
Supplementary Material: Continuous MDP
Homomorphisms and Homomorphic Policy Gradient

Sahand Rezaei-Shoshtari
McGill University and Mila

Rosie Zhao
McGill University and Mila

Prakash Panangaden
McGill University and Mila

David Meger
McGill University and Mila

Doina Precup
McGill University, Mila, and DeepMind

A Additional Background

A.1 Background on the Policy Gradient Theorem

RL algorithms can be broadly divided into value-based and policy gradient (PG) methods. While
value-based methods select actions via a greedy maximization step based on the learned action-values,
PG methods directly optimize a parameterized policy πθ based on the performance gradient ∇θJ(θ).
Thus, unlike value-based methods, PG algorithms inherit the strong, albeit local, convergence guar-
antees of the gradient descent and are naturally extendable to continuous actions. The fundamental
theorem underlying PG methods is the policy gradient theorem [10]:

∇θJ(πθ) = ∫
s∈S

ρπθ(s)∫
a∈A

∇θπθ(a∣s)Qπθ(s, a) (1)

where ρπθ(s) = limt→∞ γtP (st = s∣s0, a0∶t ∼ πθ) is the discounted stationary distribution of states
under πθ which is assumed to exist and to be independent of the initial state distribution (ergodicity
assumption). The significance of the PG theorem is that the effect of policy changes on the state
distribution does not appear in its expression, allowing for a sample-based estimate of the gradient
[13].

The deterministic policy gradient (DPG) is derived for deterministic policies by Silver et al. [8] as:

∇θJ(πθ) = ∫
s∈S

ρπθ(s)∇θπθ(s)∇aQπθ(s, a)∣a=πθ(s) (2)

Since DPG does not need to integrate over the action space, it is often more sample-efficient than the
stochastic policy gradient [8]. However, a noise needs to be manually injected during exploration
as the deterministic policy does not have any inherent means of exploration. Finally, it is worth
noting that due to the differentiation of the value function with respect to a, DPG is only applicable
to continuous actions.

A.2 Mathematical Tools

Various mathematical concepts from measure theory and differential geometry are presented in this
section. We only explicitly introduce concepts which are directly mentioned or relevant to the proofs
presented in section C; for a more comprehensive overview, we direct the reader to textbooks such as
[3, 5, 9].
Definition 1 (σ-algebra). Given a set X , a σ-algebra on X is a family Σ of subsets of X such that 1)
X ∈ Σ, 2) A ∈ Σ implies Ac ∈ Σ (closure under complements), and 3) if (Ai)i∈N satisfies Ai ∈ Σ for
all i ∈ N, then ∪i∈NAi ∈ Σ (closure under countable union). The tuple (X,Σ) is a measurable space.

The σ-algebra of a space specifies the sets in which a measure is defined; in probability theory— and
in our use case— a σ-algebra represents a collection of events which can be assigned probabilities.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Definition 2 (Pushforward measure). Let (X1,Σ1) and (X2,Σ2) be two measurable spaces, f ∶
X1 →X2 a measurable map and µ ∶ Σ1 → [0,∞] a measure on X1. Then the pushforward measure
of µ with respect to f , denoted f∗(µ) ∶ Σ2 → [0,∞] is defined as:

(f∗(µ))(B) = µ(f−1(B)) ∀ B ∈ Σ2.

Theorem 1 (Change of variables). A measurable function g on X2 is integrable with respect to
f∗(µ) if and only if the function g ○ f is integrable with respect to µ, in which case the integrals are
equal:

∫
X2

gd(f∗(µ)) = ∫
X1

g ○ fdµ.

Definition 3 (Local diffeomorphism). Let M and N be differentiable manifolds. A function f ∶
M → N is a local diffeomorphism, if for each point x ∈M there exists an open set U containing x
such that f(U) is open in N and f ∣U ∶ U → f(U) is a diffeomorphism.
Theorem 2 (Inverse function theorem for manifolds). If f ∶M → N is a smooth map whose differen-
tial dfx ∶ TxM → Tf(x)N is an isomorphism at a point x ∈M . Then f is a local diffeomorphism at
x.

Theorem 3 (Chain rule for manifolds). If f ∶M → N and g ∶ N → O are smooth maps of manifolds,
then:

d(g ○ f)x = dgf(x) ○ dfx.

B Assumptions and Conditions

The derivation of our homomorphic policy gradient theorem is for continuous state and action spaces.
Therefore, we have assumed the following regularity conditions on the actual MDPM and its MDP
homomorphic imageM under the MDP homomorphism map h. The conditions are largely based on
the regularity conditions of the deterministic policy gradient theorem [8]:

Regularity conditions 1: τa(s′∣s), ∇aτa(s′∣s), τa(s′∣s), ∇aτa(s′∣s), R(s, a),∇aR(s, a),
R(s, a),∇aR(s, a), π↑θ(s),∇θπ

↑
θ(s), πθ(s), ∇θπθ(s), p1(s), and p1(s) are continuous with respect

to all parameters and variables s, s, a, a, s′, and s′.

Regularity conditions 2: There exists a b and L such that sups p1(s) < b, sups p1(s) < b,
supa,s,s′ τa(s′∣s) < b, supa,s,s′ τa(s′∣s) < b, supa,sR(s, a) < b, supa,sR(s, a) <
b, supa,s,s′ ∥∇aτa(s′∣s)∥ < L, supa,s,s′ ∥∇aτa(s′∣s)∥ < L, sups,a ∥∇aR(s, a)∥ <
L, sups,a ∥∇aR(s, a)∥ < L.

We also assume the following conditions on the continuous MDP homomorphism map h = (f, gs),
as discussed in Definition 3:

Regularity conditions 3: The action mapping gs(a) is a local diffeomorphism (Definition 3). Hence
it is continuous with respect to a and locally bijective with respect to a. Additionally, ∇ags(a) is
continuous with respect to the parameter a, and there exists a L such that sups,a ∥∇ags(a)∥ < L.

