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Abstract

Effective decision making involves flexibly relating past experiences and relevant
contextual information to a novel situation. In deep reinforcement learning (RL),
the dominant paradigm is for an agent to amortise information that helps decision-
making into its network weights via gradient descent on training losses. Here,
we pursue an alternative approach in which agents can utilise large-scale context-
sensitive database lookups to support their parametric computations. This allows
agents to directly learn in an end-to-end manner to utilise relevant information
to inform their outputs. In addition, new information can be attended to by the
agent, without retraining, by simply augmenting the retrieval dataset. We study
this approach for offline RL in 9x9 Go, a challenging game for which the vast
combinatorial state space privileges generalisation over direct matching to past
experiences. We leverage fast, approximate nearest neighbor techniques in order to
retrieve relevant data from a set of tens of millions of expert demonstration states.
Attending to this information provides a significant boost to prediction accuracy
and game-play performance over simply using these demonstrations as training
trajectories, providing a compelling demonstration of the value of large-scale
retrieval in offline RL agents.

1 Introduction

How can reinforcement learning (RL) agents leverage relevant information to inform their decisions?
Deep RL agents have typically been represented as a monolithic parametric function, trained to
gradually amortise useful information from experience by gradient descent. This has been effec-
tive [25, 38], but is a slow means of integrating experience, with no straightforward way for an agent
to incorporate new information without many additional gradient updates. In addition, this requires
increasingly massive models (see e.g. [31]) as environments become more complex – scaling is driven
by the dual role of the parametric function, which must support both computation and memorisation.
Finally, this approach has a further drawback of particular relevance in RL – the only way in which
previously encountered information (that is not contained in working memory) can aid decision
making in a novel situation is indirectly through weight changes mediated by network losses. There
is no end-to-end means for an agent to attend to information outside of working memory to directly
inform its actions. While there has been a significant amount of work focused on increasing the infor-
mation available from previous experiences within an episode (e.g., recurrent networks, slot-based
memory [19, 28]), more extensive direct use of more general forms of experience or data has been
limited, although some recent works have begun to explore utilising inter-episodic information from
the same agent [6, 10, 29, 34, 41]. We seek to drastically expand the scale of information that is
accessible to an agent, allowing it to attend to tens of millions of pieces of information, while learning
in an end-to-end manner how to use this information for decision making. We view this as a first step
towards a vision in which an agent can flexibly draw on diverse and large-scale information sources,
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including its own (inter-episodic) experiences along with experiences from humans and other agents.
In addition, given that retrieved information need not match the agent’s observation format, retrieval
could enable agents to integrate information sources that have not typically been utilised such as
videos [2], text, and third-person demonstrations.

We investigate a semi-parametric agent architecture for large-scale retrieval, in which fast and efficient
approximate nearest neighbor matching is used to dynamically retrieve relevant information from a
dataset of experience. We evaluate this approach in an offline RL setting for an environment with a
combinatorial state space – the game of 9x9 Go with ≈ 1038 possible games, where generalisation
from past data to novel situations is challenging. We equip our agent with a large-scale dataset of
∼50M Go board-state observations, finding that a retrieval-based approach utilising this data is able
to consistently and significantly outperform a strong non-retrieval baseline.

Several key advantages of this retrieval approach are worth highlighting: Instead of having to amortise
all relevant information into its network weights, a retrieval-augmented network can utilise more of its
capacity for computation. In addition, this semi-parametric form allows us to update the information
available to the agent at evaluation time without having to retrain it. Strikingly, we find that this
enables improvements to agent performance without further training when games played against the
evaluation opponent are added to its knowledge base.

2 Methods
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Learn end-to-end how
to use retrieved information

Figure 1: Retrieving information to support deci-
sion making. The agent observation ot is used to
generate a query to retrieve relevant information
from a large-scale dataset Dr. This information
is used to inform network outputs ŷt. The agent
is trained end-to-end to use this information to
inform its decisions.

Before introducing the details of our method,
let us first present its high-level ingredients.
We train a model-based agent [36] that pre-
dicts future policies and values conditioned
on future actions in a given state. This semi-
parametric model incorporates a retrieval mecha-
nism, which allows it to utilise information from
a large-scale dataset to inform its predictions.
We train the agent in a supervised offline RL
setting, which allows us to directly evaluate the
degree to which retrieval improves the quality
of the model predictions. We subsequently eval-
uate the resulting model, augmented by Monte-
Carlo tree search, against a reference opponent.
This allows us to determine how these improve-
ments translate to an effective acting policy for
out-of-training-distribution situations.

To effectively improve model predictions using
auxiliary information, we need 1) a scalable way
to select and retrieve relevant data and 2) a ro-
bust way of leveraging that data in our model.
As with many successful attention mechanisms,
we establish relevance for 1) through an inner
product in an appropriate key-query space and
select the top N relevant results. Choosing the relevant key-query space is critical, since perform-
ing nearest-neighbor on the raw observations will only deliver desirable results for the simplest of
domains. For example, in the game of Go, a single stone difference on the board can dramatically
change the outcome and reading of the board, while seemingly different board positions might still
share high-level characteristics (e.g. influence, partial local sequences, and life-and-death of groups).

