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Abstract

A major task of sports analytics is player evaluation. Previous methods commonly
measured the impact of players’ actions on desirable outcomes (e.g., goals or
winning) without considering the risk induced by stochastic game dynamics. In this
paper, we design an uncertainty-aware Reinforcement Learning (RL) framework to
learn a risk-sensitive player evaluation metric from stochastic game dynamics. To
embed the risk of a player’s movements into the distribution of action-values, we
model their 1) aleatoric uncertainty, which represents the intrinsic stochasticity in
a sports game, and 2) epistemic uncertainty, which is due to a model’s insufficient
knowledge regarding Out-of-Distribution (OoD) samples. We demonstrate how a
distributional Bellman operator and a feature-space density model can capture these
uncertainties. Based on such uncertainty estimation, we propose a Risk-sensitive
Game Impact Metric (RiGIM) that measures players’ performance over a season
by conditioning on a specific confidence level. Empirical evaluation, based on over
9M play-by-play ice hockey and soccer events, shows that RiGIM correlates highly
with standard success measures and has a consistent risk sensitivity.

1 Introduction

The advancement of player tracking and object detection systems enables data-driven analytics for
professional sports players. A common approach to evaluating the contribution of players is to
quantify their action impacts. Previous performance metrics [1, 2, 3, 4] computed the expected
impact of an action on scoring or winning a game. However, actions with significantly different
distributions of impact can have the same expectations. As a result, the expectation-based metrics
cannot differentiate the risk-seeking actions from the risk-averse ones. How to distinguish these
actions and assign proper credits to the players remains a fundamental challenge in sports analytics.

An important step toward a risk-sensitive evaluation metric is to model the distributions of action
values. To achieve this goal, distributional Reinforcement Learning (RL) [5] predicts the supporting
quantiles of action-value distributions. Previous distributional RL methods [6, 7, 8, 9, 10] mainly
studied the virtual environments with deterministic transitions (e.g., Atari [11] or Mujoco [12]),
whereas sports games are real environments with stochastic game dynamics and complex context
features. Moreover, player evaluation, as a data-driven task, requires learning from a fixed dataset
without exploration. The model must be able to handle the distribution shift experienced at test time.

To mitigate the impact of distribution shift, Offline RL algorithms [13] typically strive for conservative
policies that discourage visits to Out-of-Distribution (OoD) states by penalizing corresponding values.
However, this approach cannot be scaled to player evaluation since 1) our goal is not control (i.e.,
improving players’ policy), but to use RL as an analytical tool to evaluate observed actions in
professional games, and 2) penalizing actions in OoD states distorts the evaluation.
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Figure 1: The predicted distribution of future goals in an ice hockey game between Blues and Coyotes,
2018-19 NHL season. The shots are made in the positions (a) - (d), providing important motivations
for 1) risk-sensitive evaluation: Distributions (a) and (b) have the same expectation (around 0.6),
but the first shot has a larger risk-averse estimate (at the confidence 0.8, we find 0.58 > 0.37) and
a smaller risk-seeking estimate (at the confidence 0.2, we find 0.68 < 0.77), and thus they have
different impact on risk-sensitive evaluation. 2) Post-hoc calibration: the event of shooting from the
position (d) (the back-court) is rare in an ice hockey game, and thus this event is likely to be OoD,
leading to a biased prediction at (d) (the predicted scoring chances are too large).

In this paper, we design an uncertainty-aware RL framework for risk-sensitive player evaluation.
Figure 1 shows a real-world example introducing our key motivations. Instead of directly influencing
players’ actions like other RL algorithms, we perform a post-hoc calibration of the learned action
values. The main idea of our framework is to model important types of uncertainty in sports games:

1) Aleatoric uncertainty captures the intrinsic stochasticity of game dynamics caused by stochastic
rewards, transition dynamics, and policies. We show that this stochasticity can be captured by a
distributional Bellman operator and propagated between action-value distributions by implementing
Temporal-Difference (TD) learning with distributional RL.

2) Epistemic uncertainty is due to the finite training samples and OoD state-action pairs during
testing. Online RL algorithms can overcome this uncertainty given sufficient exploration in the
environment [8]. However, when we have only a demonstration dataset with limited samples, the
influence of epistemic uncertainty cannot be ignored. Striving for simplicity and scalability, we model
the epistemic uncertainty with a Feature-Space Conditional Normalizing Flow (FS-CNF).

Based on the uncertainty estimations, we develop a Risk-sensitive Game Impact Metric (RiGIM)
for player evaluation. RiGIM filters the predictions for OoD samples and computes the impact of
players’ actions by conditioning on a confidence level. Empirical evaluation shows that RiGIM
is highly correlated with standard measures when compared to other baselines. We measure the
accuracy of action-value predictions by matching them empirically with game results and evaluate
the risk-sensitivity of RiGIM by its correlations with standard measures at different confidence levels.

