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A Experimental Details

Following [13], we summarize the OOD detection evaluation task in Table 5. The OOD test dataset is
selected from MS-COCO and OPENIMAGES dataset, which contains disjoint labels from the respective
ID dataset. SIREN is trained for a total of 50 epochs on PASCAL-VOC, and trained for 30 epochs on
BDD100K using ADAM optimizer. The initial learning rate is 2e-4 and decays at epoch 40 and 24 by
0.1 for PASCAL-VOC and BDD100K dataset, respectively. We set the number of the object queries
as 300, the batch size as 8, and the weight β in Equation (8) as 1.5. See detailed ablations on the
hyperparameters on a validation OOD dataset in Appendix C.

Task 1 Task 2

ID train dataset VOC train BDD train
ID val dataset VOC val BDD val
OOD dataset COCO & OPENIMAGES val COCO and OPENIMAGES val
#ID train images 16,551 69,853
#ID val images 4,952 10,000
#OOD images for COCO 930 1,880
#OOD images for OPENIMAGES 1,761 1,761

Table 5: OOD detection evaluation tasks.

B Estimating κ̂

We provide the mathematical details for the estimation of κ in Equation (13). Concretely, we frame
the estimation problem as deriving maximum likelihood estimators (MLEs) for the vMF density
function, given the training data {ri}Mi=1. Specifically, the maximum likelihood learning can be
written as the following optimization problem:

max
µ,κ

LMLE(µ, κ) :=

M∑
i=1

log p (ri) = Mκµ⊤r+M logZd(κ)

s.t. ∥µ∥ = 1 and κ ≥ 0,

(14)

where r = 1
M

∑M
i=1 ri and LMLE is the optimization objective of the maximum likelihood estimation

for the distributional parameters µ, κ. In order to optimize this objective, we take the derivatives of
the objective w.r.t. the parameters µ, κ and set them to 0. Then, the optimal parameters µ∗, κ̂ should
satisfy the following two conditions:

µ∗ =
r

∥r∥
,

Z ′
d (κ̂)

Zd (κ̂)
= −∥r∥, (15)

where Z ′
d (κ̂) =

dZd(κ̂)
dκ̂ .

For the second condition in Equation (15), we let ξ = (2π)d/2 and s = d/2−1 for notation simplicity.
Put them into the Equation (2), we get the following:

Zd(κ̂) =
κ̂s

ξ · Is(κ̂)
, Z ′

d(κ̂) =
1

ξ
· sκ̂

s−1Is(κ̂)− κ̂sI ′s(κ̂)

Is(κ̂)2
. (16)

Divide Zd(κ̂) by Z ′
d(κ̂), we get:

Z ′
d(κ̂)

Zd(κ̂)
=

s

κ̂
− I ′s(κ̂)

Is(κ̂)
. (17)
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Note that the Bessel function holds a recursive property, which is given as follows:

I ′s(κ̂)

Is(κ̂)
=

s

κ̂
+

I ′s+1(κ̂)

Is(κ̂)
. (18)

Substitute I′
s(κ̂)

Is(κ̂)
in Equation (17) with the formula in Equation (18) and integrate it with the second

condition of Equation (15), we get:

Id/2(κ̂)

Id/2−1(κ̂)
= ∥r∥. (19)

Since there is no known closed-form solution to the Bessel ratio inversion problem as shown in the
formula above, we adopt the approximation schemes based on the continued fraction form of the
Bessel ratio function [1], namely:

R :=
Id/2(κ̂)

Id/2−1(κ̂)
=

1
d
κ̂ + 1

d+2
κ̂ +···

≈ 1
d
κ̂ +R

. (20)

Replace R with ∥r∥, we get κ̂ ≈ d·∥r∥
1−∥r∥2 . Following [1], we further add a correction term −∥r∥3 to

the numerator and we get the approximated estimation calculated as:

κ̂ =
∥r∥(d− ∥r∥2)

1− ∥r∥2
. (21)

C Hyperparameter Analysis

Below we perform sensitivity analysis for each important hyperparameter. Our sensitivity analysis
uses the speckle-noised PASCAL-VOC validation dataset as OOD data, which is different from the
actual OOD test datasets in use. We use SIREN pre-trained with DINO [5] as the object detection
backbone, trained on in-distribution dataset PASCAL-VOC. We use the KNN score as the OOD score
during inference.