At the scale we want to operate, learning the key & query embeddings end-to-end in order to optimize
the final model predictions is challenging. Instead, as in the language modelling work by Borgeaud
et al. [7], we learn an embedding function through a surrogate procedure and use the resulting frozen
function to describe domain-relevant similarity. Moreover, scale also constrains the nearest-neighbors
lookup to be approximate, since getting the true nearest-neighbors is too time-consuming at inference
time and good approximations can be obtained.
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To address 2) and make the best use of the relevant data, we provide the data associated with
the nearest-neighbor as additional input features to the parametric part of our model, so that the
network can learn to interpret it. We provide some light inductive biases in the architecture to
ensure permutation invariance in the neighbors and robustness to outliers and distribution shifts
(see Secs. 2.1.3 & 2.3). Letting the network interpret the nearest-neighbor data is essential in large
and complex environments, such as Go, because the typically imperfect match between the current
situation and retrieved neighbors will require different aspects of this retrieved data to be ignored
or emphasized in a highly context specific manner. This is in contrast to episodic RL approaches
like [6, 29] which prescribe how to use the retrieved data. Subsequent sections describe the model,
retrieval process, and the full algorithm in more detail.

2.1 Retrieval-augmented agents

We consider a setting in which we wish to train a neural network model mθ on a set of environment
trajectories τ ∈ D (for example, the dataset Dπ of trajectories produced by a policy π). For each
timestep t of τ , the model takes an observation ot2 and must produce predictions ŷ of targets yt.

In our retrieval paradigm, in addition to having access to ot, the model also has access to an auxiliary
dataset of knowledge or experience Dr. The auxiliary set Dr could be the same as D, but it can
also contain more information, or in the most general case, information from a completely different
distribution and in a different format. If there is overlap between Dr and D, it is important for
robustness to ensure that the model cannot retrieve the same trajectory as it is being trained on
(otherwise the network will tend to overly trust information retrieved fromDr). Common information
sources in RL are trajectories from other agents or experts (offline RL) or the agent’s own previous
experiences (episodic memory, replay buffer). Note that, in contrast to offline RL, we do not assume
that we should directly use this auxiliary data as trajectories to train on.3

We wish to useDr to inform the model predictions ŷt, such that ŷt = mθ(ot,Dr). This is challenging,
as Dr is typically far too large to directly be consumed as a model input. One solution, shown in
Fig. 1, is to adopt a retrieval-based model, wherein the parametric and differentiable portion of
the model mθ is provided with an informative subset of data {x1t , x2t , . . . , xNt } retrieved from Dr,
conditioned on ot:

ŷt = mθ(ot, x
1
t , x

2
t , . . . , x

N
t ). (1)

This approach requires a number of design choices relating to the retrieval mechanism, which we
explore further below.

2.1.1 Scalable nearest-neighbor retrieval using SCaNN

Inspired by previous work in language modelling, we chose to leverage the SCaNN architecture [11]
for fast approximate nearest-neighbor retrieval. This requires each entry oi in the dataset Dr to be
associated with a key vector ki ∈ Rd, and a given observation ot to be mapped to a query vector
qt ∈ Rd. During retrieval, the squared Euclidean distances between qt and the dataset keys ki are
used to determine which neighbors to retrieve – reminiscent of neural attention mechanisms. This
retrieval process is very efficient and can be scaled to datasets with billions of items.

We will typically want to retrieve further associated meta-data, or context, for each neighbor. For
example, if a neighbor is part of a trajectory, we would like to retrieve information about action
choices and their consequences. The neighbor observation oi, together with its meta-data, forms the
auxiliary input xit to the model.

The nearest-neighbor retrieval process is non-differentiable, which means that the query and key
mappings cannot be trained end-to-end directly. Instead, in this first study, we pre-train a non-retrieval
prediction network me

φ on our experience dataset D (details in Sec. A.4). We then use this network to
generate an embedding corresponding to a given observation ot by retrieving the network activations
from a specified layer of me

φ. We use principal component analysis to compress these activations to a
d dimensional vector representing this observation state. The embedding and projection step together
form our key (& query4) network ki = gφ(oi).

2For simplicity of notation, we omit the dependence on past observations for partially-observable domains.
3For example, Dr needs not contain actions, rewards, or the full context used to select actions [9].
4In this study, retrieval dataset entries and ot have the same format, but this need not be the case in general.
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Figure 2: Details of the architecture used for a retrieval-augmented Go playing agent. A pre-trained
network is used to generate a query qt corresponding to the current Go game state ot. This query
is used for fast approximate nearest-neighbor retrieval using SCaNN. Retrieved neighbors xnt are
processed using an invariant architecture, and used to inform an action-conditional recurrent forward
model that outputs game outcome predictions v̂k and distributions over next actions π̂k.