Contributions. 1) We design an uncertainty-aware RL framework that enables post-hoc calibrations
on action values according to their aleatoric and epistemic uncertainties. 2) We demonstrate how the
distributional Bellman operator captures the aleatoric uncertainty with action-value distributions from
both a theoretical and an empirical perspective. 3) Striving for scalability, we design a feature-space
density estimator that estimates the epistemic uncertainty with a minimum overhead. 4) To the
best of our knowledge, RiGIM is the first risk-sensitive metric that incorporates the inherent risk in
environment dynamics into player evaluation. Although this work mainly focus professional sports
games, our method is general and can be scaled to other stochastic environments or domains.

2 Related Works

In this section, we introduce previous works that are most related to our approach.

Uncertainty Estimation for RL. Uncertainty estimates have been widely used in RL for guiding
exploration and stabilizing policies. To achieve this goal, an effective approach is to measure the
uncertainty of future returns: [14] designed an uncertainty Bellman equation that estimates the
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variance of the Q-value posterior distributions. Distributional RL methods [6, 7, 8, 9, 10, 15, 16, 17]
directly model the distribution of future returns by computing corresponding quantities. Bootstrapped
DQN methods [18, 19, 20, 21] learn ensembles of action-value Q functions to capture uncertainty.
Some following works [22, 23] extend the Q-ensemble methods to offline RL settings by learning
from a fixed dataset. Instead of focusing on the returns’ uncertainty, an alternative approach is to
measure the uncertainty of model dynamics: [24, 25] proposed model-based RL approaches that
predict the uncertainty of dynamics models and penalize the actions leading to uncertain returns.
Instead of separately capturing the epistemic and aleatoric uncertainties, these methods often quantify
the overall uncertainty with a unified measure (e.g., variance or entropy).

Another line of approaches that heavily relies on uncertainty estimates is Risk-Sensitive RL
(RSRL) [26]. The RSRL agents avoid states with high costs by estimating a risk measure (e.g.,
variance, Value at Risk (VaR), or Conditional VaR [27]). These algorithms [28, 29] often learn a
controlling policy based on a known MDP instead of an offline dataset (with unknown dynamics).

Player Evaluation. The most common approach to player evaluation is to quantify the impact of
their actions on game results [30]. Previous works measured action impacts by predicting 1) whether
a goal will be scored within a fixed look-ahead horizon [3], 2) the change of winning chances [31],
and 3) the expected number of goals within a possession [32]. Some recent works also trained
action-value Q-functions by dynamic programming [1], deep Sarsa [2, 33] and Inverse RL [4]. These
methods compute an expected action value without modeling their potential risk, and they commonly
assume the training and testing datasets are identically distributed.

3 Uncertainty-Aware RL framework for Player Evaluation

We represent the dynamics in sports games with a Markov Game model and introduce the motivation
of estimating the aleatoric uncertainty and the epistemic uncertainty.

3.1 Finite-Horizon Markov Game Model

Player evaluation metrics commonly evaluate players by how much their actions influence the
opportunity of scoring the next goal [2, 3, 34]. Following this setting, we divide a sports game into
goal-scoring episodes, so that each episode 1) begins immediately after a goal (or at the beginning of
the game), and 2) terminates when the next goal is scored (or the end of the game is reached). From
an algorithmic perspective, this setting allows us to bound the support of future-goals distribution
(Section 4.1) into [0, 1], which leads to faster model convergence and more accurate evaluations.

For a scoring episode of length TH , we model its dynamics with a finite-horizon Markov game
model [35]: G = (S,A, PT ,R,O, TH , γ). At a time step t ∈ [0, TH ], an agent k performs an action
ak,t ∈ Ak at a game state st ∈ S after receiving an observation ot ∈ O. This process generates the
next state st+1 ∼ PT (·|st, at) and a reward rk,t = Rk(st, ak,t). γ is a discount factor. In this paper,
we consider two agents k ∈ {Home,Away} representing the home and away teams. The observed
data D = [(o1, ak,1, r1), (o2, ak,2, r2), . . . , (ot, ak,t, rt), . . .] records the action ak,t performed by
the team k who possesses the puck. To alleviate the partial observability, a game state includes the
game history: st := (ot, at−1, ot−1, . . . , o0). The reward rt is a 1-of-2 indicator vector that specifies
which team (Home,Away) scores. We assign zeros to rt until a team scores at the end of an episode.

3.2 Uncertainty-Aware RL for Player Evaluation

Learning from Offline Data. As a data-driven behavior analytic tool, the player evaluation model
assigns values to players’ actions by learning from an offline dataset. Under this setting, previous
works [1, 2, 33, 3] commonly assumed the training and testing datasets are sampled from the same
underlying distribution. However, in practice, since the behaviors of players may change when some
team members (especially core players or the coach) are traded or hired during a season, there is
no guarantee that the visitation frequency of state-action pairs is consistent in different games. It is
natural to assume a distributional shift between the games in the training and testing dataset: while
the value function is trained under one distribution, it will be evaluated on a different distribution.

