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Abstract

Langevin algorithms are gradient descent methods augmented with additive noise,
and are widely used in Markov Chain Monte Carlo (MCMC) sampling, opti-
mization, and machine learning. In recent years, the non-asymptotic analysis
of Langevin algorithms for non-convex learning has been extensively explored.
For constrained problems with non-convex losses over a compact convex domain
with IID data variables, the projected Langevin algorithm achieves a deviation of
O(T−1/4(log T )1/2) from its target distribution [27] in 1-Wasserstein distance. In
this paper, we obtain a deviation of O(T−1/2 log T ) in 1-Wasserstein distance for
non-convex losses with L-mixing data variables and polyhedral constraints (which
are not necessarily bounded). This improves on the previous bound for constrained
problems and matches the best-known bound for unconstrained problems.

1 Introduction

Langevin algorithms can be viewed as the simulation of Langevin dynamics from statistical physics
[14]. They have been widely studied for Markov Chain Monte Carlo (MCMC) sampling [37],
non-convex optimization [5, 23] and machine learning [43]. In the statistical community, Langevin
methods are used to resolve the difficulty of exact sampling from a high dimensional distribution. For
non-convex optimization, the additive noise assists the algorithms to escape from local minima and
saddles. Since many modern technical challenges can be cast as sampling and optimization problems,
Langevin algorithms are a potential choice for the areas of adaptive control, deep neural networks,
reinforcement learning, time series analysis, image processing and so on [4, 10, 29].

Related Work. In recent years, the non-asymptotic analysis of Langevin algorithms has been
extensively studied. The discussion below reviews theoretical studies of Langevin algorithms for
MCMC sampling, optimization, and learning.

The non-asymptotic analysis of Langevin algorithms for approximate sampling (Langevin Monte
Carlo, or LMC) began with [16, 17], with more recent relevant work given in [3, 4, 10, 13, 19, 22,
28, 30, 32–34, 42, 46]. Most works on LMC consider log-concave target distributions, though there
exists some work relaxing log-concavity [10, 13, 33, 34, 42] and smoothness of the target distribution
[13, 28, 34]. Most LMC work focuses on the unconstrained case.
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Constrained problems are less studied, but a variety of works have begun to address constraints in
recent years. The work [8, 9] analyzes the case of log-concave distributions with samples constrained
to a convex, compact set. Other methods derived from optimization have been introduced to handle
constraints, such as mirror descent [1, 25, 26, 45] and proximal methods [7].

Pioneering work on non-asymptotic analysis of Langevin algorithms for unconstrained non-convex
optimization with IID external data variables was given in [35], which was motivated by machine
learning applications [43]. Since then, numerous improvements and variations on unconstrained
Langevin algorithms for non-convex optimization have been reported [10–12, 21, 44].

The work [41] examines the Unadjusted Langevin Algorithms without convexity assumption of
the objective function and achieves a convergence guarantee in Kullback-Leibler (KL) divergence
assuming that the target distribution satisfies a log-Sobolev inequlity. However, KL divergence
is infinite with the deterministic initialization. To mitigate this pitfall, our work measures the
convergence bound in 1-Wasserstein distance, which allows the initial condition to be deterministic.

The first analysis of Langevin algorithms for non-convex optimization with IID external variables
constrained to compact convex sets is given in [27], and builds upon [8, 9]. However, the convergence
rate derived in [27] is rather slow since it uses a loose result on Skorokhod problems in [40]. Recent
work of [39] obtains �-suboptimality guarantees in Õ(�−1/3). However, some extra work would be
required to give a direct comparison with the current work, as the results in [39] depend additionally
on the spectral gap, which is not computed here.

Most convergence analyses for constrained non-convex optimization require no constraints or bounded
constraint sets and IID external random variables or no external variables. In practice, the boundedness
of constraint sets and the dependence of external variables do not always hold. The work [10] gives
non-asymptotic bounds with L-mixing external variables and non-convex losses, which achieves tight
performance guarantees in the unconstrained case. In contrast, our work gets a tight convergence
bound (up to logarithmic factors) with L-mixing data streams and applies to arbitrary polyhedral
constraints, which may be unbounded.

