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The sections of this appendix are organized as follows:

• Section A describes the details of experimental setup including network architecture, hyper-
parameters, computing infrastructure and implementation code of SRM.

• Section B provides additional experimental results including the direct performance gain
of SRM on SAC, the impacts of spatial and spectral masking, the effectiveness of various
alternative spectral mask forms and the performance on video-hard benchmark.

• Section C demonstrates the effectiveness of SRM in more challenging and realistic environ-
ments, including DrawerWorld [15] (the background with realistic textures), Robosuite [21]
(both target and background with progressively harder textures and color), and CARLA [2]
(a driving simulator including various weathers).

• Section D gives detailed introduction and comparison of image-based RL algorithms, data
augmentations for generalization, and several recently proposed masked image/frequency
modeling methods related to SRM.

• Section E analyses the limitation of current work and suggest an interesting direction
(generalization towards viewpoint changes) for future studies.

• Section F states the potential negative societal impacts.

A Detailed Experimental Setup

Network architecture Following the experiments in [6] and [7], the network architecture for
DMControl includes a shared encoder, an actor subnet and a critic subnet, as illustrated in Fig. 1.
The shared encoder fθ consists of 11 convolutional layers with kernel size set to 3 × 3. The first
convolution layer has a stride of 2. All the rest convolution layers are followed by a ReLU layer
and the corresponding stride is set to 1. The encoder takes a stack of 3× 84× 84 RGB frames as
input and outputs 32 × 21 × 21 feature maps, where the tensor dimensions are in the order of the
number of channels, height and width, respectively. The 32× 21× 21 feature maps are used as input
to the actor and critic subnets, which are implemented by independent linear projections. Specifically,
the projections consist of 3 linear layers with hidden dimension 1024, where the first two layer is
followed by a ReLU layer. For the critic subnet, the input also includes corresponding actions, and the
output is Q-value. The actor subnet outputs the mean and standard deviation of a Gaussian probability
distribution for the continuous action space, and randomly selects actions based on the distribution.

Hyper-parameters The related hyper-parameters of our experiments are detailed in Table 1. For a
fair comparison, we adopt the same hyperparameters as [7].

Computing infrastructure We train all models with a server, which is equipped with NVIDIA
GeForce RTX 3080 GPUs and a 256 core AMD EPY 7H12 2.6GHz CPU Processor.
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Figure 1: Network architecture on the DMControl tasks includes three parts: a shared encoder, a
actor subnet and a critic subnet.

Table 1: Hyper-parameters used in the DMControl tasks.
Hyperparameter Value
Masking strategies [Erasing, Noise, Swapping]
r1 [0,0.5]
∆r [0,0.05]
Frame rendering 3× 84× 84
Stacked frames 3
Action repeat 2(finger)

8(cartpole)
2(otherwise)

Discount factor λ 0.99
Episode length 1,000
Learning algorithm Soft Actor-Critic (SAC)
Number of frames 500,000
Replay buffer size 500,000
Optimizer (f, π, q) Adam (β1 = 0.9, β2 = 0.999)
Optimizer (α in SAC) Adam (β1 = 0.5, β2 = 0.999)
Learning rate (f, π, q) 1e-3
Learning rate (α in SAC) 1e-4
Batch size 128
Update frequence (θ) 2

Code We provide PyTorch implementation for SRM-Erasing, as shown in Table 2. The implemen-
tations of SRM-Noise and SRM-Swapping are similar to SRM-Erasing. We only need to change
out_spectrum = x_spectrum * M to out_spectrum = x_spectrum * M + y_specturm *
(1-M), where y is a noise image or a shuffled image for SRM-Noise and SRM-Swapping respectively.