Calibration with Uncertainty. To alleviate the influence of distribution shift, offline RL algo-
rithms [13] commonly discourage the visit to OoD state-action pairs by lowering their values [36]
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or penalising their rewards [24] or constraining the updated policy [37, 22]. However, to evaluate
players’ performance, RL is employed as a policy evaluation tool instead of controlling players.
The trajectories in testing games correspond to observed players’ actions that cannot be changed or
influenced by penalties. Instead, we perform a post-hoc calibration of the predicted action values
by modeling their epistemic uncertainty, which is due to a lack of knowledge about OoD samples,
and thus the resulting model is uncertain about the returns (Section 4.2). Since our goal is to develop
a risk-sensitive player evaluation metric, we estimate distributions of action values to model their
aleatoric uncertainty, which is due to the intrinsic stochasticity in the game dynamics (Section 4.1).
In practice, the quantification of aleatoric uncertainty can be influenced by the epistemic uncertainty
of input samples, so we filter the OoD samples by utilizing our density estimator (Section 5.1) .

4 Modelling the Uncertainty of Action Values

The aforementioned uncertainty-aware RL framework requires estimating the aleatoric and epistemic
uncertainty for a risk-sensitive player evaluation. In this section, we introduce our distributional-RL
approach for modelling aleatoric uncertainty and a feature-space density estimator for measuring
epistemic uncertainty (Figure 2 shows the model architecture).

Figure 2: Model architecture. A play is a turn
where one team attacks and the other defends. We
add Spectral Normalization to ResNet outputs.

Figure 3: Illustrating the predicted distributions
by showing the corresponding mean± standard
deviation at each time step in a sports game.

4.1 Distributional RL for Capturing Aleatoric Uncertainty

Distributional RL learns the distribution of the random variable Zk(st, at) that corresponds to the
number of future goals when a player of team k performs action at in state st. In other words, we
can think of Zk(st, at) as a random variable with outcomes corresponding to the sum of discounted
rewards

∑TH

ι=t γ
ιRk,ι(Sι, Aι), where Sι = sι, Aι = aι, Sι+1 is distributed according to PT (·|Sι, Aι)

andAι is distributed according to π(·|Sι). Following the Quantile-Regression (QR)-DQN method [6],
we represent the distribution of Z by a uniform mixture of N supporting quantiles by Ẑk(st, at) =
1
N

∑N
i=1 δθk,i(st,at), where θk,i estimates the quantile at the quantile level (or quantile index) τ̂i =

τi−1+τi
2 (1 ≤ i ≤ N , and τi = i/N ) and δθk,i

denotes a Dirac distribution at θk,i. The model
outputs [θk,1, . . . , θk,N ] are monotonically increasing quantile values computed with the spline DQN
(SPL-DQN) by following [17].

Distributional Bellman Operator. When the player of a team k performs an action at at a state st,
the agent receives a reward Rk(st, at) and moves to a future state st+1 ∼ PT (St+1|st, at) where the
agent’s next action at+1 ∼ π(At+1|St+1). This stochastic process can be captured by a distributional
Bellman operator T π [6]:

T πZk(st, at)
∆
:= Rk(st, at) + γZk(St+1, At+1) (1)

where X
∆
:= Y indicates that random variables X and Y follow the same distribution. Based on

the distributional Bellman operator, we estimate the supporting quantiles of Z by minimizing the
quantile Huber loss (with threshold η):

1

N

N∑
i=1

N∑
i′=1

ρητ̂i(r + γθi′,k(st+1, at+1)− θi,k(st, at)) where
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ρητ (σ) = |τ − Iσ<0|Lη(σ) with Lη(σ) =

{
1
2σ

2, |σ| ≤ η
η(|σ| − 1

2η), otherwise.
(2)

Illustration of Temporal Projection. Figure 3 illustrates the mean ± standard deviation of the action-
values sampled from the predicted distributions Ẑ(s, a), where s and a follow the players’ movements
in a match between the Flyers (Home team) and the Maple Leafs (Away team) on March 15, 2019.
The figure plots values of the two output nodes. We highlight critical events and match contexts to
show the context-sensitivity of our predictions.

We show that the predicted distribution of action values can measure the aleatoric uncertainty.

Proposition 1. Assume the Bellman consistency holds by Ẑ
∆
:= R + γP πẐ where Ẑ, R are

vector-valued random variables and P π is the transition matrix of the stationary policy π, so
Pπ(s,a),(s′,a′) = P (s′|a, s)π(a′|s′), the uncertainty of action-value distributions Ẑ under an entropy
measure H(·) can be given by:

H(Ẑ) = H[R]− |A||S| log(1− γ) + log |det(dπ)| (3)

where dπ = (1− γ)(I − γP π)−1 ∈ [0, 1]|S||A|×|S||A| is the induced matrix for distributions over
state-action tuples by following policy π and transition PT .

