
Appendix

A Review of Local Stability Results

We provide a brief review of standard definitions and stability results that we use in the theorem
statements and proofs. All the material can be found in any text in nonlinear systems such as [28]. A
(discrete-time) dynamical system is simply a recursion of the form

zk+1 = Φ(zk), z0 = z0, (29)

for some (possibly nonlinear) mapping Φ(·). Here, z0, is the initial condition. A point z∗ is called an
equilibrium point of (29) if

z∗ = Φ(z∗). (30)

The importance of an equilibrium point is that if a dynamical system is initialized at an equilibrium
point, z0 = z∗, then it will remain there: zk = z∗ for all k ≥ 0.

An equilibrium point z∗ is said to be (locally) stable if, given any ϵ > 0, there exists a δ > 0 such
that

∥z0 − z∗∥ < δ ⇒ ∥zk − z∗∥ < ϵ for all k.

That is, the system can remain arbitrarily close to the equilibrium point if it starts sufficiently close.
A system is unstable if it is not stable. An equilibrium point is asymptotically stable if it is stable and
δ > 0 can be chosen such that

∥z0 − z∗∥ < δ ⇒ lim
k→∞

zk = z∗.

That is, the zk will converge to z∗. The system is exponentially stable, if there exists a δ > 0, c ≥ 1,
and ρ ∈ [0, 1) such that

∥z0 − z∗∥ < δ ⇒ ∥zk = z∗∥ ≤ cρk for all k.

Clearly, exponentially stable ⇒ asymptotically stable ⇒ stable.

The system (29) is linear if Φ(z) = Az for some matrix A. For a linear system, z∗ = 0 is always
an equilibrium point. The stability of z∗ = 0 is completely determined by the eigenvalues of A.
Specifically, if we let spec(A) to denote the set of eigenvalues of a matrix A, then we have the
following well-known result:

Lemma 1 ( [28]). For a linear dynamical system (29) with Φ(z) = Az for some matrix A:

(a) z∗ = 0 is exponentially stable iff |ρ| < 1 for all ρ ∈ spec(A).

(b) z∗ = 0 is stable iff |ρ| ≤ 1 for all ρ ∈ spec(A).

(c) If there exists a single ρ ∈ spec(A) with |ρ| > 1, then z∗ = 0 is unstable.

For non-linear systems, the local stability can be determined by the eigenvalues of the Jacobian of
Φ(z∗), which we will denote by Γ(z∗):

Γ(z∗) := spec

(
∂Φ(z∗)

∂z

)
. (31)

Lemma 2 ( [28]). Consider a dynamical system (29) for some smooth function Φ(z). Let z∗ be a
equilibrium point, define Γ(z∗) as in (31), the spectrum of the Jacobian of Φ(z) at z = z∗. Then:

(a) z∗ is exponentially stable iff |ρ| < 1 for all ρ ∈ Γ(z∗).

(b) If there exists a single ρ ∈ Γ(z∗) with |ρ| > 1, then z∗ is locally unstable.

A key difference with non-linear systems is that when the max modulus eigenvalue is on the unit
circle (i.e., max |ρ| = 1), then system may be unstable or stable. The stability will be determined by
higher-order terms.
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B Restricted MMD Distance

As preparation for the proofs, we next introduce a key function that we will call the restricted
maximum mean discrepancy (MMD) distance. This concept is a specialization of the MMD distance
in [6, 12, 18] for the local dynamical system (12).

Fix the generator locations
X̃ = {x̃j , j = 1, . . . , Ng} , (32)

and consider the corresponding generated distribution Pg =
∑

j p̃jδ(x− x̃j). Suppose we run the
discriminator update in (4) to convergence so that θk → θ∗

i for some θ∗. A well-known result of
GANs is that the resulting generator loss (8) is given by

Lg(θ
∗, X̃) =

1

2λ
∥Pr −Pg ∥2K , (33)

where the norm is the so-called squared kernel maximum mean discrepancy (MMD) distance [6,12,18]

∥Pr −Pg ∥2K = Ex,x′∼PrK(x,x′)− 2Ex∼Pr,x̃∼Pg
K(x, x̃) + Ex̃,x̃′∼Pg

K(x̃, x̃′) (34)

For the discrete distributions (1), the squared MMD distance (33) can be written as a function of the
point mass locations

∥Pr −Pg ∥2K = 2J(X̃), (35)
where

J(X̃) :=
1

2

∑
i,k

pipkK(xi,xk)−
∑
i,j

pip̃jK(xi, x̃j) +
1

2

∑
j,k

p̃j p̃kK(xj , x̃k). (36)

In (36), we have omitted the dependence on the locations of the true distributions xi as well as the
true and generated weights, pi and p̃j , since these are fixed in our model.