B Additional Experimental Results on DMControl

The directly performance gain by SRM on SAC In the body, to provide a result of SOTA, we
adopt DrQ [18] and SVEA [7] as baselines respectively. However, both of them apply random shift
as default data augmentation method. To analyse the performance gain by SRM itself, we remove
spatial-based data augmentation random shift in DrQ [18], which means that SAC [5] is adopted as
baseline. During training, both original observations and generated observations by SRM are used to
caculate Q-target and Q-function like DrQ. As shown in Figure 2, for 8 out 9 selected tasks, the test
results of using SRM are much higher than baselines on 5 shifted distributions. This demonstrates that
the proposed SRM itself is able to facilitate learning a universal policy to handle various distribution
shifts.
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Figure 2: The directly performance gain by SRM on SAC with 9 different DMControl tasks.
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Table 2: The code of SRM-Erasing.
import torch
import numpy as np
def SRM_erasing(x):

r1 = random.uniform(0,0.5)
delta_r = random.uniform(0,0.05)
r2 = np.min((r1 + delta_r, 0.5))
# generate Mask M
B,C,H,W = x.shape
center = (int(H/2), int(W/2))
diagonal_lenth = np.sqrt(H**2+W**2)
r1_pix = diagonal_lenth * r1
r2_pix = diagonal_lenth * r2
Y_coord, X_coord = np.ogrid[:H, :W]
dist_from_center = np.sqrt((Y_coord - center[0])**2 + (X_coord - center[1])**2)
M = dist_from_center <= r2_pix
M = M * (dist_from_center >= r1_pix)
M = ∼ M
# mask Fourier spectrum
M = torch.from_numpy(M).float().to(x.device)
srm_out = torch.zeros_like(x)
for i in range(C):

x_c = x[:,i,:,:]
x_spectrum = torch.fft.fftn(x_c, dim=(-2,-1))
x_spectrum = torch.fft.fftshift(x_spectrum, dim=(-2,-1))
out_spectrum = x_spectrum * M
out_spectrum = torch.fft.ifftshift(out_spectrum, dim=(-2,-1))
srm_out[:,i,:,:] = torch.fft.ifftn(out_spectrum, dim=(-2,-1)).float()

return srm_out

Table 3: The impacts of various mask forms.

Task\Mask DrQ SRM FAN_45 FAN_90 FAN_135 FAN_180 BandPass LowPass HighPass
color_easy 826±10 912±21 634±24 710±17 645±23 775±32 562±27 818±34 150±20
color_hard 520±91 806±88 384±74 559±71 491±87 588±94 463±62 532±68 136±59
video_easy 682±89 823±32 685±94 586±55 657±79 785±68 502±77 674±87 113±63
video_hard 104±22 225±29 119±16 121±25 185±17 225±20 99±14 62±19 56±17

Comparison between spatial masking and spectral masking Spatial masking and spectral masking
is operated in the pixel and frequency domain respectively. Similar to SRM, spatial masking also
has three strategies, including Cutout, Cut-Noise and Cutmix. As shown in Fig. 3, Fig. 4 and Fig. 5,
spectral masking is demonstrated superior over spatial masking on walker-walk task and cartpole-
swingup task. We conjecture the main reason is that the task-related part could be discarded with a
certain probability in spatial-based masking, leading to the confusion of RL agent.

Comparison between different mask forms In SRM we use ring-shaped masks for spectral infor-
mation erasing. To evaluate the impacts of various different alternative mask forms, we conduct
experiments on DMControl walker_walk task using fan-shaped masks with different angles, high-pass
filters, low-pass filters, and band-pass filters. DrQ are adopted as the base algorithm. The results
are shown in Table 3. As we can see, fan-shaped masks generally perform worse than SRM. The
reason might be that masking a fan-shaped section drops too much information and cannot eliminate
any frequency band entirely at the same time. The performance of increases with larger fan angles,
indicating that it is better to eliminate the entire frequency band ring. The three band masks also
perform worse than SRM, indicating that it is better to mask a wide range of bands instead of leaving
only a certain band.

