, Wi and ui are all independent and identically distributed random
variables following Gaussian distributions, i.e., Wi

i.i.d.∼ N (0, σ2
wId) and ui

i.i.d.∼ N (0, σ2
u), and

two input images that each has small variance, x and x̃, then

cos(IG(x), IG(x̃)) ≈ P(W⊤x > 0 ∩W⊤x̃ > 0)√
P(W⊤x > 0)P(W⊤x̃ > 0)

. (6)

The proof can be found in Appendix A.2. The right-hand side of Eq. (6) is called the activation
consistency of natural and perturbed samples. For the sake of convenience, let the event W⊤x > 0 be
A and W⊤x̃ > 0 be B. The right-hand side of Eq. (6) can be rewritten as P(A ∩B)/

√
P(A)P(B).

Since P(A ∩B) has the upper bound that P(A ∩B) ≤ min {P(A),P(B)}, it is obvious that
P(A ∩B)√
P(A)P(B)

≤ P(A ∩B)√
P(A ∩B)P(A ∩B)

= 1, (7)

and the equality holds when event A happens with the same probability as event B, i.e., P(A) =
P(B) = P(A ∩ B); alternatively, the equality can hold when P(Ac) = P(Bc) = P(Ac ∪ Bc). In
other words, maximizing Eq. (6) encourages that the network activates the same set of neurons for x
and x̃, or deactivates the same set of neurons for x and x̃.

6 Experiments and results

6.1 Experimental configurations

We evaluate the performance of IGR on different datasets, including MNIST [19], Fashion-MNIST
[34] and CIFAR-10 [17]. For MNIST and Fashion-MNIST, we use a network consisting of four
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Table 1: A summary of loss functions used in AT, TRADES and MART, and added with IGR
Model Loss function

AT (Lat) CE(f(x̃), y)
TRADES (Ltrades) CE(f(x̃), y) + βKL(f(x)∥f(x̃))
MART (Lmart) BCE(f(x̃), y)

+βKL(f(x)∥f(x̃))(1− fy(x))

+IGR +λ (1− cos(IG(x), IG(x̃))

Table 2: Attribution robustness of models trained by different defense methods under IFIA (top-k).
MNIST Fashion-MNIST CIFAR-10

Model top-k Kendall top-k Kendall top-k Kendall

Standard 32.21% 0.0955 42.83% 0.1884 46.71% 0.1662
IG-NORM [4] 36.13% 0.1562 51.84% 0.3446 74.49% 0.5811
IG-SUM-NORM [4] 41.53% 0.2240 57.27% 0.4097 78.70% 0.6901
AdvAAT [13] 51.74% 0.3791 73.62% 0.5810 72.11% 0.5484
ART [28] 30.38% 0.1439 31.71% 0.2079 70.44% 0.6875
SSR [33] 38.77% 0.1650 60.40% 0.4321 71.20% 0.5498

AT [21] 34.35% 0.1846 32.00% 0.1516 72.21% 0.5578
AT+IGR 33.40% 0.1582 53.36% 0.3750 73.37% 0.5775

TRADES [36] 36.37% 0.2127 57.01% 0.2582 78.28% 0.6903
TRADES+AdvAAT 52.04% 0.4315 79.15% 0.5794 71.30% 0.5239
TRADES+IGR 56.13% 0.4537 80.62% 0.6565 80.26% 0.6940
MART [32] 32.50% 0.1261 58.57% 0.4262 76.11% 0.6192
MART+IGR 37.34% 0.1854 57.97% 0.4317 76.56% 0.6328

convolutional layers followed by three fully connected layers. The model is trained by Adam
Optimizer [16] with learning rate 10−4 for 90 epochs. For CIFAR-10, we train a ResNet-18 [11] for
120 epochs using SGD [30] with initial learning rate 0.1, momentum 0.9 and weight decay 5× 10−4.
The learning rate decays by 0.1 at the 75th and 90th epoch. All the experiments are run on NVIDIA
GeForce RTX 3090.