Contributions. This paper focuses on the non-asymptotic analysis of constrained Langevin algo-
rithms for a non-convex problem with L-mixing external random variables and polyhedral constraints.
We show the algorithm can achieve a deviation of O(T−1/2 log T ) from its target distribution in
1-Wasserstein distance in the polyhedral constraint and with dependent variables. The result from [10]
on unconstrained Langevin algorithms with L-mixing external random variables gives a deviation
of O(T−1/2(log T )1/2), and so we see that our results match, up to a factor of (log T )1/2. For
constrained problems, our general polyhedral assumption is not directly comparable to related work
of [27], which examines compact convex constraints, and [39], which examines bounded non-convex
constraints. In the cases where the domains and random variable assumptions match (i.e. bounded
polyhedra with IID external random variables or no external random variables), our paper gives the
tightest bounds. In particular, this improves on the bound from [27], which gives a deviation of
O(T−1/4(log T )1/2) with respect to 1-Wasserstein distance.

A key enabling result in this paper is a new quantitative bound on the deviation between Skorokhod
problem solutions over polyhedra, which gives a more explicit variation of an earlier non-constructive
result from [18]. Additionally, we derive a relatively simple approach to averaging out the effect of
L-mixing random variables on algorithms.

2 Problem Setup

2.1 Notation and terminology

R denotes the set of real numbers while N denotes the set of non-negative integers. The Euclidean
norm over Rn is denoted by � · �.

Random variables will be denoted in bold. If x is a random variable, then E[x] denotes its expected
value and L(x) denotes its law. IID stands for independent, identically distributed. The indicator
function is denoted by 1. If P and Q are two probability measures over Rn, then the 1-Wasserstein
distance between them with respect to the Euclidean norm is denoted by W1(P,Q).
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The 1-Wasserstein distance is defined as:

W1(P,Q) = inf
Γ∈C(P,Q)

�

K×K
�x− y�dΓ(x, y)

where C is the couplings between P and Q.

Let K be a convex set. (In this paper, we will assume that K is polyhedral with 0 in its interior.) The
boundary of K is denoted by ∂K. The normal cone of K at a point x is denoted by NK(x). The
convex projection onto K is denoted by ΠK.

Let Z denote the domain of the external random variables zk.

If F and G are σ-algebras, let F ∨ G denote the σ-algebra generated by the union of F and G.

2.2 Constrained Langevin algorithm

For integers k let ŵk ∼ N (0, I) be IID Gaussian random variables and let zk be an L-mixing process
whose properties will be described later. Assume that zi is independent of ŵj for all i, j ∈ N.

Assume that the initial value of x0 ∈ K is independent of zi and ŵj . Then the constrained Langevin
algorithm has the form:

xk+1 = ΠK

�
xk − η∇xf(xk, zk) +

�
2η

β
ŵk

�
, (1)

with k an integer. Here η > 0 is the step size parameter and β > 0 is the inverse temperature
parameter. In the learning context, f(x, z) is the objective function where x are the parameters we
aim to learn and z is a training data point.

2.3 L-mixing processes

In this paper, we assume that zk is a sequence of external data variables. The class of L-mixing
processes was introduced in [24] for applications in system identification and time-series analysis,
and gives a means to quantitatively measure how the dependencies between the zk decay over time.
Formally, L-mixing requires two components: 1) M-boundedness, which specifies a global bound on
the moments and 2) a measure of the decay of influence over time.

A discrete-time stochastic processes zk is M-bounded if for all m ≥ 1

Mm(z) = sup
k≥0

E1/m [�zk�m] < ∞. (2)

Let Fk be an increasing family of σ-algebras such that zk is Fk-measurable and F+
k be a decreasing

family of σ-algebras such that Fk and F+
k are independent for all k ≥ 0. Then, the process zk is

L-mixing with respect to
�
(Fk) ,

�
F+

k

��
if it is M-bounded and

Ψm(z) =

∞�

τ=0

ψm(τ, z) < ∞ (3a)

with
ψm(τ, z) = sup

k≥τ
E1/m

���zk − E
�
zk|F+

k−τ

���m�
. (3b)

For a concrete example, consider the order-1 autoregressive model:

zk+1 = αzk + ξk+1 (4)

where α is a constant with |α| < 1 and for all k ∈ Z, ξk are IID standard Gaussian random variables
and zk ∈ Z , where Z = R in this case. It can be observed from (4) that

zk =

∞�

j=0

αjξk−j . (5)

Then, if we specify Fk = σ{ξi : i ≤ k} and F+
k = σ{ξi : i > k}, it can be verified that zk satisfies

(2) and (3) and so is an L-mixing process.
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2.4 Assumptions

We assume that ∇xf(x, z) is �-Lipschitz in both x and z. In particular, this implies that
�∇xf(x1, z)−∇xf(x2, z)� ≤ ��x1 − x2� and �∇xf(x, z1)−∇f(x, z2)� ≤ ��z1 − z2�.