2

C Proofs

Below are the proofs accompanying Sections 3, 4 and 5.

C.1 Proof of Theorem 1: Value Equivalence

Proof. The proof is along the lines of the optimal value equivalence theorem of Ravindran and
Barto [7]. We define the m-step discounted action value function Qπ

↑

m(s, a) recursively for all
(s, a) ∈ S ×A and for all integers m ≥ 1 as:

Qπ
↑

m(s, a) = R(s, a) + γ ∑
s′∈S

τa(s′∣s) ∑
a′∈A

π↑(a′∣s′)Qπ
↑

m−1(s′, a′),

with Qπ
↑

0 (s, a) = R(s, a). The proof is by induction on m; the base case of m = 0 is true because:

Qπ
↑

0 (s, a) = R(s, a) = R(f(s), gs(a)) = Qπ0 (f(s), gs(a)).

Now suppose towards induction that Qπ
↑

k (s, a) = Qπk(f(s), gs(a)) for all values of k less than m
and all state action pairs (s, a) ∈ S ×A. Using the fact that h = (f, gs) is an MDP homomorphism,
we have:

Qπ
↑

m(s, a) = R(s, a) + γ ∑
s′∈S

τa(s′∣s) ∑
a′∈A

π↑(a′∣s′)Qπ
↑

m−1(s′, a′)

= R(s, a) + γ ∑
[s′]Bh ∣S∈Bh∣S

∑
s′′∈[s′]Bh ∣S

τa(s′′∣s) ∑
a′∈A

π↑(a′∣s′)Qπm−1(f(s′), gs′(a′)) (3)

= R(s, a) + γ ∑
[s′]Bh ∣S∈Bh∣S

∑
s′′∈[s′]Bh ∣S

τa(s′′∣s) ∑
a′∈A

∑
a′′∈g−1

s′ (a′)
π↑(a′′∣s′)Qπm−1(f(s′), a′)

= R(f(s), gs(a)) + γ ∑
[s′]Bh ∣S∈Bh∣S

τgs(a)(f(s
′)∣f(s)) ∑

a′∈A
π(a′∣f(s′))Qπm−1(f(s′), a′)

(4)

= R(f(s), gs(a)) + γ ∑
s′∈S

τgs(a)(s
′∣f(s)) ∑

a′∈A
π(a′∣s′)Qπm−1(s′, a′)

= Qπm(f(s), gs(a)).

Where in equation (3) we used the fact that Qπ
↑

m−1(s, a) = Qπm−1(f(s), gs(a)) from the in-
duction assumption. In equation (4) we used ∑s′′∈[s′]Bh ∣S τa(s

′′∣s) = τgs(f(s′)∣f(s)) and

∑a′′∈g−1
s′ (a′) π

↑(a′′∣s′) = π(a′∣f(s′)) from the definition of MDP homomorphism [7]. Since R

and R are bounded, it follows by induction that Qπ
↑
(s, a) = Qπ(f(s), gs(a)) for all (s, a) ∈ S ×A.

The proof for V π
↑
(s) = V π(f(s)) follows directly from the equivalence of action value functions

and the fact that the two policies are tied together through the lifting process because in general we
have: V π(s) = ∑a∈A π(a∣s)Qπ(s, a).

C.2 Proof of Theorem 2: Optimal Value Equivalence for Continuous MDP
Homomorphisms

Proof. The proof follows along the same lines as Ravindran and Barto [7]. We will first prove the
following claim:

Claim. For m ≥ 1, define the sequence Qm ∶ S ×A→ R as

Qm(s, a) = R(s, a) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(s′, a′)

and Q0(s, a) = R(s, a). Define the sequence Qm ∶ S ×A → R analogously. Then for any (s, a) ∈
S ×A we have

Qm(s, a) = Qm(f(s), gs(a)).

3

We will prove this claim by induction on m. The base case m = 0 follows from the reward invariance
property of continuous MDP homomorphisms:

Q0(s, a) = R(s, a) = R(f(s), gs(a)) = Q0(f(s), gs(a)).

For the inductive case, note that

Qm(s, a) = R(s, a) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(s′, a′)

= R(f(s), gs(a)) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(f(s′), gs′(a′)) (5)

= R(f(s), gs(a)) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(f(s′), a′) (6)

= R(f(s), gs(a)) + γ ∫
s′∈S

τgs(a)(ds
′∣f(s)) sup

a′∈A
Qm−1(s′, a′) (7)

= Qm−1(f(s), gs(a)), (8)

where Equation 5 follows from the inductive hypothesis, Equation 6 follows from gs being surjective,
and Equation 7 follows from the change of variables formula (Theorem 1); indeed, from Definition 3
we have the pushforward measure of τa(⋅∣s) with respect to f equals τgs(a)(⋅∣f(s)) and here g ∶
S → R is defined as g(s) = supa′∈AQm−1(s, a′). This concludes the induction proof. Since
limm→∞Qm(s, a) = Q∗(s, a), it follows that Q∗(s, a) = Q∗(f(s), gs(a)).

The proof for V ∗(s) = V ∗(f(s)) follows directly from the equivalence of optimal action value
functions as V ∗(s) = maxaQ

∗(s, a) in general.

C.3 Proof of Theorem 3: Value Equivalence for Deterministic Policies and Continuous
MDP Homomorphisms

Proof. Unlike the proofs of Theorems 1 and 2, here we assume the policy is deterministic due
to the complications of lifting stochastic policies discussed in Section 4.2. Therefore, the lifting
process can be simply obtained as π↑(s) = g−1s (π(f(s)) and the inverse of the lifting process is
π(f(s)) = gs(π↑(s)), as the mapping gs is assumed to be an invertible continuous map (Appendix
B).