The results on video-hard benchmark Since the video-hard task is extremely hard and the learn-
ing of DrQ is oscillating, we report the related results on the better baselines SVEA_Conv and
SVEA_Overlay, as shown in Fig. 6. As we can see, SVEA_Conv+SRM and SVEA_Overlay+SRM
could achieve higher performance than SVEA_Conv and SVEA_Overlay on 4 different tasks. The
phenomenon demonstrate that, when other spatial-based data augmentation are combined with SRM,
the episode return could be further improved. We infer that SRM may help spatial-based augmentation
play a greater role.

4



Figure 3: Comparison between Cutout (spatial-based) and SRM-Erasing (spectral-based).

Figure 4: Comparison between Cut-Noise (spatial-based) and SRM-Noise (spectral-based).
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Figure 5: Comparison between Cutmix (spatial-based) and SRM-Swapping (spectral-based).

Figure 6: The test results on video-hard benchmark where SRM are combined with random convolu-
tion or random overlay during training.

C Additional Benchmarks on More Realistic Environments

To further evaluate the generality of SRM in more challenging and realistic environments, we
provide experiments on additional 3 different benchmarks DrawerWorld, CARLA and Robosuite.
DrawerWorld is a realistic texture benchmark for robot manipulation. Robosuite is a robitic simulator
with more distracting textures of the table, floor, and objects. CARLA is a driving simulator including
various weathers. All results are reported by running five times. We set the related hyper-parameters
of DrawerWorld, CARLA and Robosuite following [15, 3]

C.1 DrawerWorld

DrawerWorld (a variant of MetaWorld [20] with visual observations) is a realistic texture benchmark
for manipulation proposed by [15]. Here we conduct experiments on DrawerOpen and DrawerClose
tasks where a Sawyer arm is manipulated to open a drawer. The agents are trained on the grid texture
and tested on 6 different realistic textures including grid, black, blanket, fabric, metal, marble, and
wood. The results are shown in Table 4. The success rates of the DrQ baseline is significantly boosted
with SRM under different background textures, which demonstrates its effectiveness. We also achieve
the second best performance among all methods (The best model VAI [15] uses sophisticated keypoint
detection and foreground restoration networks to remove the background distraction completely.
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Table 4: The Success Rate (%) of different methods on DrawerOpen and DrawerClose tasks of
DrawerWorld.

DrawerOpen
Texture\Method SAC PAD VAI DrQ DrQ+SRM SVEA_C SVEA_C+SRM

Grid 98±2 84±7 100±0 82±3 89±4 92±4 95±2
Black 95±2 95±3 100±1 75±7 91±5 87±8 93±3
Fabric 2±1 20±6 99±1 25±4 56±5 61±5 70±7
Metal 35±7 81±3 98±2 79±5 92±2 70±7 88±4
Wood 18±5 39±9 94±4 35±7 72±5 43±9 73±4

Average 49.6 63.8 98.2 59.2 80 70.6 83.8
DrawerClose

Grid 100±0 95 ±3 99±1 91±3 93±5 93±6 96±4
Black 75 ±4 64 ±9 100 ±0 74±12 83±10 76±23 89±18
Fabric 0±0 0±0 74±8 8±6 17±7 24±15 38±17
Metal 0±0 2±2 98±3 11±10 29±8 27±18 39±12
Wood 0±0 12±2 70±6 10±17 22±15 25±21 37±14

Average 25 25 82 38.8 48.8 49 59.8

Table 5: Results on CARLA. The environment with clear noon are used for training and other
weathers with the changes of shadow, sunlight and raining are utilized for testing. The travelled
distances (m) in a town without collision are reported.