The proof is in Appendix B.1. Proposition 1 disentangles the entropy of Z into 1) the entropy of
reward variables that quantifies the uncertainty of current rewards, 2) the uncertainty induced by the
discount factor, which determines how much the current uncertainty estimation should be influenced
by the stochasticity of future rewards or transitions (i.e., a small γ reduces this influence), and 3) a
log-absolute determinant of the induced distribution matrix, which measures the amount of stretch or
change that the transition function PT and the policy π apply to the initial state-action distribution.

Proposition 1 demonstrates that the key components for representing the aleatoric uncertainty can be
captured by Z when the Bellman consistency is reached by learning, which suggests the action-value
distribution learned by distributional RL is an ideal estimator for aleatoric uncertainty. However,
in practice, the estimation of Z cannot be well generalized to all samples because of insufficient
exploration or limited training data, so we need to estimate their epistemic uncertainty.

4.2 Density Estimator for Capturing Epistemic Uncertainty

By definition, epistemic uncertainty stems from limited training data and is inherent to the model
fitting these data. A common measure of epistemic uncertainty is I(θ; y|x,D) [38, 39, 40]: the
amount of information gained when the model θ observes the true label y of an input x. To estimate
this uncertainty measure, previous works [41, 42, 43] utilized deep ensemble models and treated each
ensemble as a sample from the posterior p(θ|D). However, adding additional deep ensemble layers
to a distributional RL model (i.e., as a unified estimator for the joint distribution p(Z1,...,K ,Θ|D))
significantly increases the model complexity. Striving for model simplicity and scalability for large
datasets, we build a feature space density estimator [40] to detect OoD samples.

In this work, we design a Feature Space Conditional Normalizing Flow (FS-CNF) to estimate sample
density in the training distribution with a minimum overhead. The main components are:

Feature Extractor. FS-CNF shares the same feature extracting layers with the distributional RL
models. Note that a common reason why traditional feature extractors might fail to capture epistemic
uncertainty is feature collapse [44], which maps OoD samples to iD regions in feature space. To
prevent this phenomenon, an ideal feature extractor fθ must be subjected to a bi-Lipschitz constraint:

β1‖x1 − x2‖I ≥ ‖fθ(x1)− fθ(x2)‖F ≥ β2‖x1 − x2‖I ∀x1, x2 ∈ D (4)

where 1) the lower Lipschitz bound ensures sensitivity to distances in the input space (i.e., sensitive
to OoD samples) and 2) the upper Lipschitz bound ensures smoothness in the feature space (i.e.,
prevents overfitting to the input variations). To ensure this bi-Lipschitz condition in practice, we
follow [44] and use residual networks with spectral normalisation as our feature extractor.

Density Estimator. Based on the extracted features, FS-CNF utilizes the Masked Auto-regressive
Flow (MAF) [45] design that estimates the density of input variables in the training data distribution
with an auto-regressive constraint. Additionally, to make FS-CNF more sensitive to the abnormal
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predictions in OoD samples, the density model is conditioned on the expected returns of action-
value distributions, so p(x|zE) =

∑
i p(xi|x1:i−1, zE) where zE := {E[Zk(s, a)]}Kk=1 and x :=

(o, a) (we use o instead of s since a large input dimension influences the accuracy of estimation).
We implement p(xi|x1:i−1, zE) = N (xi|µi, (exp(αi))

2) where µi = ψµi
(x1:i−1, zE) and αi =

ψαi
(x1:i−1, zE). The neural function ψ is implemented by stacking multiple MADE layers [46].

5 Player Evaluation

In this section, we introduce our player evaluation metric and risk-sensitive rankings.

5.1 Risk-sensitive Impact Metric

Figure 4: We discretize the ice hockey rink
into 5×5 regions. For each region, the left
heatmap shows the number of shots in the train-
ing dataset, and the right heatmap shows the
Mean Absolute Error (MAE) between the esti-
mated and the real aleatoric uncertainty for shot
values in the testing dataset. We observe a nega-
tive correlation (-0.761) between the density and
the MAE across these regions.

Measuring Risk. We measure the risk of a
player’s action with the aleatoric uncertainty
since modeling the intrinsic stochasticity of the
game dynamics is consistent with the goal of
sports analytics. However, as Figure 4 shows,
when we quantify the aleatoric uncertainty with
predictions from distributional RL, the perfor-
mance is influenced by the density of input sam-
ples (i.e., OoD samples have a lower accuracy).

An effective approach to verify whether Ẑk(s, a)
accurately captures the true aleatoric uncertainty
is to check the epistemic uncertainty for each
input data (s, a) [40]: 1) a high input density
(p(·|zE) ≥ ε) indicates low epistemic uncer-
tainty, (i.e., (s, a) is inD) and we can trust the
aleatoric uncertainty estimated by distributional
RL. 2) a low input density (p(·|zE) < ε) indi-
cates high epistemic uncertainty (i.e., the input is OoD, and we do not use the model prediction). In
practice, ε is determined based on the validation dataset.