Similarly to Ravindran and Barto [7], the proof is by induction. We define the m-step discounted
action value function Qπ

↑

m(s, a) for the domain S ×A and for all integers m ≥ as:

Qπ
↑

m(s, a) = R(s, a) + γ ∫
s′∈S

τa(ds′∣s)Qπ
↑

m−1(s′, π↑(s′)),

with Qπ
↑

0 (s, a) = R(s, a) for all pairs (s, a) ∈ S ×A. The proof is by induction on m, the base case
of m = 0 is true because:

Qπ
↑

0 (s, a) = R(s, a) = R(f(s), gs(a)) = Qπ0 (f(s), gs(a)).

Now suppose towards induction that Qπ
↑

k (s, a) = Qπk(f(s), gs(a)) for all values of k less than m on
the domain S ×A. Using the fact that h = (f, gs) is a continuous MDP homomorphism, we have:

Qπ
↑

m(s, a) = R(s, a) + γ ∫
s′∈S

τ(ds′∣s)Qπ
↑

m−1(s′, π↑(s′))

= R(s, a) + γ ∫
s′∈S

τa(ds′∣s)Qπm−1(f(s′), gs′(π↑(s′))) (9)

= R(f(s), gs(a)) + γ ∫
s′∈S

τa(ds′∣s)Qπm−1(f(s′), π(f(s′))) (10)

= R(f(s), gs(a)) + γ ∫
s∈S

τgs(a)(ds∣f(s))Q
π
m−1(s′, π(s′)) (11)

= Qπm(f(s), gs(a)). (12)

Where in equation (9), we used the induction assumption,in equation (10) we used the definition the
inverse of policy lifting as defined above, and in equation (11) we applied the change of variables

4

formula (Theorem 1) using the fact that τgs(a)(⋅∣f(s)) is the pushforward measure of τa(⋅∣s) under f
by definition. Since R and R are bounded, it follows by induction that Qπ

↑
(s, a) = Qπ(f(s), gs(a)).

The proof for V π
↑
(s) = V π(f(s)) follows directly from the equivalence of action value functions

and the fact that the two policies are tied together through the lifting process because V π(s) =
Qπ(s, π(s)) for deterministic policies.

C.4 Proof of Theorem 4: Equivalence of Deterministic Policy Gradients

Proof. Assuming the conditions described in Appendix B, we first take the derivative of the deter-
ministic policy lifting relation w.r.t. the policy parameters θ using the chain rule:

(gs ○ π↑)(s) = (π ○ f)(s)
d(gs ○ π↑)θ(s) = d(π ○ f)θ(s)

d(gs)π↑(s) ○ d(π↑)θ(s) = d(π ○ f)θ(s)
∇ags(a)∣a=π↑(s)
´¹¹¹¸¹¹¶

P

∇θπ↑(s) = ∇θπ(f(s)), (13)

where ○ is the composition operator and the dimensions of the matrices are P ∈ R∣A∣×∣A∣, ∇θπ↑(s) ∈
R∣A∣×∣θ∣, and ∇θπ(s) ∈ R∣A∣×∣θ∣. Second, we take the derivative of the value equivalence theorem w.r.t.
the actions a using the chain rule:

Qπ
↑
(s, a) = Qπ(f(s), gs(a))

dQπ
↑
(s, a)a = dQπ(f(s), gs(a))a

∇aQπ
↑
(s, a)∣

a=π↑(s) = ∇aQ
π(f(s), a)∣

a=π(f(s))∇ags(a)∣a=g−1s (π(f(s)))
´¹¹¹¸¹¹¹¶

P

, (14)

where the dimensions of the matrices are ∇aQπ
↑
(s, a) ∈ R∣A∣, ∇aQπ(s, a) ∈ R∣A∣, and similarly as

before P ∈ R∣A∣×∣A∣. As we assumed the gs to be a local diffeomorphism, the inverse function theorem
(Theorem 2) states that the matrix P is invertible, thus we right-multiply both sides of equation (14)
by P −1 and left-multiply the resulting equation by equation (13) to obtain the desired result:

∇aQπ
↑
(s, a)∣

a=π↑(s)P
−1P∇θπ↑(s) = ∇aQπ(f(s), a)∣a=π(f(s))∇θπ(f(s))

∇aQπ
↑
(s, a)∣

a=π↑(s)∇θπ
↑(s) = ∇aQπ(f(s), a)∣a=π(f(s))∇θπ(f(s)). (15)

C.5 Proof of Theorem 5: Homomorphic Policy Gradient

Proof. The proof follows along the same lines of the deterministic policy gradient theorem [8], but
with additional steps for changing the integration space from S to S. First, we derive a recursive
expression for ∇θV π

↑
θ(s) as:

∇θV π
↑
θ(s) = ∇θQπ

↑
θ(s, π↑θ(s))

= ∇θ[R(s, π↑θ(s)) + γ ∫S
τπ↑
θ
(s)(s, ds

′)V π
↑
θ(s′)]

= ∇θπ↑θ(s)∇aR(s, a)∣
a=π↑

θ
(s)

+ γ ∫S
[τπ↑

θ
(s)(s, ds

′)∇θV π
↑
θ(s′) +∇θπ↑θ(s)∇aτa(s, ds

′)∣
a=π↑

θ
(s)
V π

↑
θ(s′)] (16)

= ∇θπ↑θ(s)∇a[R(s, a)+γ∫S
τa(s, ds′)V π

↑
θ(s′)]∣

a=π↑
θ
(s)
+γ∫S

τπ↑
θ
(s)(s, ds

′)∇θV π
↑
θ(s′)

5

= ∇θπ↑θ(s)∇aQ
π↑
θ(s, a)∣

a=π↑
θ
(s)

+ γ ∫S
τπ↑
θ
(s)(s, ds

′)∇θV πθ(f(s′)) (17)

= ∇θπ↑θ(s)∇aQ
π↑
θ(s, a)∣

a=π↑
θ
(s)

+ γ ∫S
τgs(π↑θ(s))(f(s), ds

′)∇θV πθ(f(s′)) (18)

= ∇θπθ(f(s))∇aQπθ(f(s), a)∣
a=πθ(f(s))

+ γ ∫S
τπθ(s)(s, ds

′)∇θV πθ(s′) (19)

= ∇θπθ(f(s))∇aQπθ(f(s), a)∣
a=πθ(f(s))

+ γ ∫S
p(s→ s′,1, πθ)∇θV πθ(s′)ds′.