We assume that zt is a stationary L-mixing process, and let f̄(x) = E[f(x, zt)] denote the function
which averages f(x, zt) with respect to zt.

Further, we assume that f̄(x) is µ-strongly convex outside a ball of radius R > 0, i.e. (x1 −
x2)

� �
∇f̄(x1)−∇f̄(x2)

�
≥ µ �x1 − x2�2 for all x1, x2 ∈ K such that �x1 − x2� ≥ R.

We assume that the initial second moment is bounded above as E[�x0�2] ≤ ς < ∞.

Throughout the paper, K will denote a polyhedral subset of Rn with 0 in its interior.

3 Main results

3.1 Convergence of the law of the iterates

For f̄ defined above, the associated Gibbs measure is defined by:

πβf̄ (A) =

�
A∩K e−βf̄(x)dx�
K e−βf̄(x)dx

. (6)

The main result of this paper is stated next:
Theorem 1. Assume that η ≤ min

�
1
4 ,

µ
4�2

�
, K is a polyhedron with 0 in its interior, x0 ∈ K, and

E[�x0�2] ≤ ς . There are constants a, c1, c2, c3, and c4 such that the following bound holds for all
integers k ≥ 4:

W1(L(xk),πβf̄ ) ≤ (c1 + c2
√
ς)e−ηak + (c3 + c4

√
ς)
�
η log(η−1).

In particular, if η = log T
2aT , T ≥ 4 and T ≥ e2a, then

W1(L(xT ),πβf̄ ) ≤
�
c1 + c2

√
ς +

c3 + c4
√
ς

(2a)1/2

�
T−1/2 log T.

Furthermore, the constants, c1, c2, c3, and c4 are O(n) with respect to the dimension of xk, and

O(e�βR
2/2) with respect to the inverse temperature, β. And for all β > 0, a ≥ 2

βR2

2 + 16
µ

e−
β�R2

4 .

The constants depend on the dimension of xk, n, the noise parameter, β, the Lipschitz constant, �, the
strong convexity constant µ, the variance bound of the initial states, ς , and some geometric properties
of the polyhedron, K.

The constants shown in Theorem 1 are described explicitly in Appendix H.

3.2 Auxiliary processes for convergence analysis

Similar to the previous analyses of Langevin methods, e.g. [9, 10, 27, 35], the proof of Theorem 1
uses a collection of auxiliary processes fitting between the algorithms iterates from (1) and a stationary
distribution given by (6).

The algorithm and a variation in which the zt variables are averaged out are respectively given by:

xA
t+1 = ΠK

�
xA
t − η∇xf(x

A
t , zt) +

�
2η

β
ŵt

�
(7a)

xM
t+1 = ΠK

�
xM
t − η∇xf̄(x

M
t ) +

�
2η

β
ŵt

�
. (7b)

Here xA
t represents the Algorithm, while xM

t represents a corresponding Mean process.
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We embed the mean process in continuous time by setting xM
t = xM

�t�, where �t� indicates floor
function. The Gaussian noise ŵk can be realized as ŵk = wk+1 − wk where wt is a Brownian
motion.

Let xC
t denote a Continuous-time approximation of xM

t defined by the following reflected stochastic
differential equation (RSDE):

dxC
t = −η∇xf̄(x

C
t )dt+

�
2η

β
dwt − vC

t dµ
C(t). (8)

Here −
� t

0
vC
s dµ

C(s) is a bounded variation reflection process that ensures that xC
t ∈ K for all t ≥ 0,

as long as xC
0 ∈ K. In particular, the measure µC is such that µC([0, t]) is finite, µC supported

on {s|xC
s ∈ ∂K}, and vC

s ∈ NK(xC
s ) where NK(x) is the normal cone of K at x. Lemma 10 in

Appendix A shows that the reflection process is uniquely defined and xC is the unique solution to the
Skorokhod problem for the process defined by:

yC
t = xC

0 +

�
2η

β
wt − η

� t

0

∇xf̄(x
C
s )ds. (9)

See Appendix A for more details on the Skorokhod problem.

For compact notation, we denote the Skorokhod solution for a given trajectory, y, by S(y). So,
the fact that xC is the solution to the Skorokhod problem for yC will be denoted succinctly by
xC = S(yC).

