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Abstract

Random walk kernels have been introduced in seminal work on graph learning and
were later largely superseded by kernels based on the Weisfeiler-Leman test for graph
isomorphism. We give a unified view on both classes of graph kernels. We study
walk-based node refinement methods and formally relate them to several widely-
used techniques, including Morgan’s algorithm for molecule canonization and the
Weisfeiler-Leman test. We define corresponding walk-based kernels on nodes that
allow fine-grained parameterized neighborhood comparison, reach Weisfeiler-Leman
expressiveness, and are computed using the kernel trick. From this we show that
classical random walk kernels with only minor modifications regarding definition
and computation are as expressive as the widely-used Weisfeiler-Leman subtree
kernel but support non-strict neighborhood comparison. We verify experimentally
that walk-based kernels reach or even surpass the accuracy of Weisfeiler-Leman
kernels in real-world classification tasks.

1 Introduction

Machine learning with graph-structured data has various applications, from bioinformatics to social
network analysis to drug discovery and has become an established research field. Graph kernels [26, 5]
and graph neural networks (GNNs) [44] are two widely-used techniques for learning with graphs,
the latter of which has recently received significant research interest. Technically, various methods
of both categories exploit the link between graph data and linear algebra by representing graphs
by their (normalized) adjacency matrix. Such methods are often defined or can be interpreted in
terms of walks. On the other hand, the Weisfeiler-Leman heuristic for graph isomorphism testing
has attracted great interest in machine learning [33, 34]. This classical graph algorithm has been
studied extensively in structural graph theory and logic, and its expressive power, i.e., its ability to
distinguish non-isomorphic graphs, is well understood [3]. The Weisfeiler-Leman method turned out
to be suitable to derive powerful and efficient graph kernels [40]. Moreover, it is closely related to
GNNs [45, 31, 14], allowing to establish links, e.g., to results from logic [15].

Several results have paved the way for these insights. The seminal work by Kersting et al. [22] links
algebraic methods and the combinatorial Weisfeiler-Leman algorithm showing that it can be understood
in terms of walks and simulated by iterated matrix products. A comprehensive view of the expressive
power of linear algebra on graphs was recently given by Geerts [13]. GNNs are closely related to
algebraic methods but involve activation functions and learnable weights. Morris et al. [31] has shown
that (i) the expressive power of GNNs is limited by the Weisfeiler-Leman algorithm, and (ii) that GNN
architectures exist that reach this expressive power for suitable weights. Independently, Xu et al. [45]
obtained the same result by using injective set functions computable by multilayer perceptrons [46].
Most recently, Geerts et al. [14] has proven that already the early GCN layer-based architectures [23]
achieve the expressive power of the Weisfeiler-Leman test with only a minor modification already
mentioned in the original publication.
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Random walk kernels [12, 21] have been the starting point of a long line of research in graph kernels,
see [26, 5] for details. An extension of random walk kernels is based on so-called tree patterns, which
may contain repeated nodes just like walks [37, 28]. A cornerstone in the development of graph
kernels is the Weisfeiler-Leman graph kernel [40], which in contrast to tree pattern kernels, relies
on entire node neighborhoods instead of all subsets. This restriction allowed manageable feature
vectors and led to a significant improvement in terms of both running time and classification accuracy.
Several other kernels based on the Weisfeiler-Leman test have been proposed, e.g., combining it with
optimal assignments [24] or the Wasserstein distance [42]. Graph kernels inspired the development of
neural modules based on random walks and Weisfeiler-Leman labels [27]. Chen et al. [7] introduced
multilayer-kernels conceptually similar to GNN layers and relates random walk and Weisfeiler-Leman
kernels in this framework for graphs, where the node labels induce a unique bijection between neighbors.
Dell et al. [8] recently established the equivalence in expressive power between tree patterns formalized
as tree homomorphism counts and the Weisfeiler-Leman method. On this basis, homomorphism counts
were quickly adapted for graph classification [35]. The classical Weisfeiler-Leman kernel [40] as
well as the works [27, 7, 35] enumerate graph features and generate (approximate) feature vectors. In
contrast, the classical random walk kernel is computed using the kernel trick and thus operates implicitly
in a high dimensional features space. The advantages and disadvantages of fixed-size graph embeddings
are subject to recent research [25, 2]. Nowadays, random walk kernels are widely abandoned, while
Weisfeiler-Leman kernels remain an important baseline method performing competitively on many
real-world datasets [26, 5].

Our contribution. We formally relate random walks in labeled graphs and the Weisfeiler-Leman
method and link random walk kernels and the Weisfeiler-Leman subtree kernel. Starting from a
combinatorial perspective, we consider walk-based label refinement and relate it to the Weisfeiler-
Leman method. We extend the concept to fine-grained pairwise node similarities that satisfy the kernel
properties and are computed via algebraic techniques using the kernel trick similarly to random walk
kernels. From the node similarities, we derive a node-centric walk kernel on graphs. This kernel
generalizes the classical random walk kernel [12] and allows grouping of walks by their start node. We
show that grouping significantly improves the expressive power of random walk kernels and, with a
minor modification, reaches the expressive power of the Weisfeiler-Leman method. Kernel parameters
control the grouping of walks and allow to interpolate between random walk and Weisfeiler-Leman
type kernels. We verify our theoretical results on real-world graphs for which our approach reaches
high accuracies, surpassing the Weisfeiler-Leman subtree kernel in some cases.