Where p(s→ s′, t, πθ) is the probability of going from s to s′ under the policy πθ(s) in t time steps.
In equation (16) we were able to apply the Leibniz integral rule to exchange the order of derivative
and integration because of the regularity conditions on the continuity of the functions. In equation
(17) we used the value equivalence property, and in equation (18) we used the change of variables
formula based on the pushforward measure (1) of τa(s, .) with respect to f . Finally, in equation (19)
we used the equivalence of policy gradients from Theorem 4. By recursively rolling out the formula
above, we obtain:

∇θV π
↑
θ(s) = ∇θπθ(f(s))∇aQπθ(f(s), a)∣

a=πθ(f(s))

+ γ ∫S
p(s→ s′,1, πθ)∇θπθ(f(s′))∇aQπθ(f(s′), a)∣

a=πθ(f(s′))
ds′

+ γ2 ∫S
p(s→ s′,1, πθ)∫S

p(s′ → s′′,1, πθ)∇θV π
↑
θ(f(s′′))ds′′ds′

= ∇θπθ(f(s))∇aQπθ(f(s), a)∣
a=πθ(f(s))

+ γ ∫S
p(s→ s′,1, πθ)∇θπθ(f(s′))∇aQπθ(f(s′), a)∣

a=πθ(f(s′))
ds′

+ γ2 ∫S
p(s→ s′′,2, πθ)∇θV πθ(f(s′′))ds′′ (20)

⋮

= ∫S

∞
∑
t=0
γtp(s→ s′, t, πθ)∇θπθ(f(s))∇aQπθ(f(s), a)∣

a=πθ(f(s))
ds′. (21)

Where in equation (20) we exchanged the order of integration using the Fubini’s theorem that requires
the boundedness of ∥∇θV πθ(s)∥ as described in the regularity conditions. Finally, we take the
expectation of ∇θV π

↑
θ(s) over the initial state distribution:

∇θJ(θ) = ∇θ ∫S
p1(s)V π

↑
θ(s)ds

= ∫S
p1(s)∇θV π

↑
θ(s)ds

= ∫S
p1(s)∫S

∞
∑
t=0
γtp(s→ s′, t, πθ)∇θπθ(f(s))∇aQπθ(f(s), a)∣

a=πθ(f(s))
ds′ds

= ∫S
p1(s)∫S

∞
∑
t=0
γtp(s→ s′, t, πθ)∇θπθ(f(s))∇aQπθ(f(s), a)∣

a=πθ(f(s))
ds′ds (22)

= ∫S
ρπθ(s)∇θπθ(s)∇aQπθ(s, a)∣

a=πθ(s)
ds. (23)

Where ρπθ(s) is the discounted stationary distribution induced by the policy πθ. In equation (22) we
used the change of variable formula. Similar to the steps before, we have used the Leibniz integral
rule to exchange the order of integration and derivative, used Fubini’s theorem to exchange the order
of integration.

6

D Full Results

As discussed in Section 7, we evaluate DHPG on continuous control tasks from DM Control on state
and pixel observations. Importantly, to reliably evaluate our algorithm against the baselines and to
correctly capture the distribution of results, we follow the best practices proposed by Agarwal et al.
[1] and report the interquartile mean (IQM) and performance profiles aggregated on all tasks over 10
random seeds. While our baseline results are obtained using the official code, when possible, some of
the results may differ from the originally reported ones due to the difference in the seed numbers and
our goal to present a faithful representation of the true performance distribution [1].

We use the official implementations of DrQv2, DBC, and SAC-AE, while we re-implement DeepMDP
due to the unavailability of the official code; See Appendix E.3 for full details on the baselines.

D.1 State Observations

Figure 1 shows full results obtained on 18 DeepMind Control Suite tasks with state observations to
supplement results of Section 7.1. Domains that require excessive exploration and large number of
time steps (e.g., acrobot, swimmer, and humanoid) are not included in this benchmark.

Figures 2 and 3 respectively show performance profiles and aggregate metrics [1] on 17 tasks;
hopper hop is removed from RLiable evaluation as none of the algorithms have acquired reasonable
performance in 1 million steps.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cheetah Run

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Finger Spin

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

A
ve

ra
ge

 R
et

ur
n

Finger Turn Hard

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

50

100

150

200

A
ve

ra
ge

 R
et

ur
n

Hopper Hop

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

Quadruped Run

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Reacher Easy

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Reacher Hard

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Walk

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

Walker Run

DHPG Our DDPG TD3 SAC

Figure 1: Learning curves for 18 DM control tasks with state observations. Mean performance is
obtained over 10 seeds and shaded regions represent 95% confidence intervals. Plots are smoothed
uniformly for visual clarity.

7

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> Our DDPG
SAC
TD3
DHPG

(a) 250k step benchmark.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> Our DDPG
SAC
TD3
DHPG

(b) 500k step benchmark.

Figure 2: Performance profiles for state observations based on 17 tasks over 10 seeds, at 250k steps
(a), and at 500k steps (b). Shaded regions represent 95% confidence intervals.