Weather SECANT SAC SAC+crop DR NetRand SAC+IDM PAD DrQ DrQ+SRM SVEA_C SVEA_C+SRM
Clear
noon

596
±77

282
±71

684
±114

486
±141

648
±61

582
±96

632
±126

586
±108

671
±149

616
±97

675
±146

Wet
sunset

397
±99

57
±14

26
±18

9
±11

284
±84

25
±11

36
±12

34
±15

93
±21

297
±121

354
±95

Wet cloudy
noon

629
±204

180
±45

283
±85

595
±260

557
±107

433
±105

515
±52

393
±89

490
±92

519
±112

576
±108

Soft rain
sunset

435
±66

55
±28

38
±25

25
±41

251
±104

36
±32

41
±37

97
±67

160
±82

208
±103

239
±93

Mid rain
sunset

470
±202

50
±8

37
±16

24
±24

233
±117

42
±23

32
±21

76
±48

136
±78

205
±105

240
±85

Hard rain
noon

541
±96

237
±85

235
±129

341
±96

458
±72

156
±194

308
±141

289
±93

342
±84

429
±83

461
±94

In contrast, our SRM is a plug-and-play data augmentation method without any additional model
modification. Hence, the comparison with VAI is just listed for reference.) Specially, we boost the
performance of DrQ by +35.13% and +25.77% on two tasks, respectively.

C.2 CARLA

CARLA [2] is a driving simulator including various weathers with highly realistic raining, shadow,
and sunlight changes. Here we train the agents on clear noon weather and evaluate them on clear
noon, wet sunset, wet cloudy noon, soft rain sunset, mid rain sunset and hard rain noon. The average
distance travelled in the Town04 without collision are reported over 10 episodes per weather. As
shown in Table 5, SRM is able to improves the baseline models’ generalization ability on CARLA.
Specially, using SRM can increase the driving distance of an autonomous driving car by +27.4% and
+11.9% with DrQ and SVEA-C as baseline methods, respectively.

C.3 Robosuite

Robosuite [21] is a robitic modular simulator. Here we mainly test the generalization of SRM on
the scenes with more distracting textures of the table, floor, and objects with the Franka Panda robot.
Clean background and objects are used during training and three sets of environments with progressive
difficulty are adopted for testing. We follow the training settings introduced in [3]. As shown in
Table 6, SRM boosts baseline methods on Robosuite and achieves better average performance than
other methods except for SECANT. SECANT uses expert policy with weak augmentation data to
guide student policy with strong augmentation data, which is orthogonal to our SRM. Hence, the
comparison with SECANT is just listed for reference. In theory, SRM could be seamlessly integrated
into SECANT for further performance gain. Specifically, on Robosuite (please refer to the second
table in our general response for all reviewers), adding our proposed SRM on DrQ (denoted as
DrQ+SRM) can boost the performance of DrQ by +169%, +560%, +550% on the DoorOpening
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Table 6: Results on Robosuite. Clean background and objects are used for training and three sets of
environments with progressive difficulty are adopted for testing.

Hardness Tasks\Methods SECANT SAC SAC+crop DR NetRand SAC+IDM PAD DrQ DrQ+SRM SVEA_C SVEA_C+SRM

Easy

Door 782 17 10 177 438 3 2 79 213 325 452
opening ±93 ±12 ±8 ±163 ±157 ±2 ±1 ±52 ±105 ±184 ±112

Nut 419 3 6 12 242 13 11 16 87 150 251
assembly ±63 ±2 ±5 ±7 ±28 ±12 ±10 ±12 ±27 ±31 ±24

Two-arm 610 29 23 41 62 20 22 24 45 49 81
lifting ±28 ±11 ±10 ±9 ±43 ±8 ±7 ±10 ±11 ±37 ±34

Peg-in-hole 837 186 134 139 390 150 142 179 262 301 335
±42 ±62 ±72 ±37 ±68 ±41 ±37 ±61 ±54 ±67 ±58

Hard

Door 522 11 11 37 133 2 2 15 99 102 154
opening ±131 ±10 ±7 ±31 ±82 ±1 ±1 ±8 ±75 ±43 ±37

Nut 437 6 9 33 181 34 24 21 49 74 167
assembly ±102 ±7 ±8 ±18 ±53 ±28 ±26 ±15 ±14 ±28 ±47