As discussed in Section 5, IGR is applied with state-of-the-art adversarial training methods: standard
adversarial training (AT)[21], TRADES [36] and MART [32]. Lat, Ltrades and Lmart in Table 1 are
the objective functions of these methods, and are regarded as L in Eq. (3). In Table 1, CE denotes the
cross-entropy loss and KL denotes the KL-divergence. BCE is a boosted cross-entropy (see details in
Wang et al. [32]). Note that both AT and MART generate adversarial examples by maximizing the
CE loss, while TRADES maximizes the KL-divergence regularizer. Following the baseline methods,
we directly leverage the perturbed examples generated by their original techniques to compute the
integrated gradients, as well as the IGR, instead of generating our own ones using Eq. (5). Moreover,
to ensure fair comparisons, we keep the hyper-parameters the same for models with or without IGR.

6.2 Evaluation on attribution robustness

To evaluate our method under attribution attack, the iterative feature importance attacks (IFIA) using
top-k intersection as dissimilarity function (top-k) [8] is adapted. IFIA generates perturbations by
iteratively maximizing the dissimilarity function that measures the changes between attributions of
images, while keeps the classification results unchanged. In this experiment, we perform 200-step
IFIA as in Chen et al. [4]. For MNIST and Fashion-MNIST, we choose k = 100 and the perturbation
size ε = 0.3. For CIFAR-10, k = 1000 and ε = 8/255. Two metrics are chosen to evaluate the
performance under attribution attack as in Chen et al. [4]: top-k intersection and Kendall’s rank
correlation, where top-k intersection counts the proportion of pixels that coincide in the k most
important features. Each sample is attacked five times and the mean metrics are reported. For both
metrics, a higher number indicates that the model is more robust under the attack.
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Figure 3: IGR improves attribution robustness. The second and third images are the IG of the original
and perturbed image on the baseline model. The last two images are respectively the IG of the original
image and perturbed image from the model trained with IGR. Both baseline and baseline+IGR models
make the correct classifications, while only baseline+IGR protects the attribution of perturbed image.
More visualization results are given in Appendix C

Table 3: Adversarial accuracy (%) of CNN trained by different defense methods on MNIST, Fashion-
MNIST and CIFAR-10.

MNIST Fashion-MNIST CIFAR-10

Model Natural FGSM PGD20 CW∞ Natural FGSM PGD20 CW∞ Natural FGSM PGD20 CW∞

AT 99.43 99.39 99.25 99.24 89.75 78.92 74.69 74.65 73.09 69.42 37.56 45.28
+IGR 99.51 99.45 99.32 99.32 80.98 79.20 76.79 76.31 73.69 70.40 38.21 46.70
TRADES 99.40 99.36 99.21 99.19 78.82 77.66 75.94 75.58 81.33 79.15 55.02 52.40
+IGR 99.40 99.40 99.26 99.24 80.61 79.05 76.89 76.44 81.65 79.54 54.65 52.43
MART 99.39 99.29 99.09 99.08 79.43 79.36 77.91 77.49 78.97 77.19 56.05 50.99
+IGR 99.51 99.39 99.28 99.24 81.51 82.13 79.93 79.01 79.27 77.35 56.47 51.11

To compare, attribution protection methods, IG-NORM and IG-SUM-NORM by Chen et al. [4],
Smooth Surface Regularization (SSR) [33], Attributional Robustness Training (ART) [28] and Adver-
sarial Attributional Training with robust training loss (AdvAAT), are implemented and evaluated on
all the datasets. A cross-entropy loss trained natural model (standard) is also included as a baseline.
The details of these baseline methods are briefly introduced in Appendix C.2.