0.4 0.5 0.6 0.7
DHPG

Our DDPG
TD3
SAC

Median

0.48 0.56 0.64

IQM

0.50 0.55 0.60

Mean

0.40 0.45 0.50 0.55

Optimality Gap

Normalized Score

(a) 250k step benchmark.

0.5 0.6 0.7 0.8
DHPG

Our DDPG
TD3
SAC

Median

0.66 0.72 0.78

IQM

0.60 0.66 0.72

Mean

0.24 0.30 0.36 0.42

Optimality Gap

Normalized Score

(b) 500k step benchmark.

Figure 3: Aggregate metrics for state observations with 95% confidence intervals based on 17 tasks
over 10 seeds, at 250k steps (a), and at 500k steps (b).

8

D.2 Pixel Observations

Figure 4 shows full results obtained on 16 DeepMind Control Suite tasks with pixel observations
to supplement results of Section 7.2. Domains that require excessive exploration and large number
of time steps (e.g., acrobot, swimmer, and humanoid) and domains with visually small targets (e.g.,
reacher hard and finger turn hard) are not included in this benchmark. In each plot, the solid lines
present algorithms with image augmentation and dashed lines present algorithms without image
augmentation.

Figures 5 and 6 respectively show performance profiles and aggregate metrics [1] on 14 tasks; hopper
hop and walker run are removed from RLiable evaluation as none of the algorithms have acquired
reasonable performance in 1 million steps.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

Cheetah Run

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Finger Spin

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

0

50

100

150

A
ve

ra
ge

 R
et

ur
n

Hopper Hop

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Quadruped Run

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

A
ve

ra
ge

 R
et

ur
n

Reacher Easy

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Walk

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Walker Run

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

Figure 4: Learning curves for 16 DM control tasks with pixel observations. Mean performance is
obtained over 10 seeds and shaded regions represent 95% confidence intervals. Plots are smoothed
uniformly for visual clarity.

9

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> DHPG
DBC
DeepMDP
DrQ-v2
SAC-AE
w/o Aug.
w/ Aug.

(a) 500k step benchmark.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> DHPG
DBC
DeepMDP
DrQ-v2
SAC-AE
w/o Aug.
w/ Aug.

(b) 1m step benchmark.

Figure 5: Performance profiles for pixel observations based on 14 tasks over 10 seeds, at 500k steps
(a), and at 1m steps (b). Shaded regions represent 95% confidence intervals.

0.2 0.4 0.6 0.8
DHPG w/ Aug.

DrQ-v2 w/ Aug.
DBC w/ Aug.

DeepMDP w/ Aug.
SAC-AE w/ Aug.
DHPG w/o Aug.

DBC w/o Aug.
DeepMDP w/o Aug.

SAC-AE w/o Aug.
Median

0.2 0.4 0.6

IQM

0.15 0.30 0.45 0.60

Mean

0.45 0.60 0.75

Optimality Gap

Normalized Score

(a) 500k step benchmark.

0.2 0.4 0.6 0.8
DHPG w/ Aug.

DrQ-v2 w/ Aug.
DBC w/ Aug.

DeepMDP w/ Aug.
SAC-AE w/ Aug.
DHPG w/o Aug.

DBC w/o Aug.
DeepMDP w/o Aug.

SAC-AE w/o Aug.
Median

0.2 0.4 0.6 0.8

IQM

0.2 0.4 0.6

Mean

0.4 0.6 0.8

Optimality Gap

Normalized Score

(b) 1m step benchmark.

Figure 6: Aggregate metrics for pixel observations with 95% confidence intervals based on 14 tasks
over 10 seeds, at 500k steps (a), and at 1m steps (b).

10

D.3 Transfer Learning Experiments

As discussed in Section 7.2, the purpose of transfer experiments is to ensure that using MDP
homomorphisms does not compromise transfer abilities. Figure 7 shows learning curves for a series
of transfer scenarios in which the critic, actor, and representations are transferred to a new task within
the same domain. DHPG matches the same transfer abilities of other methods.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Cartpole Swingup

DHPG+Aug.
DHPG

DrQ-v2
DBC

DeepMDP
SAC-AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

200

300

400

500

600

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk Quadruped Run
DHPG+Aug.
DHPG

DrQ-v2
DBC

DeepMDP
SAC-AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand Walker Walk
DHPG+Aug.
DHPG

DrQ-v2
DBC

DeepMDP
SAC-AE

Figure 7: Learning curves for transfer experiments with pixel observations. At 500k time step mark,
all components are transferred to a new task on the same domain. Mean performance is obtained over
10 seeds and shaded regions represent 95% confidence intervals. Plots are smoothed uniformly for
visual clarity.

D.4 Value Equivalence Property in Practice

We can use the value equivalence between the critics of the actual and abstract MDPs as a measure
for the quality of learned MDP homomorphismsm, since the two critics are not directly trained to
minimize this distance, instead they have equivalent values through the learned MDP homomorphism
map. Figure 8 shows the normalized mean absolute error of ∣Q(s, a)−Q(s, a)∣ during training,
indicating the property is holding in practice. Expectedly, for lower-dimensional tasks with easily
learnable homomorphism maps (e.g., cartpole) the error is reduced earlier than more complicated
tasks (e.g., quadruped and walker). But importantly, in all cases the error decreases over time and is
at a reasonable range towards the end of the training, meaning the continuous MDP homomorphisms
is adhering to conditions of Definition 3.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

V
al

ue
 E

rr
or

 |Q
(s

,a
)

Q
(s

,a
)|

Cartpole Balance Sparse
Cartpole Swingup

Hopper Stand
Quadruped Walk

Reacher Easy
Walker Stand

Figure 8: Normalized mean absolute error ∣Q(s, a) −Q(s, a)∣ as a measure for the value equivalence
property during training of different tasks from pixel observations. The error is measured on samples
from the replay buffer and is normalzied by the range of the value function. The error is averaged
over 10 seeds and shaded regions represent 95% confidence intervals.