Two-arm 624 28 27 61 41 17 19 24 57 47 69
lifting ±40 ±11 ±9 ±15 ±25 ±6 ±8 ±12 ±10 ±19 ±27

Peg-in-hole 774 204 143 194 322 165 164 162 231 260 328
±76 ±81 ±62 ±41 ±72 ±75 ±69 ±58 ±67 ±81 ±75

Extreme

Door 309 11 6 52 140 2 2 12 78 119 140
opening ±147 ±10 ±4 ±46 ±107 ±1 ±1 ±10 ±35 ±44 ±91

Nut 138 2 10 12 90 4 4 14 30 57 106
assembly ±56 ±1 ±7 ±7 ±61 ±3 ±3 ±11 ±36 ±51 ±30

Two-arm 377 25 12 30 12 24 21 19 26 24 33
lifting ±37 ±7 ±6 ±13 ±11 ±10 ±10 ±16 ±13 ±15 ±20

Peg-in-hole 520 164 130 154 296 155 154 157 223 215 264
±47 ±63 ±81 ±34 ±90 ±73 ±72 ±55 ±62 ±88 ±81

task under Easy, Hard, and Extreme environment shifts respectively. On the task of Nut assembly,
the performance boosts are +443%, +133%, and +114%. Similar performance boosts can also be
observed on Two-arm lifting and Peg-in-hole tasks as well as between SVEA_C and SVEA_C+SRM
models.

D Discussions and Relations

The algorithms of generalization in image-based Reinforcement Learning CURL [10] utilizes
contrastive learning to extract high-level features from image observations. In DrQ [18], random
shift are used to regular the Q-function. PAD [6] is trained with a standard RL objective and a
self-supervised objective but tested only with the latter. In RAD [11], the use of data augmentation
for RL is studied and random crop is found the most effective. In SODA [8], augmentation is
decoupled from policy learning. In SVEA [7], only unaugmented observations are used to compute
Q-target. In DrAC [13], Raileanu et al. attempt to automatically find an effective augmentation for
RL task. In SECANT [3], Fan et al. point that weak augmentations can improve RL optimization
on current environment but fail to provide generalization ability, and strong augmentations is easy
to make training divergence. In VAI [15], Wang et al. attempt to provide a clear image for testing
by extract foregrounds with unsupervised keypoint detection. All data augmentations used in above
algorithms are spatial-based, while our method is spectral-based. The proposed method is an
augmented algorithm, thus it can be effectively combined with the above naive algorithms (DrQ [18]
and RAD [11]) or well-designed algorithms (DrAC [13], SODA [8], SVEA [7] and SECANT [3])
for using data augmentation in RL. Although VAI [15] is the most robust because the background is
clear, it is also the most troublesome because additional training of a detection network is required.

The related works of data augmentations The examples of spatial-based and spectral-based
data augmentations are shown in Figure 7. Random convolution [12] uses a randomly initialized
convolutional layer. Random overlay [8] linearly interpolates an observation with an extra image.
Random flip [11] flips the image horizontally. Random rotation [4] rotates the image according
to a random angle. Cutout [1] randomly erases a patch of the input image. Instead of directly
removing a patch, Cut-Noise and Cutmix use random noise and a patch of another image to replace
the corresponding input patch, respectively. Compared with random flip and random rotation, the
proposed spectral-based data augmentation SRM is invariant to RL tasks. That is, the collected
actions and rewards in previous episodes are still available to augmented observation by SRM. As
shown in Fig. 7, masking from spatial view (cutout, cut-noise and cutmix) has an obvious downside:
the task-related part is easily to be removed or occluded. In contrast, masking from spectral aspect is
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able to remain the integrity of observation. For random convolution and random overlay, the proposed
SRM could be seamlessly combined with them to further improve the diversity of observations.