To analyze the dynamics in a isolated region Vi, we define the restricted squared kernel MMD
distance as the function

Ji(X̃i) :=
1

2
p2iK(xi,xi)−

∑
j∈Ni

pip̃jK(xi, x̃j) +
1

2

∑
j,k∈Ni

p̃j p̃kK(x̃j , x̃k). (37)

This function is the squared kernel MMD distance (36), but only containing the terms with the single
true point xi and the set of generated points X̃i = {x̃j , j ∈ Ni} in the isolated region Vi.

Similar to the MMD analysis in [6, 12, 18], we show that the critical points of the restricted kernel
squared MMD distance are equilibrium points of the local dynamics (12). To state the result, let
X̃∗

i = {x̃∗
j , j ∈ Ni} be a critical point of Ji(X̃i) in (37) meaning

∂Ji(X̃i)

∂x̃j

∣∣∣∣∣
X̃i=X̃∗

i

= 0, for all j ∈ Ni. (38)

Let

θ∗
i :=

1

λ

pia(xi)−
∑
j

p̃ja(x̃
∗
j )

 (39a)

f∗(x) := f(x,θ∗
i ) =

1

λ

piK(x,xi)−
∑
j

p̃jK(x, x̃∗
j )

 . (39b)

The following is similar to the results in [6, 12, 18], but applied to the restricted squared MMD
distance.
Lemma 3. Let X̃∗

i be a critical point of the restricted squared MMD distance Ji(X̃i) for some i.
That is, X̃∗

i satisfies (38). Define θ∗
i as in (39a). Then, the pair (θ∗

i , X̃
∗
i ) is an equilibrium point

of the dynamics (12) in the isolated region Vi. Conversely, if (θ∗
i , X̃

∗
i ) is an equilibrium point of
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the dynamics (12), then X̃∗
i is a critical point of Ji(X̃i). In addition, at any critical point, X̃∗

i , of
Ji(X̃i),

∂2Ji(X̃i)

∂x̃2
j

∣∣∣∣∣
X̃i=X̃∗

i

= −λH(x̃∗
j ,θ

∗
i ), (40)

where H(x̃,θi) is the Hessian of the discriminator

H(x,θi) :=
∂2f(x,θi)

∂x2
. (41)

Proof. First suppose that X̃∗
i is a critical point of Ji(X̃i) and θ∗

i as in (39a). We need to show that
(θ∗

i , X̃
∗
i ) are fixed points of (12). That is, we need to show:

pia(xi)−
∑
j∈Ni

p̃ja(x̃
∗
j )− λθ∗

i = 0 (42a)

∇f∗(x̃∗
j ) = 0. (42b)

From (39a), we have
pia(xi)−

∑
j

p̃ja(x̃
∗
j )− λθ∗

i = 0,

which proves (42a). Also, the partial derivative of of Ji(X̃i) in (37) is

∂Ji(X̃i)

∂x̃j
= −pi

∂K(x̃j ,xi)

∂x̃j
+

∑
j

p̃j
∂K(x̃j , x̃k)

∂x̃j
= −λ∇f∗(x̃j), (43)

where, in the last step, we used the definition of f∗(x) in (39b). Since X̃∗
i is a local minima of

Ji(X̃i) we have

∇f∗(x̃∗
j ) =

∂Ji(X̃i)

∂x̃j

∣∣∣∣∣
x̃j=x̃∗

j

= 0,

which shows (42b). The converse is proven by reversing the above steps. That is, if (θ∗
i , X̃

∗
i ) are

equilibrium points of (12), then X̃∗
i is a critical point of Ji(X̃i). In addition, taking the derivative of

(43) shows (40). □

To analyze the stability of the equilibrium point in Lemma 3, we now apply the linearization methods
reviewed in Appendix A. As mentioned in the introduction, most of the stability results for GANs
follow a similar procedure. To simplify the notation, WLOG assume that the set of indices j ∈ Ni are

Ni = {1, . . . , N} , (44)

so the the set of points Ni are simply the first N generated points for some N . Let zk denote the
state variables

zk := (θk
i , X̃

k
i ) = (θk

i , x̃
k
1 , . . . , x̃

k
N ) (45)

for the dynamics (12). We can write these updates as

zk+1 = Φ(zk), (46)

for some non-linear function Φ(·). Then z∗ = (θ∗
i , X̃

∗
i ) is an equilibrium point of (12) if and only if

z∗ = Φ(z∗).

To apply Lemma 2, the following lemma will allow us to compute the eigenvalues of the Jacobian of
the linearization.