11

D.5 Ablation Study on the Combination of HPG with DPG

We carry out an ablation study on the combination of HPG with DPG for actor updates as indicated
discussed in Section 6. To that end, we evaluate the performance of four variants of DHPG (all using
image augmentation) on pixel observations:

1. DHPG: Gradients of HPG and DPG are added together and a single actor update is done
based on the sum of gradients. This is the standard DHPG algorithm that is used throughout
the paper.

2. DHPG with independent DPG update: Gradients of HPG and DPG are independently
used to update the actor.

3. DHPG without DPG update: Only HPG is used to update the actor.
4. DHPG with single critic: A single critic network is trained for learning values of both the

actual and abstract MDP. Consequently, HPG and DPG are used to update the actor.

Figure 9 shows learning curves obtained on 16 DeepMind Control Suite tasks with pixel observations,
and Figure 10 shows RLiable [1] evaluation metrics. In general, summing the gradients of HPG
and DPG (variant 1) results in lower variance of gradient estimates compared to independent HPG
and DPG updates (variant 2). Interestingly, the variant of DHPG without DPG (variant 3) performs
reasonably well or even outperforms other variants in simple tasks where learning MDP homomor-
phisms is easy (e.g., cartpole and pendulum), indicating the effectiveness of our method in using only
the abstract MDP to update the policy of the actual MDP. However, in the case of more complicated
tasks (e.g., walker), DPG is required to additionally use the actual MDP for policy optimization.
Finally, using a single critic for both the actual and abstract MDPs (variant 4) can improve sample
efficiency in symmetrical MDPs, but may result in performance drops in non-symmetrical MDPs due
to the large error bound between the two MDPs, ∥Qπ

↑
(s, a)−Qπ(s, a)∥ [11].

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Cheetah Run

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Finger Spin

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

20

40

60

80

100

120

A
ve

ra
ge

 R
et

ur
n

Hopper Hop

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

150

200

250

300

350

400

A
ve

ra
ge

 R
et

ur
n

Quadruped Run

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

Reacher Easy

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Walker Walk

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

100

150

200

250

A
ve

ra
ge

 R
et

ur
n

Walker Run

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

Figure 9: Ablation study on the combination of HPG and DPG. Learning curves for 16 DM control
tasks with pixel observations. Mean performance is obtained over 10 seeds and shaded regions
represent 95% confidence intervals. Plots are smoothed uniformly for visual clarity.

12

0.45 0.60 0.75
DHPG+Aug.

DHPG (ind. DPG update)+Aug.
DHPG (w/o DPG update)+Aug.

DHPG (single critic)+Aug.
Median

0.48 0.56 0.64 0.72

IQM

0.50 0.55 0.60 0.65

Mean

0.35 0.40 0.45 0.50

Optimality Gap

Normalized Score

(a) Aggregate metrics at 500k steps.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e

DHPG+Aug.
DHPG (ind. DPG update)+Aug.
DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

(b) Sample efficiency.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DHPG (w/o DPG update)+Aug.
DHPG+Aug.
DHPG (ind. DPG update)+Aug.
DHPG (single critic)+Aug.

(c) Performance profiles at 250k
steps.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DHPG (w/o DPG update)+Aug.
DHPG+Aug.
DHPG (ind. DPG update)+Aug.
DHPG (single critic)+Aug.

(d) Performance profiles at 500k
steps.

Figure 10: Ablation study on the combination of HPG and DPG. RLiable evaluation metrics for pixel
observations averaged on 14 tasks over 10 seeds. Aggregate metrics at 500k steps (a), IQM scores
as a function of number of steps for comparing sample efficiency (b), performance profiles at 250k
steps (c), performance profiles at 500k steps (d). Shaded regions represent 95% confidence intervals.

D.6 Ablation Study on n-step Return

We carry out an ablation study on the choice of n-step return for DHPG. Figure 11 shows RLiable
[1] evaluation metrics for DHPG with 1-step and 3-step returns for pixel observations. We show
the impact of n-step return on DHPG with and without image augmentation. Overall, n-step return
appears to improve the early stages of training. In the case of DHPG without image augmentation,
the final performance of 1-step return is better than 3-step return, perhaps indicating that using n-step
return can render learning MDP homomorphisms more difficult.

0.30 0.45 0.60
DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)

DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update (1-step return)

Median

0.30 0.45 0.60

IQM

0.4 0.5 0.6

Mean

0.4 0.5 0.6 0.7

Optimality Gap

Normalized Score

(a) Aggregate metrics at 500k steps.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e

DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)
DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update (1-step return)

(b) Sample efficiency.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)
DHPG+ind. DPG update (1-step return)

(c) Performance profiles at 250k
steps.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)
DHPG+ind. DPG update (1-step return)

(d) Performance profiles at 500k
steps.

Figure 11: Ablation study on n-step return. RLiable evaluation metrics for pixel observations
averaged on 12 tasks over 10 seeds. Aggregate metrics at 1m steps (a), IQM scores as a function
of number of steps for comparing sample efficiency (b), performance profiles at 250k steps (c), and
performance profiles at 500k steps (d). Shaded regions represent 95% confidence intervals.