Risk-Sensitive Action Impact. The impact φ(s, a) measures how much an action a changes the
future return of a player’s team. In terms of the value function, this is the change in action value due
to a player’s action. Previous works [1, 2, 3] computed the impact with the expected next-goal return
Q(st, at) = E[Z(st, at)]. Q(·) does not take into account the inherent variability of the returns and
thus cannot estimate the risk of an action. To understand how players respond to risk, we propose a
Risk-sensitive Game Impact Metric (RiGIM ) based on Ẑk(s, a) and p(·|zE):

φk(st+1, at+1, c) =
[
Ẑck(st+1, at+1)− Ẑck(st, at)

]
Ip(·|zE)≥ε

RiGIMl(c) =
∑

(s,a)∈D′
n(s, a, l)× φk(s, a, c) (5)

where c ∈ [0, 1] is the confidence level, Zc denotes the (1 − c)th quantile in Z(·) and n(s, a, l)
denotes the number of times that a player l performs action a at a state s in the testing dataset D′.
We omit the term rt since rt = 0 except at scoring step T , and sT is the terminal state of a scoring
episode. φ(·) can either be 1) risk-averse (with a large c), with better sensitivity to bad outcomes or
2) risk-seeking (with a small c), with better sensitivity to positive outcomes.

5.2 Case Study: Player Ranking in Testing Games

We rank players according to their RiGIM scores in the NHL testing games (see the experiment
setting in Section 6) at different confidence levels. Tables 1 and 2 illustrates how a domain expert
could use our method to gain insight into which types of players exhibit different risk-taking behavior.
Table 1 shows a risk-seeking ranking (confidence c = 0.2), which favors offensive players (e.g.,
Centres (C)) with strong scoring ability. Aleksander Barkov, who scores the most points in these
games, is captured by this ranking. When we set confidence c to 0.8, Table 2 shows a risk-averse
ranking which highlights players in defensive positions (e.g., Defensive (D)). John Klingberg, the
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defenseman with the most assists, is listed in the top-10 players. We believe the differences between
Tables 1 and 2 can be explained by the fact that RiGIM is correlated with the types of actions a
player performs. Intuitively, in ice-hockey, some actions are more risk-seeking (shot) in terms of
scoring while other actions are risk-averse (carry or pass). In general, players in the backcourt (e.g.,
defensemen) are more likely to perform risk-averse actions that have smaller variance on the scoring
chances.

Table 1: Top 10 players with confidence 0.2.
Player Name Position Team P A G RiGIM

Jonathan Toews C CHI 10 5 5 14.72
Anze Kopitar C LAK 12 9 3 14.55

Vincent Trocheck C FLA 8 5 3 14.02
Tomas Hertl C SJS 12 8 4 13.97
John Tavares C TOR 12 3 9 13.92
Tyler Seguin C DAL 18 12 6 13.71

Leon Draisaitl C EDM 16 8 8 13.16
Aleksander Barkov C FLA 19 14 5 12.63

Sean Couturier C PHI 11 6 5 12.62
Nathan MacKinnon C COL 12 6 6 12.48

Table 2: Top 10 players with confidence 0.8.
Player Name Position Team P A G RiGIM
Radek Faksa C DAL 6 3 3 2.74

Leon Draisaitl C EDM 16 8 8 2.51
John Klingberg D DAL 10 9 1 2.46

Esa Lindell D DAL 3 1 2 2.29
Connor McDavid C EDM 18 11 7 2.23

Tomas Hertl C SJS 12 8 4 1.93
Miro Heiskanen D DAL 5 3 2 1.86
Elias Pettersson C VAN 8 6 2 1.79

Tyler Seguin C DAL 18 12 6 1.78
Roope Hintz LW DAL 11 7 4 1.77

6 Empirical Evaluation

Dataset. Our experiments utilize both a ice-hockey and a soccer dataset from the National Hockey
League (NHL) and major European soccer leagues, which contain 9,213,371 events, covering 195
teams, 4,172 games, and 6,513 players. These datasets consist of events around the ball. Each event
records the identity and action of the player possessing the ball, with time stamps and features of
the game context (see all the game features in Appendix A.1). To the best of our knowledge, this
is the most extensive study for player evaluation. Note that we do not utilize virtual environments
like Atari [11] or Mujoco [12] because 1) the dynamics in these environments are deterministic
without uncertainty to be modeled and 2) this paper mainly studies sports games that have stochastic
dynamics [30], which are valid test-beds for our method.

Experiment Settings. We divide the dataset into a training set (80%), a validation set (10%), and a
testing set (10%) according to game dates, so that games in the testing set happened after the games
in the training and validation set. To predict the action values in the testing games, the metric must
remain robust to OoD data points. We report the results averaged over 5 independent runs.

Comparison Methods. We employ an ablation design that iteratively removes parts from RiGIM .
GIM removes the uncertainty estimator by directly using a Deep Recurrent Q-Network for estimating
action values [2]. T0-GIM removes the recurrent model and uses a Deep Q-Network (DQN) for
the value function. We then replace the RL framework with a supervised learning framework for
estimating action values by following VAEP [3]. Instead of using function approximators, Scoring
Impact (SI) [1] implements the tabular-based value iteration algorithm for computing action values
from discretized spatial and temporal features. Expected-Goal (EG) metric directly uses the expected
action values instead of impact values for measuring player performance. The last metric Plus-Minus
(+/−) is based on game statistics and measures the goal-gain with and without the player on court.
We summarize these metrics in Table 3.