Effect of the hypersphere dimension d. SIREN projects the object feature embeddings into a
lower-dimensional hypersphere in Rd, which allows tractable vMF estimation. A reasonable choice
of the hyperspherical dimension d is able to preserve sufficient information for OOD detection while
avoiding distributional parameter estimation in the high-dimension space. As shown in Table 6, using
a dimension d between 16 and 64 yields a desirable and stable performance on the OOD validation
data while properly maintaining the ID performance (mAP). We set d = 16 for PASCAL-VOC and 64
for BDD100K in Table 1.

d mAP↑ FPR95 ↓ AUROC↑
8 60.4 76.31 64.95
16 60.8 69.29 73.45
32 58.1 75.53 70.32
64 58.7 74.55 69.47
80 58.2 69.09 72.29

Table 6: Ablation study on the dimension of the hypersphere d.

Effect of the SIREN loss weight β. In Table 7, we show the sensitivity of the OOD detection
performance of our SIREN w.r.t. the weight β of the representation shaping loss. Overall, we find that
β = 1.5 achieves the best OOD detection and ID performance.

Effect of the k in the KNN score. In Table 8, we show the sensitivity of the OOD detection
performance of our SIREN w.r.t. the k of the KNN distance during inference. Overall, we find that
k = 10 achieves the best OOD detection performance.

D Baselines

To evaluate the baselines, we follow the original methods in MSP [23], ODIN [35], KNN [60],
and CSI [61] and apply them accordingly on the classification branch of the object detectors. The
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β mAP↑ FPR95 ↓ AUROC↑
0.1 60.2 69.72 73.21
0.5 59.2 71.09 72.36
1.0 59.8 76.20 70.49
1.5 60.8 69.29 73.45
2.0 58.9 70.41 71.22
2.5 56.0 77.20 68.37

Table 7: Ablation study on the loss weight β for LSIREN.

k mAP↑ FPR95 ↓ AUROC↑
1 60.8 70.42 72.11
5 60.8 71.66 72.74
10 60.8 69.29 73.45
20 60.8 70.03 72.95
50 60.8 71.85 72.08

100 60.8 73.73 71.28
200 60.8 75.96 70.41

Table 8: Ablation study on the k for the KNN distance.

Mahalanobis distance [33] and gram matrices [53] are calculated based on the penultimate-layer
features of the decoder in DDETR. For CSI [61], we use the rotation degree prediction (0◦, 90◦, 180◦,
270◦) as the self-supervised task. We set the temperature in the contrastive loss to 0.5. We use the
penultimate-layer features of the decoder (with dimensionality 256) to perform contrastive learning.
The weights of the losses that are used for classifying shifted instances and instance discrimination
are both set to 1 following the original paper [61]. For OW-DETR [18], we follow the original paper
and utilize the sigmoid probability of the additional unknown class for OOD detection. For VOS [13],
we use the same hyperparameters as those in the original paper and synthesize virtual outliers in the
penultimate layer of the object detector. Then we regard the virtual outliers as the negative samples
during the object classification. For Dismax [39], we add the dismax loss with learnable prototypes
in the penultimate layer of DDTER and apply the same inference score as the original paper for OOD
detection.

E Comparison of Training Time

We provide the comparison of the training time for various baselines in Table 9 on our reported
hardware (Section G in the Appendix). As the table shows, the training of our method SIREN incurs
minimal computational overhead compared to the vanilla DDETR. In contrast, other baselines such as
OW-DETR can be more than 2 times slower than SIREN.

Method Training time (h)
ID: PASCAL-VOC / BDD100K

Mahalanobis [33] 9.7 / 27
Gram matrices [53] 9.7 / 27
KNN [60] 9.7 / 27
CSI [61] 17.1 / 47.9
VOS [13] 11.4 / 32.7
OW-DETR [18] 23.7 / 59.3
Dismax [39] 10.0 / 27.7
SIREN (ours) 10.1 / 27.7

Table 9: Comparison of the training time for different baselines in Table 1 of the main paper.

F Details of Visualization

For Figure 3 in the main paper, we generate the toy data in the unit hypersphere by sampling from
three vMF distributions in the 3D space. We adopt a concentration parameter κ of 100 for all three
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classes. The centroid vectors are set to [0, 0, 1], [
√
3
2 , 0,− 1

2 ] and [−
√
3
2 , 0,− 1

2 ], respectively. The
uncertainty surface is obtained by calculating the uncertainty score of 2002 points in the surface of
the 3D ball.

G Software and Hardware

We run all experiments with Python 3.8.5 and PyTorch 1.7.0, using 8 NVIDIA GeForce RTX 2080Ti
GPUs.
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