13

D.7 Comparison Against Higher-Capacity Baselines

The DHPG algorithm contains additional networks, such as the parameterized MDP homomorphism
map and the abstract critic, thus it may have a higher network capacity compared to the baselines.
To control for the effect of the network capacity and for a fair evaluation, we compare DHPG with
higher-capacity variants of DBC and DrQ-v2 that have a larger critic networks. First, we provide a
detailed list of network parameters based on the architecture described in Appendix E.2:

1. DHPG: image encoder (1,990,518) + actor (79,105) + critic (79,361) + dynamics model
(117,348) + reward model (79,105) + abstract critic (91,905) + f (91,698) + g (91,954) =
2,620,994

2. DBC: image encoder (1,990,518) + actor (79,362) + critic (158,722) + dynamics model
(104,804) + reward model (79,105) = 2,412,511

3. DrQ-v2: image encoder (1,990,518) + actor (79,105) + critic (158,722) = 2,228,602

To account for the parameter increase, we present variations of DBC and DrQ with a larger critic
(512 hidden dim compared to the initial 256). Consequently, the new total number of parameters
for DBC and DrQ are respectively 2,833,375 and 2,649,466. Figure 12 shows full results obtained
on 16 DeepMind Control Suite tasks with pixel observations for higher-capacity variants of DBC
and DrQ-v2 to supplement results of Section 7.2. Domains that require excessive exploration and
large number of time steps (e.g., acrobot, swimmer, and humanoid) and domains with visually small
targets (e.g., reacher hard and finger turn hard) are not included in this benchmark. In each plot, the
solid lines present algorithms with image augmentation and dashed lines present algorithms without
image augmentation.

Figures 13 and 14 respectively show performance profiles and aggregate metrics [1] on 14 tasks;
hopper hop and walker run are removed from RLiable evaluation as none of the algorithms have
acquired reasonable performance in 1 million steps.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

A
ve

ra
ge

 R
et

ur
n

Cheetah Run

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Finger Spin

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

0

50

100

150

200

A
ve

ra
ge

 R
et

ur
n

Hopper Hop

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Quadruped Run

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Reacher Easy

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Walk

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Walker Run

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

Figure 12: Learning curves for 16 DM control tasks with pixel observations for higher-capacity
variants of DBC and DrQ-v2. Mean performance is obtained over 10 seeds and shaded regions
represent 95% confidence intervals. Plots are smoothed uniformly for visual clarity.

14

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> DBC (High Cap.)
DrQ-v2 (High Cap.)
DHPG
DBC
DrQ-v2
w/o Aug.
w/ Aug.

(a) 500k step benchmark.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DBC (High Cap.)
DrQ-v2 (High Cap.)
DHPG
DBC
DrQ-v2
w/o Aug.
w/ Aug.

(b) 1m step benchmark.

Figure 13: Performance profiles for pixel observations for higher-capacity variants of DBC and
DrQ-v2 based on 14 tasks over 10 seeds, at 500k steps (a), and at 1m steps (b). Shaded regions
represent 95% confidence intervals.

0.2 0.4 0.6 0.8
DHPG w/ Aug.

DrQ-v2 w/ Aug.
DrQ-v2 (High Cap.) w/ Aug.

DBC w/ Aug.
DBC (High Cap.) w/ Aug.

DHPG w/o Aug.
DBC (High Cap.) w/o Aug.

DBC w/o Aug.
Median

0.2 0.4 0.6

IQM

0.30 0.45 0.60

Mean

0.45 0.60 0.75

Optimality Gap

Normalized Score

(a) 500k step benchmark.

0.2 0.4 0.6 0.8
DHPG w/ Aug.

DrQ-v2 w/ Aug.
DrQ-v2 (High Cap.) w/ Aug.

DBC w/ Aug.
DBC (High Cap.) w/ Aug.

DHPG w/o Aug.
DBC (High Cap.) w/o Aug.

DBC w/o Aug.
Median

0.2 0.4 0.6 0.8

IQM

0.30 0.45 0.60 0.75

Mean

0.30 0.45 0.60

Optimality Gap

Normalized Score

(b) 1m step benchmark.

Figure 14: Aggregate metrics for pixel observations for higher-capacity variants of DBC and
DrQ-v2 with 95% confidence intervals based on 14 tasks over 10 seeds, at 500k steps (a), and at 1m
steps (b).

15

E Implementation Details

E.1 Pseudo-code

Algorithm 1 presents the details of the Deep Homomorphic Policy Gradient (DHPG) for pixel
observations. This is the main variant used throughout the paper, in which policy gradients obtained
from DPG and HPG are added together before updating the actor. For clarity, here the TD error is
estimated with 1-step returns.

In the image augmentation version of DHPG, as well as all the baselines, we use image augmentation
of DrQ [15] that simply applies random shifts to pixel observations. First, 84 × 84 images are padded
by 4 pixels (by repeating boundary pixels), and then a random 84 × 84 crop is selected, rendering the
original image shifted by ±4 pixels. Similarly to Yarats et al. [14], we also apply bilinear interpolation
on top of the shifted image by replacing each pixel value with the average of four nearest pixel values.

In order to use DHPG for state observations, Lines 8-11 should be simply removed.

Algorithm 1 Deep Homomorphic Policy Gradient (DHPG) for Pixel Observations

1: Hyperparameters:
Target network update weight α, actor update delay d, clipped noise parameters c and σ.

2: Inputs:
Policy πθ(s, a), actual critic Qψ(s, a), abstract critic Qψ(s, a), MDP homomorphism map
hφ,η = (fφ(s), gη(s, a)), reward predictor Rρ(s), transition model τν(s′∣s, a), CNN image
encoder Eµ, and replay buffer B.