Table 3: A summary of the baseline Methods for
player evaluation.

Method Risk-
Aware

History-
Aware

RL-
Based

Continuous
Feature

Impact-
Based

Context-
Aware

+/− 7 7 7 7 7 7
EG 7 7 7 7 7 3
SI 7 7 7 7 3 3

VAEP 7 3 7 3 3 3
T0-GIM 7 7 3 3 3 3

GIM 7 3 3 3 3 3

To study how well SP-CNF boosts model perfor-
mance, we compare 1) a Gaussian Discriminant
Analysis (GDA)-RiGIM metric that replaces
SP-CNF with GDA [40], and 2) a Naive (Na)-
RiGIM metric that removes the epistemic un-
certainty estimator and uses all the predicted
distributions to compute players’ impact (see
Appendix A.2 and A.3 for more details.).

6.1 Player Evaluation Performance: Correlations with Standard Measures

We follow [2, 4] and compute the correlations between player ranking metrics and standard measures
on the testing games in a game season, because 1) the player (or agent) evaluation task has no
ground-truth labels or rewards to maximize, 2) the correlation to all measures (including penalty
measures) can measure whether the metrics can form a comprehensive evaluation to a player’s overall
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performance. We study 11 success measures for ice hockey and 8 success measures for soccer. To
make the results more comprehensive, we also add 5 penalty measures. The studied measures are
popular measures from the NHL and soccer statistics websites1. Following the popular risk-measures
like Conditional Value at Risk (CVaR), we treat c as a hyper-parameter. Since the comparison
methods are expectation-based metrics, we study the options of 1) setting the confidence level (c) of
RiGIM to 0.5 for a fair comparison 2) empirically determining c with the validation set (c∗ = 0.34
and 0.49 for the ice hockey and soccer datasets). The risk-sensitive results are shown in Section 6.2.

Tables 4 and 5 show the average correlations in 5 independent runs on the testing dataset (see Tables
C.1 and C.2 in Appendix for the complete mean ± standard deviation results). RiGIM achieves the
highest correlations with 14 out of 19 success measures and the smallest correlations with 3 out
of 5 penalty measures in ice hockey and soccer games. This observation shows that RiGIM is a
comprehensive metric that can detect both the positive and the negative influence of a player. If we
remove SP-CNF or replace it with other uncertainty estimators, most correlations become weaker
except for the correlations with the SHP and SHG measures. This is because SHP and SHG rarely
happen in a season (scoring with fewer players on ice is difficult). SP-CNF detects this phenomenon
and assigns small densities to these rare events. RiGIM filters the event with a small density (see
Equation 5), which might cause the loss of information and make its correlation with SHP and SHG
less significant. SI correlates well with goal measures (Goals and Game Winning Goals) but has
relatively poor correlations with other measures. This is because assigning an adequate value for all
actions, including those with only intermediate effects on goal scoring, requires credit propagation
over longer sequences, where neural nets are better at credit propagation than discretizing and using a
tabular representation. For other risk-neutral methods, their performance is generally less satisfying
when compared with risk-aware methods, especially for the +/−metric, which shows the importance
of capturing risk and modeling the context features.

Table 4: Correlations with standard measures in the ice hockey games. The success measures
are assist, goal, Game Winning Goal (GWG), Overtime Goal (OTG), Short-handed Goal (SHG),
Power-play Goal (PPG), Point (P), Short-handed Point (SHP), Power-play Point (PPP), Time On Ice
(TOI), and Shots (S). The penalty measure is Penalty Minute (PIM).

Methods Assist Goal GWG OTG SHG PPG Point SHP PPP TOI S PIM
+/− 0.181 0.189 0.187 0.028 0.071 0.063 0.206 0.119 -0.071 0.021 0.038 -0.014
EG 0.239 0.303 0.264 0.130 -0.053 0.163 0.322 0.023 0.226 0.153 0.534 -0.112
SI 0.237 0.596 0.409 0.123 0.095 0.351 0.452 0.066 0.274 0.224 0.405 0.138
VAEP 0.238 0.454 0.225 0.06 0.053 0.326 0.382 -0.0 0.321 0.086 0.362 0.027
T0-GIM 0.397 0.394 0.139 0.16 0.151 0.216 0.455 0.153 0.295 0.356 0.387 0.058
GIM 0.456 0.408 0.167 0.158 0.134 0.246 0.501 0.137 0.345 0.395 0.431 0.061
Na-RiGIM(0.5) 0.593 0.476 0.223 0.173 0.152 0.313 0.625 0.175 0.453 0.597 0.611 0.115
GDA-RiGIM(0.5) 0.591 0.475 0.221 0.174 0.152 0.315 0.623 0.174 0.452 0.593 0.609 0.113
RiGIM(0.5) 0.675 0.477 0.266 0.184 0.11 0.355 0.678 0.141 0.529 0.68 0.7 0.146
RiGIM(c∗) 0.68 0.477 0.269 0.187 0.107 0.357 0.681 0.141 0.531 0.685 0.707 0.147

Table 5: Correlations with standard measures in the soccer dataset. The success measures are goal,
assist, Shots per Game (SpG), Pass Success percentage (PS%), Key Passes (KeyP), Dribbles (Drb),
Crosses and (being) Fouled. The penalty measures are Yellow (Yel) and Red Card Received, Offsides
(Off) and Own Goals (OwnG).