From the results in Table 2, we observed the following phenomenons. (i) Compared with baseline
methods (AT, TRADES and MART), models trained with IGR outperform their corresponding
counterparts in terms of both top-k intersection and Kendall’s rank correlation. (ii) Adversarial defense
methods themselves also help the attribution protection, especially improve on Fashion-MNIST and
CIFAR-10 comparing with the standard cross-entropy training. (iii) Compared with other attribution
protection methods, standard adversarial defense methods, including AT, TRADES and MART, are
weaker in attribution robustness; however, they achieve comparable or even stronger attribution
protections when training with IGR. (iv) TRADES itself has the best attribution protections among
models without IGR, and IGR provides the most significant boost on TRADES. (v) Since AdvAAT
uses Pearson’s correlation as a regularizer, which is close to IGR, and TRADES+IGR outperforms
the other baselines, we apply Pearson’s correlation on TRADES, i.e., TRADES +AdvAAT, in the
Table 2 for the comparison. Table 2 shows clearly that TRADES+AdvAAT does not always improve
over TRADES and is consistently outperformed by TRADES+IGR.

A visualization of attribution robustness is also presented in Figure 3. It is observed that the attribution
of the baseline model is easily corrupted. For model trained with IGR, although the magnitudes of
IG are different from IG of the original images, the directions remain nearly identical, which is also
aligned with human visual perceptions.

6.3 Evaluation on white-box adversarial robustness

To evaluate the performance of IGR on adversarial robustness, the trained defense models are
evaluated under white-box adversarial attacks, including FGSM [9], PGD [21] and CW∞ [3], where
all the attacks have the information of the entire models, including architectures and parameters. The
numbers are reported in both natural accuracy (Natural) and adversarial accuracies under FGSM,
PGD with 20 steps (PGD20), and CW∞ attacks. The maximum allowable perturbations are chosen
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 4: Activation consistency of baseline models and IGR models in MNIST, Fashion-MNIST
and CIFAR-10.

to be ε = 0.3 for MNIST and Fashion-MNIST, and ε = 8/255 for CIFAR-10 as previous studies.
The white-box adversarial accuracy results, as well as natural accuracy are reported in Table 3.

As shown in Table 3, defense methods trained with IGR achieve higher accuracies under all three
types of attacks upon their corresponding baseline methods, except TRADES+IGR under PGD attack
in CIFAR-10. In the meantime, classification accuracies of natural images are also improved in seven
out of nine evaluations. This suggests that training with IGR improves adversarial accuracies without
losing the generalization of natural accuracies. Although IGR is designed for attribution protection,
these improvements is considered as a side-effect and a rigorous study of the phenomenon can be
future work.

6.4 Evaluation on activation consistency

This section reports the experimental results that verify the claim in Section 5.2 — IGR encourages
that the network activates the same set of neurons for natural and perturbed samples x and x̃. During
the experiments, all the pre-activation values are recorded and used to compute the proportion of
nonnegative values. Thus, the activation consistency defined on the right-hand side of Eq. (6) can be
numerically computed.

Fig. 4 compares the activation consistency on the baselines and the corresponding models trained
with IGR. It is noticed that for all the datasets, the activation consistency of the models trained
with IGR are consistently greater than the corresponding baseline models, which verifies our theory
in Section 5.2. Moreover, as reported in Table 2, the improvements of AT+IGR in MNIST and
MART+IGR in Fashion-MNIST are not as significant as others. The results are also reflected on
activation consistency, as the value of activation consistency slightly improves from 0.40 to 0.43 on
AT+IGR in MNIST and from 0.67 to 0.69 on MART+IGR in Fashion-MNIST, while TRADES+IGR
that boosts the most in attribution robustness also increases the most in activation consistency.

7 Conclusions

In order to leverage the non-differentiable Kendall’s rank correlation for attribution protection,
this paper starts with a theorem indicating the positive correlation between cosine similarity and
Kendall’s rank correlation. We then introduce a geometric perspective to explain the shortcomings
of ℓp based attribution defense methods and propose the integrated gradients regularizer to improve
attribution robustness. It is discovered that IGR encourages networks activating the same set of
neurons for natural and perturbed samples. Finally, experiments show that IGR can be combined with
adversarial objective functions, which simultaneously minimizes the angle between attribution vectors
for attribution robustness and maximizes their magnitude to offer standard adversarial protection.
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