3: Initialize target networks ψ′ ← ψ, ψ′ ← ψ, θ′ ← θ.
4: for t = 1 to T do
5: Select action with exploration noise a ∼ πθ(Eµ(s)) + ε, where ε ∼ N(0, σ)
6: Store transition (s, a, r, s′) in B
7: Sample mini-batch Bi ∼ B

8: if using image augmentation then
9: s← aug(s), s′ ← aug(s′)

10: end if
11: Encode pixel observations: s← Eµ(s), s′ ← Eµ(s′)

12: Critic and MDP Homomorphism Update:
13: Compute MDP homomorphism loss: Llax(φ, η, µ) +Lh(φ, η, ρ, ν, µ) ▷ Equations (12-13)
14: Add clipped noise: a′ ← πθ′(s′) + ε, where ε ∼ clip(N(0, σ),−c, c) ▷ TD3 [4]
15: Compute critic loss: Lactual critic(ψ) +Labstract critic(ψ,φ, η) ▷ Equations (9-10)
16: Update: ψ,ψ,φ, η, ρ, ν, µ← arg minψ,ψ,φ,η,ρ,ν,µLlax +Lh +Lactual critic +Labstract critic
17:
18: Actor update:
19: if t mod d then
20: Freeze Qψ,Qψ, fφ, gη , and Eµ
21: Compute policy loss using DPG and HPG: Lactor(θ) ▷ Equation (11)
22: Update policy: θ ← arg minLactor(θ)
23: Update target networks ψ′ ← αψ+(1−α)ψ′, ψ

′
← αψ+(1−α)ψ

′
, θ′ ← αθ+(1−α)θ′

24: end if
25: end for

E.2 Hyperparameters

Our code is submitted in the suplemental material.

We implemented our method in PyTorch [6] and results were obtained using Python v3.8.10, PyTorch
v1.10.0, CUDA 11.4, and Mujoco 2.1.1 [12] on A100 GPUs on a cloud computing service. Tables 1-3
present the hyperparameters used in our experiments. The hyperparameters are all adapted from DrQ-
v2 [14] without any further hyperparameter tuning. We have kept the same set of hyperparameters

16

across all algorithms and tasks, except for the walker domain which similarly to DrQ-v2 [14], we
used n-step return of n = 1 and mini-batch size of 512.

The core RL components (actor and critic networks), as well as the components of DHPG (state
and action encoders, transition and reward models) are all MLP networks with the ReLU activation
function and one hidden layer with dimension of 256.

In the case of state observations, the abstract MDP has the same state and action dimensions as the
actual MDP. In the case of pixel observations, the image encoder is based on the architecture of
DrQ-v2 which is itself based on SAC-AE [16] and consists of four convolutional layers of 32 × 3 × 3
with ReLU as their activation functions, followed by a one-layer fully-connected neural network
with layer normalization [2] and tanh activation function. The stride of the convolutional layers
are 1, except for the first layer which has stride 2. The image decoder of the baseline models with
image reconstruction is based on SAC-AE [16] and has a single-layer fully connected neural network
followed by four transpose convolutional layers of 32 × 32 × 3 with ReLU activation function. The
stride of the transpose convolutional layers are 1, except for the last layer which has stride 2.

Table 1: Hyperparameters used in our experiments.
Hyperparameter Setting

Learning rate 1e−4
Optimizer Adam
n-step return 3

Mini-batch size 256
Actor update frequency d 2

Target networks update frequency 2
Target networks soft-update τ 0.01

Target policy smoothing stddev. clip c 0.3
Hidden dim. 256

Replay buffer capacity 106

Discount γ 0.99
Seed frames 4000

Exploration steps 2000
Exploration stddev. schedule linear(1.0,0.1,1e6)

Table 2: Hyperparameters specific to state observations.
Hyperparameter Setting

Feature dim. Same as the state dim. of the task
Action repeat 1
Frame stack N/A

Table 3: Hyperparameters specific to pixel observations.
Hyperparameter Setting

Feature dim. 50
Action repeat 2
Frame stack 3

E.3 Baseline Implementations

All of the baselines are submitted in the supplemental material. We use the official implementations
of DBC, SAC-AE, and TD3. DeepMDP does not have a publicly available code, and we use the
implementation available in the official DBC code-base. The official DDPG implementation is in
TensorFlow, thus we used the implementation available in the official TD3 code-base with additional
improvements detailed in Section 7.1. Similarly, the official SAC implementation is in TensorFlow,
thus we used the SAC implementation available in the official SAC-AE code-base. As discussed
in Section 7.2, we have run two versions of the baselines, with and without image augmentation.
The image augmented variants, use the same image augmentation method of DrQ-v2 described in
Appendix E.1.

17

References

[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[3] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1.
Springer, 2007.

[4] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1587–1596.
PMLR, 2018.

[5] Serge Lang. Differential and Riemannian manifolds, volume 160. Springer Science & Business
Media, 2012.

[6] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32:8026–8037, 2019.

[7] Balaraman Ravindran and Andrew G Barto. Symmetries and model minimization in markov
decision processes, 2001.

[8] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning,
pages 387–395. PMLR, 2014.

[9] Michael Spivak. Calculus on manifolds: a modern approach to classical theorems of advanced
calculus. CRC press, 2018.

[10] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[11] Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bounding performance loss in approx-
imate mdp homomorphisms. Advances in Neural Information Processing Systems, 21:1649–
1656, 2008.

[12] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[13] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

[14] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645,
2021.

[15] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In International Conference on Learning
Representations, 2020.

[16] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.
Improving sample efficiency in model-free reinforcement learning from images. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 10674–10681, 2021.

18

	Additional Background
	Background on the Policy Gradient Theorem
	Mathematical Tools

	Assumptions and Conditions
	Proofs
	Proof of Theorem 1: Value Equivalence
	Proof of Theorem 2: Optimal Value Equivalence for Continuous MDP Homomorphisms
	Proof of Theorem 3: Value Equivalence for Deterministic Policies and Continuous MDP Homomorphisms
	Proof of Theorem 4: Equivalence of Deterministic Policy Gradients
	Proof of Theorem 5: Homomorphic Policy Gradient

	Full Results
	State Observations
	Pixel Observations
	Transfer Learning Experiments
	Value Equivalence Property in Practice
	Ablation Study on the Combination of HPG with DPG
	Ablation Study on n-step Return
	Comparison Against Higher-Capacity Baselines

	Implementation Details
	Pseudo-code
	Hyperparameters
	Baseline Implementations