2 Fundamentals

We aim at establishing formal links between random walks, Weisfeiler-Leman refinement, and
corresponding kernels. We review the basics of these methods and refer the reader to recent surveys for
further details [26, 34]. We proceed by introducing the notation used.

2.1 Definitions and notation

An (undirected) graph G is a pair (V,E) with nodes V and edges E ⊆ V 2, where (u, v) ∈ E ⇔
(v, u) ∈ E. A graph may be endowed with a (node) labeling σ : V → Σ. The labels Σ can be
arbitrary structures such as (multi)sets but are typically represented by or mapped to integers. We
denote sets by {·} and multisets allowing multiple instances of the same element by {{·}}. We
refer to the neighbors of a node u by N (u) = {v ∈ V | (u, v) ∈ E}. Two graphs G = (V,E)
and H = (V ′, E′) are isomorphic, written G ≃ H , if there is a bijection ψ : V → V ′ such that
(u, v) ∈ E ⇔ (ψ(u), ψ(v)) ∈ E′ for all u, v in V . For labeled graphs, additionally σ(v) = σ(ψ(v))
must hold for all v ∈ V ; for two graphs with roots r ∈ V and r′ ∈ V ′, ψ(r) = r′ must be satisfied.
The map ψ is called isomorphism. An isomorphism of a graph to itself is called automorphism. A
labeling σ is said to refine a labeling η, denoted by σ ⊑ η, if for all nodes u and v, σ(u) = σ(v) implies
η(u) = η(v); we write σ ≡ η if σ ⊑ η and η ⊑ σ. A label refinement is a sequence of labelings
(σ(0), σ(1), . . . ) such that σ(i) refines σ(i−1) for all i > 0. A function k : X × X → R is a kernel on
X , if there is a Hilbert space (H, ⟨·, ·⟩) and a map ϕ : X → H, such that k(x, y) = ⟨ϕ(x), ϕ(y)⟩ for
all x, y ∈ X . A kernel on the set of graphs is a graph kernel. We denote by kδ the Dirac kernel with
kδ(x, y) = 1 if x = y and 0 otherwise. We write vectors and matrices in bold, using capital letters for
the latter, and denote the column vector of ones by 1.
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2.2 Random walk kernels

The classical random walk kernel proposed by Gärtner et al. [12] compares two graphs with discrete
labels by counting their common walks, i.e., the pairs of walks with the same label sequence.
Let Wi(G) be the set of all walks of length i in a graph G. For a walk w = (v1, v2, . . . ) let
σ(w) = (σ(v1), σ(v2), . . . ) denote its label sequence.
Definition 2.1 (ℓ-step random walk kernel). Let λi ∈ R≥0 for i ∈ {0, . . . , ℓ} be a sequence of weights,
the ℓ-step random walk kernel is

Kℓ
×(G,H) =

ℓ∑
i=0

λi
∑

w∈Wi(G)

∑
w′∈Wi(H)

kδ(σ(w), σ(w
′)).

Random walk kernels can be computed based on a product graph using the kernel trick.
Definition 2.2 (Direct product graph). For two labeled graphs G = (V,E) and H = (V ′, E′) the
direct product graph G×H is the graph (V, E) with V = {(v, v′) ∈ V × V ′ | σ(v) = σ(v′)} and
E =

{
((u, u′), (v, v′)) ∈ V2 | (u, v) ∈ E ∧ (u′, v′) ∈ E′}.

Lemma 2.3. There is a bijection between Wi(G×H) and {(w,w′) ∈ Wi(G)×Wi(H) | σ(w) =
σ(w′)}, ∀i ≥ 0.

Using Lemma 2.3, the ℓ-step random walk kernel is computed from the adjacency matrix A× of
G×H by matrix products or iterated matrix-vector multiplication as

Kℓ
×(G,H) =

|V|∑
i,j

[
ℓ∑

k=0

λkA
k
×

]
ij

=

|V|∑
i=1

[
ℓ∑

k=0

λkw
(k)

]
i

with w(k) = A×w
(k−1) and w(0) = 1. The random walk kernel K× is defined as the limit

K∞
× , where λ = (λ0, λ1, . . . ) is chosen such that the sum converges [12, 41]. A well-studied

instantiation is the geometric random walk kernel using weights λi = γi, i ∈ N, where γ < 1
a with

a ≥ min{∆−,∆+} and ∆+/− the maximum in- and outdegree ofG×H guarantees convergence [12].
For this choice, the kernel can be computed in polynomial-time applying an analytical expression
based on matrix inversion. Efficient methods of computation have been studied extensively [43, 20].
However, theoretical and empirical results suggest that the benefit of using walks of infinite length as
in the geometric random walk kernel is limited [41, 25]. Random walk kernels can be extended to
score the similarity of walks instead of requiring their labels to match exactly, making them suitable
for graphs with arbitrary node and edge attributes compared by dedicated kernels [17, 43, 25]. The
accuracy and running time of random walk kernels can be improved by refining vertex labels in a
preprocessing step leading to sparse product graphs [29, 25, 19].