Lemma 4. Let z∗ = (θ∗
i , X̃

∗
i ) be an equilibrium point as in Lemma 3 and let Γ(z∗) be the spectrum

of the Jacobian of the update map. Then ρ ∈ Γ(z∗) if and only if ρ is of the form

ρ = 1 + ηds, (47)
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where s = −λ or s is a root of the polynomial

ψ(s) = det(D(s)), D(s) := (s+ λ)(sI +Q) +R, (48)

where Q and R are the block matrices with components

Qij = −µp̃iH(x̃∗
j , θ

∗)δij , Rij = µp̃ip̃j
∂2

∂x∂x′ K(x,x′)|x=x̃∗
i ,x

′=x̃∗
j
. (49)

Proof. The update map zk+1 = Φ(zk) is defined by the equations (12). Let F be its Jacobian
evaluated at z = z∗:

F =
∂Φ(z∗)

∂z
. (50)

Conformal with the components of z in (45), the Jacobian is given by

F = I + ηdA, (51)

where

A =

[
A00 A01 · · · A0N

A10 A10 · · · A1N

AN0 AN0 · · · ANN

]
(52)

and

A00 = −λI, (53a)
A0j = −p̃jG(x̃∗

j ) (53b)

Aj0 = µp̃jG(x̃
∗
j )

⊺ (53c)

Ajk = µp̃jH(x̃∗
j ,θ

∗
i )δjk, (53d)

where G(x) is the gradient of the basis functions

G(x) :=
∂a(x)

∂x
, (54)

and H(x,θi) is the Hessian in (41).

The matrix A in (52) can in turn be written as

A =

[
−λIp −GP
µPG⊺ −Q

]
(55)

where

P = diag(p̃1Id, · · · , p̃NId), (56a)
G = [G(x̃∗

1), . . . , G(x̃
∗
N )] , (56b)

Q = −µdiag(p̃1H(x̃1,θ
∗
i ), · · · , p̃NH(x̃N ,θ

∗
i )), (56c)

and p is the dimension of θi and d is the dimension of x. Note that the matrix P and Q have
dimnesions Nd×Nd. Hence for any s,

sI −A =

[
(s+ λ)Ip GP
−µPG⊺ sINd +Q

]
. (57)

Using the determinant of the Schur complement,

det(sI −A)
(a)
= det((s+ λ)Ip)det

(
sINd +Q+

1

s+ λ
R

)
(b)
= (s+ λ)p−Nddet ((s+ λ)(sINd +Q) +R)

(c)
= (s+ λ)p−Ndψ(s), (58)

where in step (a), we define R as
R = µPG⊺GP , (59)

in step (b), we use the property that det(αM) = αmdet(M) for any M ∈ Cm×m; and in step (c),
we used the definition of ψ(s) in (48). This proves that the eigenvalues of A are either s = −λ or
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the roots of ψ(s). Finally, note that the definition of Q in (56c) agrees with Q in (49). Also, the
components of R in (59) are

Rjk = µ[PG⊺GP ]jk = µp̃j p̃kG(x̃
∗
j )G(x̃

∗
k) = µp̃j p̃k

∂2

∂x∂x′K(x,x′)

∣∣∣∣
x=x∗

j ,x
′=x∗

k

, (60)

where in the last step we used the definition of G(x) in (54) and the fact that the kernel is K(x,x′) =
a(x)⊺a(x′). □

Combining Lemma 2 and Lemma 4, we obtain the following simple stability test.

Lemma 5. Let z∗ = (θ∗
i , X̃

∗
i ) be an equilibrium point as in Lemma 3. Consider the real roots, α for

ψ(α) = 0, where ψ(α) is the polynomial in in (48). If all for real roots, α < 0, the equilibrium point
is locally stable for sufficiently small ηd. Conversely, if there is a single positive real root, α > 0, the
equilibrium point is locally unstable for all ηd sufficiently small.

Proof. First suppose that all real roots α of ψ(α) = 0 are negative, i.e., α < 0. Now suppose that
s = α+ iβ be a, possibly complex, root of the ψ(s). Then, there exists a vector v ̸= 0 with

D(s)v = ((s+ λ)(sI +Q) +R)v = 0, (61)

whree D(s) is defined in (48). Since Q = Q⊺ and R = R⊺, it follows that

D(α)v = ((α+ λ)(αI +Q) +R)v = 0. (62)

Hence, α is a root of ψ(α) = 0. From the assumption, α < 0. Hence, the magnitude squared of the
eigenvalue ρ in (47) is

|ρ|2 = (1 + ηdα)
2 + (ηdβ)

2 = 1 + 2αηd + η2d(α
2 + β2) (63)

Since α < 0, we will have |ρ|2 < 1 for all ηd with

ηd < min
−α

(α2 + β2)
, (64)

where the minimum is over all roots of ψ(s) = 0 with s = α+ iβ.

Conversely, suppose that there is at least one real root α > 0 with ψ(α) = 0. The magnitude squared
of the corresponding eigenvalue ρ in (47) is

|ρ|2 = (1 + ηdα)
2 = 1 + 2αηd + η2dα

2. (65)

We will have |ρ| > 1 for ηd < 1/α. □

C Proof of Theorem 1

Taking the derivatives of Ji(X̃i) in (37) at x̃j = xi:

∂

∂x̃j
Ji(x̃)|x̃j=xi

= −pi
∂K(x,xi)

∂x

∣∣∣∣
x=xi

+
∑
j

p̃j
∂K(x,xi)

∂x

∣∣∣∣
x=xi

= 0, (66)

where the final step uses the assumption (16). Thus, the points x̃∗
j = xi are critical points of Ji(x̃)

and, by Lemma 3, they are equilibrium points of (12).