Methods Goal Assist SpG PS% KeyP Drb Crosses Fouled Yel Red Off OwnG
+/− 0.284 0.318 0.199 0.288 0.218 0.119 0.017 0.035 0.001 -0.069 0.053 -0.001
EG 0.422 0.173 0.328 0.164 0.278 0.013 0.040 -0.026 0.534 0.034 -0.124 -0.008
SI 0.585 0.153 0.438 -0.140 0.052 0.050 0.216 -0.065 0.114 -0.089 -0.249 -0.102
VAEP 0.093 0.290 0.121 -0.111 0.116 0.059 0.082 -0.00 0.024 0.133 -0.055 -0.051
T0-GIM 0.614 0.455 0.715 0.148 0.472 0.431 0.161 0.355 -0.007 -0.027 -0.346 -0.168
GIM 0.627 0.462 0.72 0.149 0.473 0.437 0.169 0.358 -0.0 -0.025 -0.336 -0.154
Na-RiGIM(0.5) 0.646 0.507 0.741 0.144 0.503 0.445 0.177 0.391 0.101 0.007 -0.309 -0.144
GDA-RiGIM(0.5) 0.649 0.506 0.725 0.132 0.478 0.421 0.161 0.389 0.147 0.018 -0.259 -0.125
RiGIM(0.5) 0.671 0.577 0.756 0.181 0.574 0.530 0.239 0.448 -0.092 -0.039 -0.451 -0.185
RiGIM(c∗) 0.682 0.583 0.757 0.186 0.575 0.531 0.238 0.446 -0.101 -0.042 -0.455 -0.184

1http://www.nhl.com/stats/skaters and https://www.whoscored.com/statistics
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6.2 Sensitivity to Risk: Correlations Conditioning on Different Confidence Levels

We measure whether RiGIM is sensitive to the risk by its correlations with the standard measures,
where RiGIM is conditioned on a specific confidence level c (from 0 to 1), for example, RiGIM(c),
which indicates with probability c that the players’ impact should be at least RiGIM(c).

Figures 5 and 6 show the correlations at different confidence levels for ice-hockey and soccer games.
RiGIM is sensitive to risk, in the sense that it has different correlations with standard measures at
these confidence levels, whereas GIM, as a risk-neutral metric, is unaware of the risk, and thus its
correlations remain unchanged. Compared to other baselines, our RiGIM generally maintains higher
correlations with success measures and lower correlations with penalty measures. The exceptions
are the correlations with the SHP, SHG, and OTG. For the same reason as discussed above, SP-CNF
may filter them during testing. We find when c becomes smaller, RiGIM(c) becomes risk-seeking,
and thus achieves a higher correlation with success measures. However, the correlations drop when c
approaches 0. This is because Ẑ0

k denotes the estimates at the largest quantile level (see Equation 5),
which corresponds to the most optimistic estimation action value (i.e., label scoring for all the shots).
The overly risk-seeking estimation can induce a mismatch between estimated values and game facts,
and thus cannot reflect the real contributions of players.

Figure 5: Correlations (Mean ± standard deviation) with success measures (the first 11 plots) and
penalty measures (the last plot) at different confidence levels in ice-hockey games.

Figure 6: Correlations (Mean ± standard deviation) with success measures (the first 8 plots) and
penalty measures (the last 4 plots) at different confidence levels for in soccer games.

6.3 The Prediction Accuracy: Match Future Scoring Frequencies With Action-Values

We study how well the predicted action-value distributions match the real next-goal scoring frequen-
cies under discrete game contexts. These game contexts are constructed by dividing the continuous
state space into discrete bins. To calculate the empirical scoring frequency associated with each bin,
we assign an observed state s to a bin B according to the values of three discrete context features in
the current observation: Manpower Differential, Goal Differential, and Period. The empirical and
estimated scoring probabilities for a bin (with size |B|) are defined as follows:

a) Empirical Scoring Chances: for each s ∈ B, we set gk(s) = 1 if the observed scoring-episode
containing state s ends with a goal by team k. Then G∗k(B) = 1

|B|
∑
s∈B gk(s).
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b) Estimated Scoring Chances: for each s ∈ B, given N samples from the calibrated distribution
zk(s) ∼ Ẑk(s, a)Ip(·|zE)≥ε, the estimated chances are: Ĝk(B) = 1

N |B|
∑
s∈B

∑N
n=1 zk,n(s).