2.3 Weisfeiler-Leman refinement and graph kernels

The Weisfeiler-Leman method, often referred to as color refinement, initially assigns labels wl(0)(v) =
σ(v) to all nodes v (or uniform labels if graphs are unlabeled) and then iteratively computes new labels
for all v in V as

wl(i+1)(v) =
(
wl(i)(v), {{wl(i)(w) | w ∈ N (v)}}

)
.

Convergence is reached when wl(i)(u) = wl(i)(v) ⇐⇒ wl(i+1)(u) = wl(i+1)(v) holds for all
u, v ∈ V and we denote the corresponding stable labeling by wl(∞). In practice, nested multisets are
avoided by applying an injective mapping to integers after every iteration. For all j ≥ i, wl(j) ⊑ wl(i)

holds. The stable partition wl(∞) is refined by the orbit labeling assigning two nodes u, v the same
label if and only if there is an automorphism ψ with ψ(u) = ψ(v).

In graph isomorphism testing, only the final stable labeling wl(∞) is of interest, while in graph kernels,
only the first few iterations are used. The Weisfeiler-Leman subtree kernel [40] Kℓ

WL computes the first
ℓ iterations and maps graphs to feature vectors counting the number of nodes in the graph for every
label, which is equal to

Kℓ
WL(G,H) =

ℓ∑
i=0

∑
u∈V (G)

∑
v∈V (H)

kδ(wl
(i)(u),wl(i)(v)).
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Figure 1: Label refinement using walks and the Weisfeiler-Leman method. (a) shows an unlabeled
graph G and two unfolding trees of depth two rooted at node f and e, respectively. Since the trees are
not isomorphic, wl(2)(f) ̸= wl(2)(e). However, rw(2)

+ (f) = rw
(2)
+ (e), since the trees have the same

number of nodes with uniform labels on each level. (b) shows the corresponding node partitions after
one and two steps and at convergence (labels are represented by colors and reused in each iterations for
simplicity) illustrating that wl(∞) ̸≡ rw

(∞)
+ holds for G. (c) shows a part of the lattice associated with

label refinement relating both methods, where an arrow from η to σ denotes σ ⊑ η.

3 Comparing nodes by walks

We propose to compare the nodes of one or multiple graphs according to the walks originating at them.
We start with discrete walk labelings and characterize their ability to distinguish nodes relating the
approach to classical methods and results for unlabeled graphs, namely Morgan’s algorithm, walk
partitions and Weisfeiler-Leman refinement. Then we focus on the pairwise node comparison and
propose walk kernels on nodes, which are extended to reach the expressiveness of the Weisfeiler-Leman
method.

3.1 Walk labelings and their properties

We consider graphs with discrete labels. For a node v in a graph G, we define Wi(v) as the set of
walks of length i in G starting in v. We associate with every node v a label rw(i)(v) representing the
label sequences of length i walks originating at v, i.e., rw(i)(v) = {{σ(w) | w ∈ Wi(v)}}. This does
not yield a label refinement, since rw(i+1) not necessarily refines rw(i). For a counterexample consider
nodes f and g of the graph G in Figure 1(a), for which rw(1)(f) ̸= rw(1)(g), but rw(2)(f) = rw(2)(g).
To guarantee that two nodes once labeled different will obtain different labels in all subsequent
iterations, we consider all walks up to a given length ℓ and define W+

ℓ (v) =
⋃ℓ

i=0 Wi(v).

Definition 3.1 (ℓ-walk label). The ℓ-walk label of a node v is rw(ℓ)
+ (v) = {{σ(w) | w ∈ W+

ℓ (v)}}.

Since rw(i)
+ (v) ⊆ rw

(i+1)
+ (v) for all v in V and walks of different length have different label sequences,

it immediately follows that rw(i+1)
+ ⊑ rw

(i)
+ . We say that two nodes u and v are ℓ-walk indistinguishable

if rw(ℓ)
+ (u) = rw

(ℓ)
+ (v). We call u and v walk indistinguishable if they are ∞-walk indistinguishable.