Original

observation

Random 

Convolution

Random 

Flip

Random 

Rotation

Random 

Overlay

Random 

Cutout

SRM-Erasing SRM-Noise SRM-Swapping

low

middle

high

Random 

Cut-Noise

Random 

Cutmix

Figure 7: Spatial-based and spectral-based data augmentations.

The relationship between recently proposed masked image/frequency modeling methods We
compare SRM with several recent works that utilize masked modeling. MAE [9] and SimMIM [17]
are concurrent works that share similar idea of reconstructing spatially masked patches on input
images. MFM [16] is the frequency domain counterpart of MAE and SimMIM, which masks a
portion of frequency components and later learns to reconstruct them. MLR [19] adopts the 3D cube
masking on observations and learns to reconstruct latent states under a BYOL-like self-supervised
framework. MWM [14] utilizes the spatial masking strategy like MAE and SimMIM, however on
convolutional features, to capture fine-grained details within patches. MLR and MWM can be treated
as unique feature domain spatial masked modeling methods specially designed for RL tasks. The
above five works share the same following spirit (also quoted by [17]):

“What I cannot create, I do not understand.” — Richard Feynman

Different from these works, SRM dynamically erases a portion of frequency components and forces
the model to do the right prediction without them. Taking again Feynman’s wisdom, SRM has a
different spirit as follows:

“The first principle is that you must not fool yourself and you are the easiest person to fool.”—
Richard Feynman

Deep models tend to bias toward certain frequency bands. When frequency distribution changes, they
are easily fooled. The key insight of SRM is thus to erase dynamically a wide range of frequency
bands so that the model cannot fool itself by only looking at some particular frequency.

E Limitation and Future Direction

We have discussed limitation or SRM in the main manuscript that it can not be used in non-image RL
tasks. Here we further discuss the case where images are used as inputs. Specifically, one potential
limitation of SRM is that it cannot be applied to tasks in which a particular frequency band plays a
vital role, to the extent that any modification will cause a failure. For example, in the task of surface
defect detection of mechanical parts, low-frequency information reflects the smoothness of a surface,
thus any modification will confuse the decision process of an agent. In this case, it is better to select
appropriate augmentation techniques carefully or not apply any augmentation at all. However, such a
situation is rare compared with other tasks where SRM can benefit.

We also introduce here a promising future research direction on RL policy generalization. The
direction comes from an observation that most of RL algorithms including SRM are not robust to
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Table 7: Performance under different camera views. The camera azimuth of Drawerworld is adjusted
with various angles.

Method DrQ DrQ+SRM
Texture\Camera azimuth 180 190 300 180 190 300

Grid 82±3 73±15 0 89±4 76±10 0
Black 75±7 63±9 0 91±5 69±4 0
Fabric 25±4 10±6 0 56±5 31±9 0
Metal 79±5 71±12 0 92±2 71±7 0
Wood 35±7 14±8 0 72±5 29±9 0

camera view changes. We conducted experiments on DrawerWorld by adjusting camera azimuth to
test SRM toward different camera views. The results are in Table 7 (we use azimuth=180 for training).
It can be found that DrQ+SRM performs better than DrQ under slightly changed azimuth, yet both
models fail to generalize toward large azimuth change. We have also tested on DMControl, where
both DrQ+SRM and DrQ drop to near 0 rewards after changing camera ID. The results show that
adapting to camera view changes is a much more challenging task than adapting to visual environment
shifts. Therefore, future works on viewpoint-robust RL policy generalization will be an interesting
direction to explore.

F Potential Negative Societal Impacts

Deep reinforcement learning may bring potential security risks. First, due to the uninterpretability of
deep neural networks, it is easy to be attacked by artificial perturbations. Second, even highly secure
agents strictly restricted in all directions can become dysfunctional when an adversary interferes with
perceptual inputs or modifies their rewards. These attributes make agents vulnerable to exploitation
by criminals. What’s more, when the agent of deep reinforcement learning is applied to healthcare
and transportation, people’s lives may be at risk once attacked.
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