We next apply Lemma 5 to determine the stability of the equilibrium points. Corresponding to the
equilibrium points x̃∗

j = xi, the discriminator in (39b) is

f∗(x) =
∆i

λ
K(x,xi), (67)

where ∆i is defined in (15). Hence, the Hessian of the discriminator in (41) at x = xi is:

H(xi,θ
∗
i ) =

∆i

λ

∂2

∂x2
K(x,xi)|x=xi

. (68)
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Since the equilibrium points are x̃∗
j = xi, the block diagonal components in (49) of the matrix Q are:

Qjj = −µp̃jH(x̃∗
j ,θ

∗
i ) = −µp̃jH(xi,θ

∗
i ) = −µp̃j

∆i

λ

∂2

∂x2
K(x,xi)|x=xi

. (69)

Suppose ∆i > 0, then

Qjj = −µp̃j
∆i

λ

∂2

∂x2
K(x,xi)|x=xi

≥ µp̃j∆i

λ
k1I, (70)

where k1 is defined in Assumption 1. Also, the components of the matrix R in (49) are

Rjk = µp̃j p̃k
∂2

∂x∂x′K(x,x′)

∣∣∣∣
x=x∗

j ,x
′=x∗

k

= µp̃j p̃kR0, (71)

where

R0 :=
∂2

∂x∂x′K(x,x′)

∣∣∣∣
x=xi,x′=xi

. (72)

From Assumption 1, we have
R0 ≥ k3I. (73)

Case ∆i > 0. It follows from (70) that Q > 0. Also, from the definition of R in (49), R ≥ 0.
Therefore, for any α ≥ 0, the matrix D(α) in (48) is bounded below by

D(α) = (α+ λ)(αI +Q) +R ≥ λQ > 0.

Hence, for ψ(α) in (48), we have ψ(α) ̸= 0. Thus, ψ(α) has no roots when α ≥ 0. From Lemma 5,
the system is locally stable for sufficiently small µd. This proves case (a) of Theorem 1.

Case ∆i < 0 and |Ni| ≥ 2. In this case, (69) and Assumption 1 shows that

−Q ∈ [q1, q2]I, (74)

where

q1 = −µ∆ik1
λ

min
j∈Ni

p̃j , q2 = −µ∆ik2
λ

max
j∈Ni

p̃j . (75)

Since ∆i < 0, q2 ≥ q1 > 0. For D(α) in (48) and α ≥ 0, let

ρmin(D(α)) = min
∥v∥=1

v⊺D(α)v, (76)

which is also the minimum eigenvalue of D(α). Note that ρmin(D(α)) is continuous in α.

Since R has the components (71) and |Ni| ≥ 2, the matrix R is rank-deficient. Therefore, by
selecting any vector v in the null space of R, we obtain

ρmin(D(α)) ≥ (α+ λ)(α− q2). (77)

In particular, at α = 0,
ρmin(D(0)) = −λq2 < 0. (78)

Also, since R ≥ 0,
ρmin(D(α)) ≥ (α+ λ)(α− q1), (79)

and
ρmin(D(α)) > 0, (80)

for α > q1. Hence, there must be an α ≥ 0 where ρmin(D(α)) = 0, which implies that ψ(α) = 0
where ψ(α) is the polynomial in (48). It follows that ψ(α) has root with α > 0 and by Lemma 5, the
equilibrium point (θ∗i , X̃

∗
i ) is locally unstable for all ηd sufficiently small. This proves case (b) of

Theorem 1.
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Case ∆i ≤ 0 and |Ni| = 1. When |Ni| = 1, there is a single generated point. WLOG suppose the
single element in Ni is j = 1. In this case, In this case, (69) and Assumption 1 shows that

−Q ∈ [q1, q2]I, (81)

where

q1 = −µ∆ik1p̃1
λ

q2 = −µ∆ik2p̃1
λ

. (82)

Also, (71) shows that

R = R11 = µp̃1p̃1R0 ∈ µ[r1, k2]I. (83)

where
r1 = µp̃21k3, r2 = µp̃21k4. (84)

Therefore, for the matrix D(α) in (48), and α ≥ 0,

ρmin(D(α)) ≥ (α+ λ)(α− q2) + r1 = α2 + (λ− q2)α+ r1 − q2λ. (85)

This polynomial will have no non-negative roots α ≥ 0, if

λ− q2 > 0 and r1 − q2λ > 0. (86)

Using (82) and (84), this condition is equivalent to

µ∆ik2p̃1 + min {λ2, µp̃21k4} > 0. (87)

In this case, ρmin(D(α)) > 0 for all α ≥ 0 and ψ(α) has no non-negative roots. From Lemma 5,
the equilibrium point (θ∗i , X̃

∗
i ) is locally stable for all ηd sufficiently small. This proves case (c) of

Theorem 1.