3.1.1 Relation to Morgan’s algorithm

Morgan [30] proposed a method to generate canonical representations for molecular graphs. To
reduce ambiguities each node v is endowed with its extended connectivity ec(v). Let G = (V,E) be a
(molecular) graph, initially we assign ec(1)(v) = deg(v) to every node v in V , where deg(v) is the
degree of v. Then, the values ec(i)(v) are computed iteratively for i ≥ 2 and all nodes v in V as

ec(i)(v) =
∑

u∈N (v)

ec(i−1)(u),

until |{ec(i)(v) | v ∈ V }| ≤ |{ec(i+1)(v) | v ∈ V }|. Then, ec(i)(v) is the final extended connectivity
of the node v. For all i ≥ 1 the extended connectivity values ec(i) are equivalent to the row (or column)
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sums of the ith power of the adjacency matrix, i.e., Ai1, which gives the number of walks of length i
starting at each node [38, 10]. We relate the extended connectivity to walk labelings.
Proposition 3.2. For i ≥ 1 and all graphs, rw(i) ⊑ ec(i) holds with rw(i) ≡ ec(i) in the case of
unlabeled graphs.

Proof. From the definition of walk labelings we conclude | rw(i)(u)| = ec(i)(u) for all u in V . Hence,
rw(i)(u) = rw(i)(v) =⇒ ec(i)(u) = ec(i)(v). Vice versa, ec(i)(u) = ec(i)(v) is a necessary condition
for rw(i)(u) = rw(i)(v). For unlabeled graphs, all walks have the same label sequence and rw(i)

contains multiple instance of a single label sequence for all nodes, proving the equivalence.

3.1.2 Relation to walk partitions

Powers and Sulaiman [36] studied the walk partition of a graph with adjacency matrix A, which
is obtained from the n× ℓ matrix W (ℓ) = [1,A1,A21, . . . ,Aℓ1]. We define a node labeling wp,
where the ith node is assigned its row vector, i.e., wp(i) = W

(ℓ)
i,· . With Proposition 3.2 we directly

obtain the following result.

Proposition 3.3. For i ≥ 0 and all graphs, rw(i)
+ ⊑ wp(i) holds with rw

(i)
+ ≡ wp(i) in the case of

unlabeled graphs.

For unlabeled graphs, it is known that wl(∞) ⊑ wp(∞) and both coincide for many graphs [36].

3.1.3 Relation to the Weisfeiler-Leman method

The Weisfeiler-Leman labels encode neighborhood patterns. The unfolding tree T [n, v] of depth n at
the node v is defined recursively as the tree with root v and children N (v). Each child w ∈ N (v) is
the root of the unfolding tree T [n− 1, w] and T [0, w] = ({w}, ∅). The labels of the original graph are
preserved in the unfolding tree.

Lemma 3.4 (Folklore). For ℓ ≥ 0 and nodes u and v, wl(ℓ)(u) = wl(ℓ)(v) ⇐⇒ T [ℓ, u] ≃ T [ℓ, v].

As unfolding trees also encode walks we can relate Weisfeiler-Leman and walk labelings. For an
unfolding tree T [ℓ, v], let PL(T [ℓ, v]) denote the set of unique paths from the root v to a leaf.
Lemma 3.5. Let ℓ ≥ 0 and v a node, then PL(T [ℓ, v]) = Wℓ(v).

Proof. For a walk (v = v0, . . . , vℓ) we have vi+1 ∈ N (vi) for all 0 ≤ i < ℓ and hence a path in
PL(T [ℓ, v]) exists. Vice versa, every path in PL(T [ℓ, v]) is a walk of length ℓ starting at v.

Since T [ℓ, u] ≃ T [ℓ, v] implies PL(T [ℓ, u]) = PL(T [ℓ, v]) for all i ∈ {0, . . . , ℓ} we conclude.

Proposition 3.6. Let ℓ ∈ N0, then wl(ℓ) ⊑ rw
(ℓ)
+ ⊑ rw(ℓ).

Vice versa, for ℓ = 0 or ℓ = 1, PL(T [ℓ, u]) = PL(T [ℓ, v]) implies T [ℓ, u] ≃ T [ℓ, v], since the
unfolding tree consists of a single node or is a star graph, respectively.

Proposition 3.7. It holds wl(0) ≡ rw
(0)
+ ≡ rw(0) and wl(1) ≡ rw

(1)
+ ≡ rw(1).

Figure 1 illustrates the relations and shows an example, where the refinement relation is strict. The
nodes e and f are walk indistinguishable but obtain different Weisfeiler-Leman labels after only two
refinement steps. In this sense the walk labeling is weaker than the Weisfeiler-Leman labeling. This
does not necessarily mean that it is less suitable for learning tasks. We study the difference of the two
techniques on common benchmark datasets in Section 5.