The basic idea behind the proof is to utilize the triangle inequality:

W1(L(xA
k ),πβf ) ≤ W1(L(xA

k ),L(xC
k )) +W1(L(xC

k ),πβf̄ ). (10)

and then bound each of the terms separately.

The second term is bounded by the following lemma:
Lemma 2. Assume that x0 ∈ K and E[�xC

0 �2] ≤ ς . There are positive constants a, c1 and c2 such
that for all t ≥ 0

W1(L(xC
t ),πβf̄ ) ≤ (c1 + c2

√
ς) e−ηat.

This result is based on an extension of the contraction results from Corollary 2 of [20] for SDEs to
the case of the reflected SDEs. Appendix D steps through the methodology from [20] in order to
derive a, c1 and c2 for our particular problem.

Most of the novel work in the paper focuses on deriving the following bound on W1(L(xA
k ),L(xC

k )):

Lemma 3. Assume that xA
0 = xC

0 ∈ K, E[�xC
0 �2] ≤ ς , and η ≤ min

�
1
4 ,

µ
8�2

�
. Then there are

positive constants c3 and c4 such that for all integers k ≥ 0:

W1(L(xA
k ),L(xC

k )) ≤ (c3 + c4
√
ς)
�

η log(η−1).

Proof of Theorem 1 Plugging the results of Lemmas 2 and 3 into the triangle inequality bound
from (10) proves the first result of the theorem. Specifically, let η = log T

2aT , then

W1(L(xT ),πβf̄ ) ≤ (c1 + c2
√
ς)T−1/2 + (c3 + c4

√
ς)

�
log T

2aT
log(

2aT

log T
)

≤ (c1 + c2
√
ς)T−1/2 log T +

c3 + c4
√
ς

(2a)1/2
T−1/2 log T.

This gives the specific bound in the theorem. The last inequality utilizes the fact that log T > 1 for
all T ≥ 4 and 2aT

log T ≤ T when T ≥ e2a.

Furthermore, we examine the bounds of the constants c1, c2, c3, c4 and a in Appendix H, where
the dependencies of the convergence guarantee on state dimension n and the inverse temperature
parameter, β can be observed directly. �
The rest of the paper focuses on proving Lemma 3.
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3.3 Proof overview for Lemma 3

This subsection describes the main ideas in the proof of Lemma 3. The results highlighted here, and
proved in the appendix, cover the main novel aspects of the current work. The first novelty, captured
in Lemmas 4 and 5, is a new way to bound stochastic gradient Langevin schemes with L-mixing
data from a Langevin method with the data variables averaged out. The key idea is a method for
examining a collection of partially averaged processes. The second novelty is a tight quantitative
bound on the deviation of discretized Langevin algorithms from their continuous-time counterparts
when constrained to a polyhedron. This result is based on a new quantitative bound on Skorokhod
solutions over polyhedra.

First we derive time-dependent bounds (i.e. bounds that depend on k) for W1(L(xA
k ),L(xC

k )) . This
is achieved by introducing a collection of intermediate processes and bounding their differences.
Time-uniform bounds are then achieved by exploiting contractivity properties of xC

t .

To bound W1(L(xA
k ),L(xC

k )), we first use the triangle inequality:

W1(L(xA
k ),L(xC

k )) ≤ W1(L(xA
k ),L(xM

k )) +W1(L(xM
k ),L(xC

k )). (11)

We bound W1(L(xA
k ),L(xM

k )) via a collection of auxiliary processes in which the effect of zk is
partially averaged out. We bound W1(L(xM

k ),L(xC
k )) via a specialized discrete-time approximation

of xC
t .

Now we construct the collection of partially averaged processes. Recall that zk ∈ Z is a stationary
L-mixing process with respect to the σ-algebras Fk and F+

k . For k < 0, we set Fk = {∅,Z}, i.e.
the trivial σ-algebra. Let Gt be the filtration generated by the Brownian motion, wt.