Table 6: The difference between the empirical and the estimated scoring chances in different contexts.
Results are averaged over 5 runs ± standard error. ↑ (↓) indicates that a difference is statistically
greater (smaller) than the difference achieved by RiGIM with p-value ≤ 0.01 according to the
Wilcoxon signed rank test.

Ice-Hockey Soccer
Manpower
Differential

Short-
Handed

Even-
Strength

Power-
Play

Short-
Handed

Even-
Strength

Power-
Play

GIM 0.115 ± 0.078 ↓ 0.094 ± 0.082 ↓ 0.099 ± 0.085 ↓ 0.211 ± 0.034 ↓ 0.114 ± 0.05 ↑ 0.199 ± 0.037 ↓
Na-RiGIM 0.133 ± 0.016 ↓ 0.064 ± 0.016 ↓ 0.013 ± 0.009 ↑ 0.226 ± 0.019 ↓ 0.136 ± 0.019 0.175 ± 0.028 ↓
GDA-RiGIM 0.148 ± 0.035 ↓ 0.072 ± 0.029 ↓ 0.017 ± 0.011 ↑ 0.216 ± 0.022 ↓ 0.151 ± 0.011 ↓ 0.18 ± 0.013 ↓
RiGIM 0.080 ± 0.020 0.058 ± 0.008 0.047 ± 0.046 0.204 ± 0.005 0.133 ± 0.007 0.147 ± 0.033
Goal Differential -1 0 1 -1 0 1
GIM 0.238 ± 0.122 ↓ 0.105 ± 0.084 ↓ 0.271 ± 0.059 ↓ 0.155 ± 0.047 ↓ 0.155 ± 0.054 ↓ 0.221 ± 0.049 ↓
Na-RiGIM 0.238 ± 0.006 ↓ 0.045 ± 0.015 ↓ 0.108 ± 0.031 ↓ 0.157 ± 0.02 0.104 ± 0.024 0.16 ± 0.017 ↓
GDA-RiGIM 0.236 ± 0.007 ↓ 0.045 ± 0.016 ↓ 0.11 ± 0.027 0.165 ± 0.018 ↓ 0.117 ± 0.017 ↓ 0.175 ± 0.007 ↓
RiGIM 0.193 ± 0.021 0.029 ± 0.015 0.092 ± 0.019 0.152 ± 0.008 0.109 ± 0.004 0.149 ± 0.013
Period 3 2 1 2st half 1nd half N/A
GIM 0.095 ± 0.055 ↑ 0.111 ± 0.086 ↓ 0.114 ± 0.084 ↓ 0.191 ± 0.037 ↑ 0.104 ± 0.059 ↓
Na-RiGIM 0.139 ± 0.018 0.044 ± 0.015 ↓ 0.024 ± 0.015 ↓ 0.237 ± 0.013 ↓ 0.061 ± 0.03 ↓
GDA-RiGIM 0.143 ± 0.028 0.050 ± 0.025 ↓ 0.033 ± 0.025 ↓ 0.238 ± 0.012 ↓ 0.059 ± 0.026
RiGIM 0.143 ± 0.011 0.032 ± 0.005 0.014 ± 0.009 0.226 ± 0.011 0.058 ± 0.009

Table 6 shows the average absolute difference between Ĝ and G∗ based on 5 independent runs. We
implement a Wilcoxon signed rank test [47] to study whether the predictions from baseline methods
are different from that of RiGIM for all samples. Our baselines are the learning-based action-values
metrics for the context-aware evaluation. RiGIM achieves a minimum distance in 12 out of 17 bins.
This is because 1) FS-CNF outperforms GDA by computing a more accurate uncertainty estimator
for filtering OoD states and 2) the distribution estimates contain richer information than expectation
estimates, allowing Z̃(·) to better match the scoring frequencies than Q(·). This observation is
consistent with the findings in [6].

6.4 Limitations

A Study for Sports Games. This work uses stochastic sports games as the testbeds for uncertainty
estimation, but we argue the same methods can be easily migrated to other applications in stochastic
environments such as autonomous driving or healthcare. Our approach of measuring aleatoric and
epistemic risks can be adapted to offline RL for learning conservative policies.

Evaluation Instead of Control. Our method focuses on player evaluation instead of control. We
believe both tasks are challenging with respect to different aspects. Evaluation requires the action
values to accurately reflects an agent’s real contribution to game-winning. An ideal evaluation metric
can provide in-game predictions of game outcomes, which is important for the sports industry.

7 Conclusion and Future Work

In this paper, we designed an RL framework for quantifying the aleatoric uncertainty and the epistemic
uncertainty from stochastic sports datasets. This framework enabled distributional RL and an FS-CNF
model to estimate both uncertainties, with which we proposed a risk-sensitive evaluation metric
RiGIM . Empirical results show that RiGIM correlates well with success measures and the correlation
is sensitive to different risks. A direction of future work is to extend our model to other domains.
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