3.2 Pairwise node comparison

In the previous section, two walks were considered equal if they exhibit the same label sequence
and two nodes have the same walk label if the multisets of walks originating at them are equal. We
define the functions kℓ and k+ℓ between nodes that measure the similarity based on walks in a more
fine-grained manner as

k+ℓ (u, v) =

ℓ∑
i=0

ki(u, v) with kℓ(u, v) =
∑

w∈Wℓ(u)

∑
w′∈Wℓ(v)

ℓ∏
i=0

kV (ui, vi), (1)
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wherew = (u=u0, u1, . . . , uℓ), w′ = (v=v0, v1, . . . , vℓ) and kV is a user-defined function measuring
the similarity of nodes, e.g., by taking continuous attributes into account. Assuming that kV is a kernel
on nodes, it follows from the concept of convolution kernels and basic closure properties [39] that k+ℓ
again is a kernel. We denote its feature map by ϕ+ℓ and refer the reader to [25] for the tools to construct
feature vectors. If we assume that kV (u, v) = kδ(σ(u), σ(v)), then a possible feature map ϕ+ℓ takes v
to a vector having a component for every possible label sequence s of length at most ℓ and counts
the number of walks w starting at v with σ(w) = s, i.e., it is the characteristic vector of the multiset
rw

(ℓ)
+ (v). We obtain a new parameterized kernel that allows controlling the strictness of neighborhood

comparison.
Definition 3.8 (Generalized ℓ-walk node kernel). Let α ∈ R≥0, the generalized ℓ-walk node kernel is

k̂+ℓ (u, v;α) = exp
(
−α

∥∥ϕ+ℓ (u)− ϕ+ℓ (v)
∥∥2
2

)
(2)

= exp
(
−α

(
k+ℓ (u, u) + k+ℓ (v, v)− 2k+ℓ (u, v)

))
. (3)

This is a Gaussian kernel, where the Euclidean distance is substituted by the kernel distance associated
with k+ℓ , which yields a valid kernel [16]. The kernel distance can be computed using the kernel trick
according to Equation (3).

We proceed by relating the generalized ℓ-walk node kernel to walk labelings.

Proposition 3.9. For α > 0 and kV = kδ , the equality k̂+ℓ (u, v;α) = 1 holds if and only if u and v
are ℓ-walk indistinguishable, i.e., rw(ℓ)

+ (u) = rw
(ℓ)
+ (v).

Proof. For α ̸= 0, the Gaussian kernel is one if and only if the Euclidean distance is zero, i.e.,
ϕ+ℓ (u) = ϕ+ℓ (v). With the feature map of k+ℓ that maps v to the characteristic vector of the multiset
rw

(ℓ)
+ (v) the result follows immediately.

Other normalized kernels k̃ satisfying k̃(x, y) = 1 if and only if x = y are known [1, 11], but cannot
be controlled with a parameter α in a similar way. For α = 0, we have k̂+ℓ (u, v) = 1. For α→ ∞,
we have k̂ℓ(u, v) = 0 unless u and v are ℓ-walk indistinguishable. In particular, we can relate the
generalized ℓ-walk node kernel to walk labelings.

Corollary 3.10. For α→ ∞, the image of k̂+ℓ is {0, 1} and k̂+ℓ (u, v) = 1 ⇐⇒ rw
(ℓ)
+ (u) = rw

(ℓ)
+ (v).

3.2.1 Computation

Computing walk labelings for labeled graphs by enumerating walks is prohibitive. We employ a
technique based on direct product graphs introduced for the computation of random walk kernels,
see Section 2.2. Using Lemma 2.3 we can compute the generalized ℓ-walk node kernel by counting
the walks in the direct product graph with the techniques described above. Algorithm 1 realizes this
approach and computes the kernel for all pairs of nodes having a non-zero value. The vectors w and
w+ each have one entry for each node (u, v) in the direct product graph, which after the ith iteration
stores the value of ki(u, v) and k+i (u, v), respectively. In Line 8 the generalized ℓ-walk node kernel is
computed according to Definition 3.8 based on the three values k+i (u, v), k

+
i (u, u) and k+i (v, v) using

the kernel trick. The symmetry of kernels is reflected by symmetries in the direct product graph G×G
which can be exploited to speed-up computation. Line 9 is optional and increases expressivity as
discussed in Section 3.2.2. The method of computation can be extended to incorporate vertex and edge
kernels by using a weighted adjacency matrix and initializing w(0) according to the vertex kernel, see
[25] for details. Moreover, the limit ℓ→ ∞ can be computed by introducing suitable weights and
well-known techniques proposed for random walk kernels, see Section 2.2.

3.2.2 Weisfeiler-Leman expressiveness

We can modify Algorithm 1 to perform a re-encoding in every iteration to achieve Weisfeiler-Leman
expressiveness for α→ ∞ by adding Line 9 (highlighted in blue).

Proposition 3.11. For ℓ > 0 and α→ ∞, Algorithm 1 including Line 9 computes k̂+WL
ℓ with image

{0, 1} and k̂+WL
ℓ (u, v) = 1 ⇐⇒ wl(ℓ)(u) = wl(ℓ)(v).
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Input: Graph G = (V,E), parameters ℓ and α.
Output: Kernel matrices K(i) and K̂(i) storing

ki and k̂+WL
i for i ≤ ℓ, respectively.