Recall that for k ∈ N, we set ŵk = wk+1 −wk. Define the following discrete-time processes:

xM,s
k+1 = ΠK

�
xM,s
k − ηE[∇xf(x

M,s
k , zk)|Fk−s ∨ Gk] +

�
2η

β
ŵk

�
(12a)

xB,s
k+1 = ΠK

�
xB,s
k − ηE[∇xf(x

M,s
k , zk)|Fk−s−1 ∨ Gk] +

�
2η

β
ŵk

�
. (12b)

Assume that all initial conditions are equal. In other words, xA
0 = xM

0 = xM,s
0 = xB,s

0 , for all
s ≥ 0. The iterations from (12a) define a family of algorithms in which the data variables are partially
averaged, while xB,s

k from (12b) corresponds to an auxiliary process that fits between xM,s
k and

xM,s+1
k . (Here “A” stands for algorithm, “M” stands for mean, and “B” stands for between.)

Note for s = 0, we have that xM,0
k = xA

k and for s > k, we have that xM,s
k = xM

k .
So, in order to bound W1(L(xA

k ),L(xM
k )), it suffices to bound W1(L(xM,s

k ),L(xB,s
k )) and

W1(L(xB,s
k ),L(xM,s+1

k )) for all s ≥ 0. These bounds are achieved in the following lemmas,
which are proved in Appendix E.

Lemma 4. For all s ≥ 0 and all k ≥ 0, the following bound holds:

W1

�
L(xM,s

k ),L(xB,s
k )

�
≤ E[�xM,s

k − xB,s
k �] ≤ 2�ψ2(s, z)η

√
k.

Lemma 5. For all s ≥ 0 and all k ≥ 0, the following bound holds

W1

�
L(xB,s

k ),L(xM,s+1
k )

�
≤ E[�xB,s

k − xM,s+1
k �] ≤ 2�ψ2(s, z)η

√
k
�
eηk� − 1

�
.

Now we define the discretized approximation of xC
t . For any initial xD

0 ∈ K, we define the following
iteration on the integers:

xD
k+1 = ΠK(x

D
k + yC

k+1 − yC
k ) = ΠK

�
xD
k +

� k+1

k

∇f̄(xC
s )ds+

�
2η

β
ŵk

�
.

Recall that the process yC is defined by (9).
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Provided that xD
0 = xC

0 , we have that xD = S(yD) = S(D(yC)), where D is the discretization
operator that sets D(x)t = x�t� for any continuous-time trajectory xt. Recall that S is the Skorokhod
solution operator.

The approximation, xD, was utilized in [9, 27] to bound discretization errors. The next lemmas show
how to bound W1(L(xC

k ),L(xD
k )) and W1(L(xM

k ),L(xD
k )), respectively. In particular, Lemma 6 is

analogous to Propositions 2.4 and 3.6 of [9] and Lemma 9 of [27]. These earlier works end up with
bounds of O(η3/4k1/2 +

√
η log k). It is shown in [27] that such bounds can be translated into time-

uniform bounds of the form Õ(η1/4). The bound from Lemma 6 is of the form O(ηk1/2 +
√
η log k),

and we will see in the next subsection that this leads to a time-uniform bound of the form Õ(η1/2).
Lemma 6. Assume that K is a polyhedron with 0 in its interior. Assume that xC

0 = xD
0 ∈ K and

that E[�xC
0 �] ≤ ς . There are constants, c5, c6 and c7 such that for all integers k ≥ 0, the following

bound holds:
W1

�
L(xC

k ),L(xD
k )

�
≤ E

�
�xC

k − xD
k �

�
≤ (c5 + c6

√
ς) η

√
k + c7

�
η log(4k).

Lemma 7. Assume that K is a polyhedron with 0 in its interior. Assume that xC
0 = xD

0 = xM
0 ∈ K

and that E[�xC
0 �] ≤ ς . Then for all integers k ≥ 0, the following bound holds

W1

�
L(xM

k ),L(xD
k )

�
≤ E

�
�xM

k − xD
k �

�
≤

�
(c5 + c6

√
ς) η

√
k + c7

�
η log(4k)

� �
eη�k − 1

�
.

We highlight that Lemma 6 utilizes the rather tight bounds on solutions to Skorokhod problems over
a polyhedral domain shown in Theorem 9. The derivation of such tight bounds is one of the novelties
of our work. More details will be discussed in Section 4 and Appendix A.

With all of the auxiliary processes defined and their differences, we have the following lemma, which
gives a time-dependent bound on W1(L(xA

k ),L(xC
k )):

Lemma 8. Assume that K is a polyhedron with 0 in its interior. Assume that xA
0 = xC

0 ∈ K and that
E[�xA

0 �] ≤ ς . There are constants, c6, c7 and c8, such that for all k ≥ 0, the following bound holds:

W1(L(xA
k ),L(xC

k )) ≤
�
(c8 + c6

√
ς) η

√
k + c7

�
η log(4k)

�
eη�k.