Similarly, taking an upper bound: the matrix D(α) in (48), and α ≥ 0,

ρmin(D(α)) ≤ (α+ λ)(α− q1) + r2 = α2 + (λ− q1)α+ r2 − q1λ. (88)

This polynomial will have a positive root α if

λ− q1 > 0 or r1 − q1λ > 0. (89)

Using (82) and (84), this condition is equivalent to

µ∆ik1p̃1 + min {λ2, µp̃21k3} < 0. (90)

In this case, ρmin(D(α)) = 0 for some α > 0. From Lemma 5, the equilibrium point (θ∗i , X̃
∗
i ) is

locally unstable for all ηd sufficiently small. This proves case (d) of Theorem 1.

D Proof of Corollary 1

First, we show that Pg = Pr is a stable local equilibrium. This situation can only occur when, for
each generated point j

x̃∗
j = xi and p̃j = pi, (91)

for some i. Moreover, each true point xi must have exactly one generated point j with (91). Otherwise,
there would be at least one true point xi with no generated points and Pr ̸= Pg. Thus, we have
|Ni| = 1 and ∆i = 0 for all i. This condition satisfies (19) so the equilibria are locally stable.

Now consider any equilibrium points X̃ = {x̃∗
j} where supp(Pg) ⊆ supp(Pr). Then, at least one

true point xi must have more than one generated point, j, with x̃∗
j = xi. That is, |Ni| ≥ 2. Also,

since the point masses are uniform, we will have

∆i = pi −
∑
j∈Ni

p̃j =
1

N
(1− |Ni|) < 0.

From Theorem 1, this equilibrium is not stable.
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E Proof of Theorem 2

We will prove the theorem under somewhat more general assumptions on the kernel K(x,x′) as
described in the following three assumptions.
Assumption 2. The kernel K(x,x′) satisfies K(x,x′) ∈ [0, 1] for all x,x′ with K(x,x) = 1 for
all x. In addition, limx′ K(x,x′) = 0 as ∥x′∥ → ∞.

The next assumption is somewhat technical, although its role will be clear in the proof.
Assumption 3. In an isolated region Vi around the true point xi, there exists a set of distinct generated
points X̃i = {x̃j , j ∈ Ni} such that

1

2

∑
j ̸=k

p̃j p̃kK(x̃j , x̃k) < pi
∑
j

p̃jK(xi, x̃j), (92)

where the summations are over j, k ∈ Ni.

The final assumption requires a definition. Given a set of points X̃ = {x̃j , j = 1, . . . , N}, let M(X̃)
be the matrix with block components

M(X̃)ij =
∂2

∂x,x′ K(x,x′)|x=x̃i,x=x̃j
. (93)

Assumption 4. For any finite set of points X̃ , M(X̃) in (93) is full rank.

Lemma 6. Consider the local squared MMD distance Ji(X̃i) in (37). Under Assumption 2 and
Assumption 3, there exists at least one local minima X̃∗

i = {x̃∗
j , j ∈ Ni} of Ji(X̃i) with ∥x̃∗

j−xi∥ <
∞ for all j ∈ Ni. In addition, the values x̃∗

j are distinct for different j ∈ Ni.

Proof. Using Assumption 2, we can rewrite the the local cost function (37) as

Ji(X̃i) := J0 −
∑
j∈Ni

pip̃jK(xi, x̃j) +
1

2

∑
j ̸=k

p̃j p̃kK(x̃j , x̃k), (94)

where

J0 :=
1

2

p2i + ∑
j∈Ni

p̃2j

 . (95)

By Assumption 3, there exists at least one X̃i such that

Ji(X̃) ≤ J0 − ϵ, (96)

for some ϵ > 0. Now consider any limit of points x̃j → ∞ for all j. From (94), we have

lim inf
x̃j

Ji(X̃i)
(a)
= J0 +

1

2
lim inf

x̃

∑
j ̸=k

p̃j p̃kK(x̃j , x̃k)
(b)

≥ J0, (97)

where (a) follows from Assumption 2 that K(xi, x̃j) → 0 and (b) follows from the fact that
K(x̃j , x̃k) ≥ 0 for all x̃j and x̃j . Since (97) shows that lim inf J(x̃) ≥ J0 as x̃j → ∞ and (96)
shows that there is a point with Ji(X̃i) < J0 − ϵ, there must be at least one local minimum with
finite coordinates. □

We now state a more general version of Theorem 2.
Theorem 4. Fix a region Vi and consider the dynamical system (12) with |Ni| ≥ 2. If the kernel
satisfies Assumptions 2—4. the dynamical system has at least one equilibrium with with X̃∗

i =
{x̃∗

j , j ∈ Ni} where
∥x̃∗

j − xi∥2 <∞, (98)

for all j ∈ Ni, the x̃∗
j are distinct for different j ∈ Ni and the equilibrium point is locally stable for

sufficiently small ηd.
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Proof. From Lemma 6, there exists a local minimum X̃∗
i = {x̃∗

j} satisfying (98). From Lemma 3,
there exists a θ∗

i such that (θ∗
i , X̃

∗
i ) is an equilibrium point of (12). So, it remains to show that the

equilibrium point is locally stable. Since X̃∗
i is a local minima of Ji(X̃) we have