1 A× ← adjacency matrix of G×G

2 w ← 1; w+ ← w
3 for i← 1 to ℓ do
4 w ← A×w
5 w+ ← w+ +w
6 forall (u, v) ∈ V (G×G) do
7 K

(i)
uv ← wuv

8 K̂
(i)
uv ← e−α(w+

uu+w+
vv−2w+

uv) ▷ Eq. (3)

9

[
wuv ← K̂

(i)
uv

]
▷ WL expressiveness

Algorithm 1: Generalized ℓ-walk node kernel
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Figure 2: Expressiveness

Proof. The construction of the direct product graph and Corollary 3.10 with Proposition 3.7 guarantee
that the statement is satisfied initially for i = 1. For α→ ∞, K̂(i)

uv = 1 if and only if w+
uu = w+

vv =
w+

uv in iteration i, and zero otherwise. Assume that the equivalence holds in iteration i, then the
vector w contains ones for the node pairs (u, v) with wl(i)(u) = wl(i)(v) and w+

uu = w+
vv = w+

uv.
Hence, in iteration i+ 1 after Line 4, w counts for each node pair the number of matching neighbors
regarding wl(i). After adding these values to w+, it directly follows that, if wl(i+1)(u) = wl(i+1)(v),
then w+

uu = w+
vv = w+

uv and K̂
(i+1)
uv = 1 in Line 8. Vice versa, K̂(i+1)

uv = 1 if and only if
w+

uu = w+
vv = w+

uv, which implies wuu = wvv = wuv. In combination with σ(u) = σ(v) from
Definition 2.2, we conclude wl(i+1)(u) = wl(i+1)(v).

4 Comparing graphs by walks

We define a graph kernel based on the generalized ℓ-walk node kernel obtained from the Cartesian
product of the node sets of the two input graphs. Its parameters allow controlling the strictness of
neighborhood comparison and the importance of walk counts.

Definition 4.1 (Node-centric ℓ-walk graph kernel). Given α, β ∈ R≥0, the node-centric ℓ-walk graph
kernel is defined as

K+
ℓ (G,H;α, β) =

ℓ∑
i=0

∑
u∈V (G)

∑
v∈V (H)

k̂+i (u, v;α)k
β
i (u, v). (4)

The node-centric ℓ-walk graph kernel combines the generalized ℓ-walk node kernel of Definition 3.8
with a polynomial of the kernel ki. It can incorporate continuous attributes via a dedicated node kernel
kV , cf. Equation (1). We show in the following that Definition 4.1 resembles two widely-used graph
kernels from the literature for certain parameter choices.

4.1 Relation to random walk and Weisfeiler-Leman subtree kernels

Random walk kernels, see Section 2.2, are closely related to the node-centric ℓ-walk graph kernel.

Proposition 4.2. The node-centric ℓ-walk graph kernel for α = 0 and β = 1 is equal to the ℓ-step
random walk kernel with λi = 1 for i ∈ {0, . . . , ℓ}, i.e., K+

ℓ (G,H; 0, 1) = Kℓ
×(G,H).

Proof. The parameter choice guarantees that k̂+i (u, v;α)k
β
i (u, v) = ki(u, v). Hence, this ker-

nel sums over all pairs of walks (w,w′) of length less or equal to ℓ. Since kδ(σ(w), σ(w′)) =∏
j kδ(σ(uj), σ(vj)), where w = (u0, u1, . . . ), w′ = (v0, v1, . . . ), this corresponds to Defini-

tion 2.1.
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This result also holds for the limit ℓ→ ∞ if we assume that walks are adequately down-weighted by
their length to guarantee convergence.

In random walk kernels a pair of vertices, that both have a large neighborhood, have a great ability
to contribute strongly to the total kernel value, since a large number of walks originates at them. In
the Weisfeiler-Leman subtree kernel the same pair contributes a value bounded by ℓ depending on
whether their neighborhood matches exactly. We hypothesize that this conceptional difference is
crucial and allows the Weisfeiler-Leman kernel to outperform previous walk-based kernels. By setting
α sufficiently high and β = 0, it follows from Corollary 3.10 that the node-centric ℓ-walk graph kernel
resembles the Weisfeiler-Leman kernel in this respect, but uses walk labelings instead. Our discussion
of walk labelings and their relation to Weisfeiler-Leman labels suggest that these are only slightly less
expressive. We verify our hypothesis experimentally in Section 5. Moreover, by applying the iterated
re-encoding described in Section 3.2.2, we obtain exactly the same value as the Weisfeiler-Leman
subtree kernel for α → ∞ and β = 0. Other parameter choices allow for a less strict comparison,
which is not possible with the Weisfeiler-Leman subtree kernel.

4.2 Computation

We can compute the node-centric ℓ-walk graph kernel for two graphs G and H by applying Algorithm 1
to their union G ∪ H and plugging the results stored in the two kernel matrices K(i) and K̂(i)

into Equation (4). This can be optimized by exploiting the structural properties of the direct product
graph.

Proposition 4.3. Let G and H be two graphs, then the direct product graph of their union P = G∪H
is P × P = (G×G) ∪ (G×H) ∪ (H ×G) ∪ (H ×H).

Proof. The result follows from Definition 2.2 with the fact that the vertex and edge sets of G and H
are disjoint.