Proof of Lemma 8 Recalling that xM,0
k = xA

k and xM,k+1
k = xM

k and using the triangle inequality
gives:

W1(L(xA
k ),L(xM

k ))

≤
k�

s=0

W1(L(xM,s
k ),L(xM,s+1

k ))

≤
k�

s=0

�
W1(L(xM,s

k ),L(xB,s
k )) +W1(L(xB,s

k ),L(xM,s+1
k ))

�

Lemmas 4 & 5
≤

k�

s=0

2�ψ2(s, z)η
√
keη�k

≤ 2�Ψ2(z)η
√
keη�k. (13)

Here ψ2(s, z) and Ψ2(z) are the terms that bound the decay of probabilistic dependence between the
zk variables, as defined in (3).

Similarly, we bound

W1(L(xM
k ),L(xC

k ))

≤ W1(L(xM
k ),L(xD

k )) +W1(L(xD
k ),L(xC

k ))

Lemmas 6 & 7
≤

�
(c5 + c6

√
ς)η

√
k + c7

�
η log(4k)

�
eη�k. (14)

Plugging the bounds from (13) and (14) into (11) proves the lemma, with c8 = c5 + 2�Ψ2(z). �
The proof of Lemma 3 is completed by showing how the time-dependent bound from Lemma 8 can
be turned into a bound that is independent of k. The technique used for this step is based on ideas
from [10], and is shown in Appendix G.
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4 Quantitative bounds on Skorokhod solutions over polyhedra

In this section, we present a result that enables our new bound between the continuous-time process
xC
t and the discretized process xM

t when constrained to the set K defined by:

K = {x|a�i x ≤ bi for i = 1, . . . ,m}, (15)

where ai are unit vectors.

As discussed in Section 3.3, the bound in Lemma 6 improves upon the corresponding results in
earlier works [9, 27]. The improvement arises from the use of Theorem 9 below, which utilizes
the explicit polyhedral structure of K to achieve a tighter bound than could be obtained for general
convex constraint sets. It is a variation on an earlier result from [18]. The main distinction is that the
proof in [18] is non-constructive, and so there is no way to calculate the constants, whereas the proof
in Appendix A is fully constructive and the constants can be computed explicitly.

Theorem 9. There are constants c9 and α ∈ (0, 1/2] such that if x = S(y) and x� = S(y�) are
Skorokhod solutions on the polyhedral set K defined by (15), then for all t ≥ 0, the following bound
holds:

sup
0≤s≤t

�xs − x�
s� ≤ (c9 + 1) sup

0≤s≤t
�ys − y�s�.

Here

c9 = 6

�
1

α

�rank(A)/2

and A = [a1 · · · am]
� whose rows are the a�i vectors.

5 Limitations

Our current work is restricted to polyhedral sets. In particular, Theorem 9 requires the polyhedral
assumption, and it is unclear if Skorokhod problems satisfy similar bounds on any more general
classes of constraint sets. As a result, it is unclear if our main results on projected Langevin algorithms
can be extended beyond polyhedra. We also only considered constant step sizes, but in many cases
decreasing or adaptive step sizes are used in practice. Finally, the dependence of the external data
variables is limited to the class of L-mixing processes, which does not include all the real-world
dependent data streams. Furthermore, it can be difficult to check that a data stream is L-mixing
without requiring strong assumptions or knowledge about how it is generated.

6 Conclusions and future work

In this paper, we derived non-asymptotic bounds in 1-Wasserstein distance for a constrained Langevin
algorithm applied to non-convex functions with dependent data streams satisfying L-mixing as-
sumptions. Our convergence bounds match the best known bounds of the unconstrained case up
to logarithmic factors, and improve on all existing bounds from the constrained case. The tighter
bounds are enabled by a constructive and explicit bound on Skorokhod solutions, which builds upon
an earlier non-constructive bound from [18]. The analysis of L-mixing variables followed by a
comparatively simple averaging method. Future work will examine extensions beyond polyhedral
domains, higher-order Langevin algorithms, alternative approaches to handling constraints, such as
mirror descent, and more sophisticated step size rules. More specifically, future work will examine
whether the projection step, and thus Skorkhod problems, can be circumvented by utilizing different
algorithms, such as those based on proximal LMC [7]. Additionally, applications to real-world
problems such as time-series analysis and adaptive control will be studied.
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