∂2Ji(X̃i)

∂x̃2
j

∣∣∣∣∣
X̃i=X̃∗

i

≥ 0. (99)

Hence, from (40), we have

−H(x̃∗
j ,θ

∗
i ) =

1

λ

∂2Ji(X̃i)

∂x̃2
j

∣∣∣∣∣
X̃i=X̃∗

i

≥ 0. (100)

Thus, the matrices Qjj in (49) are positive semi-definite, and we have Q ≥ 0. Also, since the points
x̃∗
j are distinct, Assumption 4 shows that the matrix R in (49) satisfies R > 0. Hence, for all α ≥ 0,

the matrix D(α) in (48) satisfies

D(α) = (α+ λ)(αI +Q) +R ≥ R > 0. (101)

It follows that
ψ(α) = det(D(α)) ̸= 0,

and ψ(α) has no real non-negative roots. The theorem now follows from Lemma 5. □

We can now prove Theorem 2 as a special case of Theorem 4.

Proof of Theorem 2 To apply Theorem 4, we first shows the RBF kernel (7) satisfies Assump-
tions 2—4.

Assumption 2: This assumptions follows directly from the form of the RBF kernel (7).

Assumption 3: Given a set U = {u1, . . . ,uK} ⊂ Rd, with ∥uj∥ = 1 for all j, define

ρmin(U) = max
j ̸=k

u⊺
juk, (102)

which is the maximum angle cosine between two unit vectors in the set. Select any δ < 1/2 and set

Nmax = max |U | s.t. ρmin(U) ≤ δ, (103)

which is the maximum cardinality of the set while keeping the angle cosine less than δ. Now assume
|Ni| ≤ Nmax. The bound (103) states that we can find at least |Ni| unit vectors uj , j = 1, . . . , |Ni|
such that

u⊺
juk < δ <

1

2
(104)

for all j ̸= k. Since δ < 1/2, we find an r such that

1

2
e−r2(1−δ)

∑
j

p̃j ≤ pie
−r2/2. (105)

Take the generated vectors as
x̃j = xi + rσuj . (106)

Then, for the RBF kernel (7), we have

K(xi, x̃j) = e−∥rσuj∥2/(2σ2) = e−r2/2. (107)

Also, the distance between any two generated points x̃j and x̃k with j ̸= k is

∥x̃j − x̃k∥2 = 2σ2r2(1− u⊺
juk) ≥ 2σ2r2(1− δ), (108)

and hence
K(x̃j , x̃k) ≤ e−r2(1−δ). (109)
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We can then verify the bound in (92):

1

2

∑
j ̸=k

p̃j p̃kK(x̃j , x̃k)
(a)

≤ 1

2

∑
j ̸=k

p̃j p̃ke
−r2(1−δ)

(b)

≤ 1

2
e−r2(1−δ)

∑
j

p̃j

2

(c)

≤ e−r2/2pi
∑
j

p̃j
(d)

≤ pi
∑
j

p̃jK(xi, x̃j), (110)

where (a) follows from (109); (b) follows since we added a positive term; (c) follows from (105); and
(d) follows form (107). This proves Assumption 3.

Assumption 4: Using the moment generating function of the multi-variate normal distribution, the
RBF kernel (7) can be written as

K(x,x′) =

∫
a(x, ξ)∗a(x′, ξ)ϕ(ξ) dξ, (111)

where

a(x, ξ) = eiξ
∗x, ϕ(ξ) =

σd

(2π)d/2
e−σ2∥ξ∥2/2. (112)

Thus,
∂2

∂x∂x′K(x,x′) =

∫
g(x, ξ)∗g(x′, ξ)ϕ(ξ) dξ, (113)

where
g(x, ξ) = ξeiξ

∗x. (114)
For any distinct x̃j , j = 1, . . . , N , we have that g(x̃j , ξ) are linearly independent functions over ξ.
Hence, the matrix M(X) in (93) must be full rank.

Proof of the theorem: Since the kernel satisfies Assumptions 2—4, We can thus apply Theorem 4
to find a local stable equilibrium with finite distance (98). We only have to prove that the distance
scales with σ. To this end, suppose that X̃(1)

i = {x̃(1)
j } is a locally minima of Ji(X̃i) for the RBF

kernel with σ = σ1 for some σ1. Then, given any σ2 > 0, we can take a new set of points

x̃
(2)
j = xi +

σ2
σ1

(x̃
(1)
j − xi), (115)

meaning that we simply scale the distances of the points x̃j from xi by a factor σ2/σ1. Then, it is
easily verified that x̃(2)

j will also be local minima of Ji(X̃i) with the RBF kernel with width σ = σ2.