As there are no walks between disconnected components, we can run Algorithm 1 separately on
the product graphs G × H , G × G and H × H , ignoring H × G due to symmetry. Moreover, if
we compute the kernel for all pairs of graphs in a dataset D of graphs, we can compute all node
self-similarities from product graphs G×G for all G ∈ D once in a preprocessing step. In this case,
the overhead compared to the standard ℓ-step random walk kernel is only minor and is mainly attributed
to exponentiation. Direct computation via the directed product graph is not suitable for large-scale
graphs [25]. However, existing acceleration techniques [43, 20, 19] remain applicable. In particular,
for unlabeled graphs (or kV (u, v) = 1 for all nodes u, v) the result can be obtained from the walk
counts of the input graphs without generating a product graph.

5 Experimental evaluation

We experimentally verify the hypotheses that have originated from our theoretical results. In particular,
we aim to answer the following research questions.

Q1 Is the Weisfeiler-Leman subtree kernel more expressive than walk-based kernels regarding their
ability to distinguish non-isomorphic graphs on common benchmark datasets?

Q2 Are our walk-based kernels competitive to the state-of-the-art regarding classification accuracy?
Q3 Which level of strictness in walk-based neighborhood comparison is most suitable?

5.1 Experimental setup

We describe the kernels under comparison, their parameters and the used datasets. All experiments
were performed on an Intel Xeon E5-2690v4 machine at 2.6GHz with 384 GB of RAM.

5.1.1 Kernels

We implemented the node-centric ℓ-walk kernel (NCW) of Definition 4.1 with k̂+i and ki computed by
Algorithm 1 without the blue Line 9 and the variant with WL expressiveness including the blue line
(NCWWL). For unlabeled graphs we computed NCW without creating the direct product graph.
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Table 1: Average classification accuracies in percent and standard deviations. The highest accuracy of
each dataset is marked in bold; OOM denotes an out of memory error.

METHOD
DATASETS

MUTAG NCI1 NCI109 PTC-FM ENZYMES PROTEINS IMDBBIN COLLAB

VL 85.4±0.7 64.8±0.1 63.6±0.2 58.0±0.7 23.6±0.9 72.1±0.2 46.7±1.1 56.2±0.0
EL 85.5±0.6 66.4±0.1 64.9±0.1 57.8±0.7 27.7±0.7 73.5±0.3 45.9±0.8 61.7±0.2
SP 83.3±1.4 74.3±0.3 73.3±0.1 60.4±1.7 39.2±1.4 73.8±0.4 48.0±0.8 68.2±0.1
GH 85.4±1.9 72.8±0.2 71.7±0.3 57.8±1.2 33.9±1.0 68.1±0.5 52.6±0.8 65.9±0.4
GL3 85.2±0.9 70.5±0.2 69.3±0.2 57.9±1.4 30.1±1.2 72.9±0.4 50.7±0.8 66.7±0.1
WL 87.0±1.9 85.3±0.3 85.9±0.3 63.7±1.3 53.8±1.2 75.1±0.3 71.6±0.8 79.0±0.1
RW 87.8±0.9 75.4±0.2 74.5±0.1 57.3±1.7 33.9±0.9 73.4±0.6 68.4±0.5 56.2±0.0

NCW 86.9±0.9 85.5±0.2 85.9±0.2 63.4±1.2 54.8±1.0 74.8±0.5 70.4±0.8 79.4±0.1
NCWWL 87.1±1.2 85.5±0.2 86.3±0.2 62.3±1.0 55.2±1.2 74.8±0.5 71.6±0.6 OOM

As a baseline we used the node label kernel (VL) and edge label kernel (EL), which are the dot products
on node and edge label histograms, respectively, see [41, 26]. For the Weisfeiler-Leman subtree kernel
(WL), the ℓ-step random walk kernel (RW) as well as NCW and NCWWL we chose the iteration
number and walk length from {0, . . . , 5} by cross-validation. For RW, λi = 1 for i ∈ {0, . . . , ℓ} was
used. For NCW and NCWWL, we selected α from {0.01, 0.1, 1, 1000} and β from {0, 0.5, 1}. We
have not included extensions of the WL such as [24, 42], which could also be applied similarly to
the node-centric ℓ-walk graph kernel. In addition we used a graphlet kernel (GL3), the shortest-path
kernel (SP) [4], and the Graph Hopper kernel (GH) [9]. GL3 is based on connected subgraphs with
three nodes taking labels into account similar to the approach used by Shervashidze et al. [40]. For
SP and GH we used the Dirac kernel to compare path lengths and node labels. We implemented
the node-centric ℓ-walk graph kernel as well as all baselines in Java.1 We performed classification
experiments with the C-SVM implementation LIBSVM [6]. We report mean prediction accuracies and
standard deviations obtained by 10-fold nested cross-validation repeated 10 times with random fold
assignment. Within each fold all necessary parameters were selected by cross-validation based on the
training set. This includes the regularization parameter C and kernel parameters.