F Proof of Theorem 3

Lemma 7. For λ > 0 sufficiently small, there exists an v0 > 0 such that

v0 = −ηgηd
∞∑
j=0

ρjϕ′(jv0), ρ = 1− ηdλ. (116)

Proof. Consider the function:

F (v, ρ) = v + ηgηd

∞∑
j=0

ρjϕ′(jv0). (117)

For any ρ,
lim
v→∞

F (v, ρ) = lim
v→∞

v = ∞.

Also, for ρ = 1,

lim
v→0

F (v, 1) = lim
v→0

ηd

∞∑
j=0

ϕ′(jv)

= ηd lim
v→0

1

v

∫ ∞

0

ϕ′(u) du = −ηd lim
v→0

1

v
ϕ(0) = −∞. (118)
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The for ρ sufficiently close to ρ = 1, there must exists a v such that F (v, ρ) < 0. Since,
limv→∞ F (v, ρ) = ∞ and there exists a v with F (v, ρ) < 0, and F (v, ρ) is continuous, there
must exist a v0 such that F (v0, ρ) = 0. □

Now select any unit vector u ∈ Rd and initial condition x̃0
0. Find v0 > 0 as in Lemma 7, and define

fk(x) and x̃k
0 as:

fk(x) = −ηd
∞∑
j=0

ρjϕ(∥x− x̃0
0 − (k − 1− j)v0u∥), (119a)

x̃k = x̃0
0 + kv0u. (119b)

We show that fk(x) and x̃k
0 are solutions to (24). The update for the discriminator is:

fk+1(x) = −ηd
∞∑
j=0

ρjϕ(∥x− x̃0
0 − (k − j)v0u∥)

= −ηdϕ(∥x− x̃0
0 − kv0u∥)− ηd

∞∑
j=1

ρjϕ(∥x− x̃0
0 − (k − j)v0u∥)

= −ηdϕ(∥x− x̃k
0∥)− ρηd

∞∑
j=0

ρjϕ(∥x− x̃0
0 − (k − j − 1)v0u∥)

= −ηdK(x, x̃k
0) + ρfk(x). (120)

Hence, fk(x) satisfies the update (24a). Also, observe that the gradient of the discriminator in (119)
is:

∇fk+1(x̃k
0) = −ηd

∞∑
j=0

ρj
∂

∂x

[
ϕ(∥x− x̃0

0 − (k − j)v0u∥)
]
x=x̃k

0

= −ηd
∞∑
j=0

ρj
∂

∂x

[
ϕ(∥x− x̃k−j

0 ∥)
]
x=x̃k

0

= −ηd
∞∑
j=0

ρjϕ′(∥x̃k
0 − x̃k−j

0 ∥) (x̃
k
0 − x̃k−j

0 )

∥x̃k
0 − x̃k−j

0 ∥

= −ηd
∞∑
j=0

ρjϕ′(jv0)u =
ηd
ηg
v0u, (121)

where the last step follows from (116). Hence, for x̃k
0 defined in (119), we have

x̃k+1
0 = x̃k

0 + ηgηdv0u = x̃k
0 + ηg∇fk(x̃k

0). (122)

Hence, x̃k
0 defined in (119) satisfies the update (24b).

G Approximate Isolated Points

As stated in Section 2, the isolated assumption (10) may be too strict to achieve exactly in practice.
In this section, we briefly consider a weaker version of this assumption. To state the approximation
assumption, define

gk(x) :=
∂fk(x)

∂x
, G(x,x′) =

∂K(x,x′)

∂x
. (123)

The updates in the local region Vi under the perfect isolation assumption (10) can then be written as

gk+1(x) = gk(x) + ηd

piG(x,xi)−
∑
j∈Ni

p̃jG(x, x̃
k
j )− λgk(x)

 (124a)

x̃k+1
j = x̃k

j + ηgg
k(x̃k

j ). (124b)
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Now, instead of (10), we suppose that there are neighborhoods Vi around each sample xi such that
∥G(x,x′)∥ ≤ ϵ for all x ∈ Vi and x′ ∈ Vj for all i ̸= j, (125)

for some ϵ ≥ 0. In this case, we call the set of neighborhoods Vi, ϵ-isolated neighborhoods. Note
that under assumption (10), the bound (125) will hold with ϵ = 0. So, for ϵ > 0, (125) is weaker than
(10).

Next, (5) and (9) can be written as

gk+1(x) = gk(x) + ηd

 Nr∑
i=1

piG(x,xi)−
Ng∑
j=1

p̃jG(x, x̃
k
j )− λgk(x)

 (126a)

x̃k+1
j = x̃k

j + ηgg
k(x̃k

j ). (126b)
Now, fix a true point xi. We can write (126a) as

gk+1(x) = gk(x) + ηd

piG(x,xi)−
∑
j∈Ni

p̃jG(x, x̃
k
j )− λgk(x)

+ ηdv
k(x), (127)

where vK(x) is the term from other neighborhoods:

vk(x) :=
∑
k ̸=i

piG(x,xi)−
∑
j ̸∈Ni

p̃jG(x, x̃
k
j ). (128)

From (125), for all x ∈ Vi, the term vk(x) can be bounded as

∥vk(x)∥ ≤
∑
k ̸=i

piϵ+
∑
j ̸∈Ni

p̃jϵ ≤ 2ϵ. (129)

Thus, the local dynamical system in the region Vi is

gk+1(x) = gk(x) + ηd

piG(x,xi)−
∑
j∈Ni

p̃jG(x, x̃
k
j )− λgk(x)

+ ηdv
k(x) (130a)

x̃k+1
j = x̃k

j + ηgg
k(x̃k

j ). (130b)
Hence, the system (130) is identical to the local dynamical system (126), except for a bounded term
∥v(x)∥ ≤ 2ϵ.

Now suppose that X̃∗
i = {x̃∗

j} is a locally exponentially stable equilibrium point of the system (126)
under perfect isolation (125). Then, such points will remain stable under the perturbations by vk(x)
in (130). For example, using standard nonlinear systems results in [28], one can show that, for ϵ
sufficiently small and ∥x̃0

j − x̃∗
j∥ sufficiently small, there exists a C ≥ 0 such that

∥x̃k
j − x̃∗

j∥ ≤ Cϵ ∀j ∈ Ni, ∀k ≥ 0. (131)
Hence, the solutions of (130) will remain close to the equilibrium point. The constant C will, in
general, depend on the eigenvalues of the linearization.

H Experimental Details

RBF Kernel implementation As an approximation to the RBF feature map, we use the following
approach detailed in [24]

K(x,x′) ≈ a⊺(x)a(x′), (132)
where a(x) is a basis function vector:

a(x) =

√
2

R


cos(w⊺

1x)
sin(w⊺

2x)
...

cos(w⊺
Rx)

sin(w⊺
Rx)

 , wi ∼ N (0,
1

σ2
I). (133)

When R → ∞, K(x,x′) → e−∥x−x′∥2/(2σ2). In experiments involving the random features RBF
kernel, we set R = 1000. We can see in figure 5 that this provides a good estimate of the true kernel.
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Figure 5: A heat map of different RBF kernel approximations centered at the origin. The exact RBF
kernel (σ = 1) is shown on the right.

Normalized Wasserstein Distance In Figure 3, the normalized Wasserstein distance is the ratio

βk :=
∥Pk

g −Pr ∥2
∥P0

g −Pr ∥2
, (134)

where Pr is the true distribution, Pk
g is the generated distribution after k iterations and ∥ · ∥2 is the

Wasserstein-2 distance. Hence βk in (134) is the change in the distance of the generated distance to
the true distribution relative to the initial distance. In In Figure 3, we plot the normalized distance
after k = 4(10)4 iterations. Note that for discrete distributions, the Wasserstein-2 distance can be
estimated by solving the optimal transport problem [7].

Neural Network Discriminator While the focus of the paper is on kernel-based discriminators,
here we rerun our two dimensional experiments with a fully connected ReLU network as our
discriminator. Layer width is held constant W = 400, while depth is varied between L = {1, 2, 3, 4}.
We note that in the wide layer (NTK) regime, the corresponding kernel width decreases as the number
of layers increase [15]. We set λ = 0, ηd = ηg = 10−2, and use 40k training steps. Just as in
earlier experiments, generated points are updated directly according to equation (9).The discriminator
weights are updated by standard backpropagation and gradient descent.

In Figure 6, we see that when we train a GAN with discriminator depths of one and two layers, the
Wasserstein distance between distributions only changes by a small amount after training. This failure
corresponds nicely to what happens in the large kernel width regime in Figure 3a. As we increase the
number of layers to four, we can think of the effective kernel width of the discriminator decreasing,
allowing for individual true points to be differentiated by the discriminator. We see that in this case
we get much better convergence behavior. Figure 7 also supports the connection between network
depth and effective kernel width. In these trajectory plots we observe large oscillations when the
discriminator cannot properly distinguish between true points (catastrophic forgetting) and is far from
the isolated points regime.

Lastly, in order to isolate the effect of neural network depth on convergence rate, we train a GAN
with an NTK discriminator (following the closed-form solution of [5]) on a single generated point
and true point. These points are initialized at a distance of 0.1 in two dimensions, and λ = 0.1,
ηg = ηr = 10−3. In figure 8, we see that by increasing the number of layers we see an increase in
convergence rate.
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Figure 6: Median change in Wasserstein distance between true and generated distributions after 40k
iterations in a two dimensional setting. Fully connected ReLU networks of different depths are used
as discriminators

Figure 7: Behavior of joint GAN training with discriminator depth. Example trajectories of generated
points over the course of training (red lines with final point marked as a cross), true distribution
(green), final discriminator (blue and yellow colormap)

Figure 8: Convergence rates of joint GAN training under increasing NTK discriminator depth.
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