5.1.2 Datasets

We tested on widely-used graph classification benchmarks datasets of the TUDATASETS repository [32]
representing graphs from different domains. MUTAG, NCI1, NCI109 and PTC-FM represent small
molecules, ENZYMES and PROTEINS are derived from macromolecules, and COLLAB and IMDBBIN
are social networks. The datasets define binary graph classification experiments with exception of
ENZYMES and COLLAB, which are divided into six and three classes, respectively. All graphs have
node labels with exception of the social network graphs. We removed edge labels, if present, since they
are not supported by all graph kernel implementations.

5.2 Results

We discuss our results and research questions.

Q1: Expressiveness. We investigate the expressiveness of the ℓ-step random walk kernel (RWℓ),
the node-centric ℓ-walk graph kernel (NCWℓ) with α = 1000 and β = 0, and the Weisfeiler-Leman
subtree kernel (WLℓ). Since the used graph datasets contain duplicates [18], we filtered them such that
for each isomorphism class a single representative remains. We computed the completeness ratio
introduced by Kriege et al. [26], i.e., the fraction of graphs that can be distinguished from all other
graphs in the dataset. Figure 2 confirms that with increasing parameter ℓ all methods become more
expressive. For all datasets we observe that NCWℓ is clearly more expressive than RWℓ showing that
grouping the walks according to their start node increases the expressive power. Moreover, NCWℓ

achieves the same values as WLℓ for all ℓ. Although we have shown that walk labelings are weaker than
Weisfeiler-Leman labelings, cf. Figure 1, this does not affect the ability to distinguish the considered
real-world graphs. This confirms that walks provide expressive features when grouped at a node level.

1Our code is publicly available at https://github.com/nlskrg/node_centric_walk_kernels.
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Figure 3: Selection of the parameters α (y-axis) and β (x-axis) of the node-centric ℓ-walk graph kernel
on different datasets. Note that the combination at the bottom left resembles Weisfeiler-Leman type
kernels and the combination at the top right the ℓ-step random walk kernel.

Q2: Accuracy. Table 1 shows the resulting accuracies and standard deviations. For several datasets
WL outperforms RW as expected, e.g., NCI1, NCI109 and ENZYMES. In these cases NCW provides
an accuracy close to WL and outperforms RW by a large margin, although both are based on walks and
NCW is obtained with only a minor modification of RW. This clearly shows that node-centric walks
are suitable for obtaining high accuracies. For ENZYMES, NCW reaches an accuracy higher than WL
indicating that a higher expressiveness does not necessarily lead to better generalization. This suggests
that a less strict comparison of neighborhoods can be beneficial for some of the datasets. NCWWL
overall performs comparable to NCW but reaches slight improvements for several datasets.

Q3: Strict neighborhood comparison. NCW supports non-strict neighborhood comparison by
tuning the parameter α and incorporates walk counts for increasing β leading to a kernel similar
to WL and the ℓ-step random walk kernel for the extreme cases. We investigate the selection of
these parameters in the above classification experiments. For each dataset 10-fold cross-validation
was repeated 10 times leading to 100 classification experiments in total, for each of which the
hyperparameters were optimized. The distribution of the selected values for α and β is shown in
Figure 3. We observe that the choices vary between datasets. For the social network datasets there is a
clear preference for β = 0, which explains the worse performance of the ℓ-step random walk kernels
on these datasets. For NCI1 and NCI109, α ≥ 1 and β ≤ 0.5 were preferred leading to kernel values
closer to WL, which is in accordance with the accuracy reached. Of particular interest is the dataset
ENZYMES for which NCW and NCWWL provide the highest accuracies. Figure 3 shows that for this
dataset, in most cases non-strict neighborhood comparison (α ≤ 1) with only a minor influence of
walk counts (β ≤ 0.5) was selected, a choice not possible with previous kernels. Further investigation
shows that the parameter ℓ = 2 was selected in the majority of the cases for WL, while for NCW,
ℓ = 4 with α = 0.1 or α = 0.01 was selected most frequently. This indicates that for this dataset it is
preferable to take larger neighborhoods into account but to compare them less strictly.

6 Conclusion and future work

We have contributed to the understanding of walk and Weisfeiler-Leman based methods showing that
classical random walk kernels can be lifted to obtain the expressive power of the Weifeiler-Leman
subtree kernel, drastically increasing classification accuracy. While the direct product graph based
approach is less efficient than the Weisfeiler-Leman method, its advantage is that we can control the
strictness of neighborhood comparison and incorporate node and edge similarities for attributed graphs.
Improving the running time and the application to attributed graphs remains future work.

Our results have implications beyond graphs kernels. In graph neural networks, the bottleneck
problem [2] refers to the observation that node neighborhoods grow exponentially with increasing
radius and thus cannot be represented accurately by a fixed-sized feature vector. This is a possible
explanation for the weakness of GNNs in long-range tasks. The product graph based approach works
with infinite-dimensional node embeddings using the kernel trick. Investigating the bottleneck problem
in product graph based GNNs might shed more light into this phenomenon.
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