We preprocess all of the observations in Dr using gφ to produce corresponding keys. The resulting
dataset of keys and observations is then used by ScaNN to retrieve neighbors given a query vector. For
offline RL training with a fixed training dataset, we can also preprocess the nearest neighbor lookups
for all training dataset observations, i.e., qt = gφ(o) ∀ot ∈ D. However, to act during evaluation, we
must do this nearest-neighbor lookup online for each new observation. In future experiments, we
intend to incorporate end-to-end learning of the query vector [12] to improve agent performance. A
future online RL pipeline will also require us to dynamically retrieve neighbors during training.

2.1.2 Policy optimization with retrieval

The objective in our offline RL setting is to leverage the available data in order to optimize a policy
π for acting. Our proposed semi-parametric model (Eqn. 1) is compatible with several methods
for policy optimization in this offline setting. Indeed, it can represent the actor πθ(ot,Dr) and/or
the critic Qθ(ot, a,Dr) in an offline actor-critic method [21], or the Q-value in a value iteration
approach [32]. Here we focus on a model-based approach, inspired by MuZero [36], where the
learned model is employed in a search procedure based on Monte-Carlo Tree Search (MCTS) [8].
This is motivated by the efficacy of MuZero in the offline RL setting [37, 24].

Model-based search with retrieval Following MuZero, our prediction model mθ is conditioned
on the current observation ot but also on a sequence of future actions ~at = at+1, at+2, . . . , at+K .
The model mθ is therefore redefined as ŷt = mθ(ot,~at, x

1
t , x

2
t , . . . , x

N
t ). The architecture for this

retrieval prediction model is illustrated in Fig. 2. The model mθ can be decomposed into an encoding
step st = fθ(ot, x

1
t , x

2
t , . . . , x

n
t ), which incorporates the observation and neighbor information,

followed by iterative action-conditioned inference sk+1
t = hθ(s

k
t , at+k) to produce embeddings
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skt corresponding to subsequent time steps (where s0t = st). The model output ŷt is composed
of K + 1 value and policy distributions for the current and next K time-steps: {v̂kt , π̂kt }k=0...K . 5

These outputs are obtained from their respective embeddings skt . The target for value predictions
is the game outcome and the targets for the policy predictions are the actions taken by the expert
at, at+1, . . . , at+K . The sample loss L(θ, ŷt, yt) is obtained by summing the K + 1 individual loss
terms for value and policy predictions (see detail in App. A.2). The training procedure for this
retrieval prediction model is summarized in Alg 1.

Algorithm 1 Training semi-parametric action-conditional model
Input: Training dataset D and retrieval dataset Dr

1: Initialize parameter vectors θ, φ.
2: Train key/query network gφ using D.
3: Pre-compute ki = gφ(oi) for all oi ∈ Dr.
4: for each gradient step do
5: Sample mini-batches from D of (ot, yt).
6: For each element ot of the batch, compute qt = gφ(ot).
7: Fetch N neighbor keys with (approx.) smallest distance ||qt − ki||22 for all ki ∈ Dr.
8: Gather meta-data associated with these keys as x1t , . . . x

n
t .

9: Compute model output ŷt = mθ(ot,~a, x
1
t , . . . , x

N
t ).

10: Compute and sum losses L(θ, ŷt, yt).
11: Update θ based on∇θL.
12: end for
13: output θ, φ

In order to act using the trained model, online search is used to generate an improved policy
πs = Search(mθ,Dr). We use MCTS with a pUCT rule for internal action selection [35, 40],
carrying out nsims simulations per time step. Model-based search is implemented as follows: after
retrieving the observation’s neighbors, the encoded state st is computed. Search is carried out from
st by varying the input action sequence ~a for each simulation and collecting the model outputs to
update search statistics. Details of this process can be found in [36]. At the end of the search, the
resulting policy πs(a|ot) can be sampled to select the next action.

Due to the semi-parametric nature of the model supporting the search, introducing changes to Dr will
have an immediate effect on the acting policy πs, even if the model parameters θ remain fixed. As we
explore in Sec. 3.4, this provide a mechanism for fast adaption to new information or experiences.

2.1.3 Using neighbor information

Several choices are possible for the network fθ that processes the observation and neighbors. Since
this is not the main focus of this work, we chose a straightforward approach. We first compute
an embedding oet of the observation ot. We then compute an embedding for each neighbor eti =
pθ(o

e
t , x

t
i), using the same network pθ for all neighbors. These streams are combined in a permutation

invariant way through a sum, and then concatenated with oet to produce the final embedding st, :

st = fθ(ot, x1, . . . , xN ) = [oet ,

∑N
i=1 e

t
i√

N
]. (2)

2.2 Evaluating retrieval in the domain of Go

In order to test the utility of retrieval in RL, we wish to evaluate whether agents can effectively
generalise between related but distinct experiences, as opposed to simply retrieving the outcome
of a previous instance of an identical situation. This motivates our choice of Go as a domain. We
focus on 9x9 Go, instead of full-scale 19x19 Go, as the less demanding computational costs of 9x9
experiments enable a more thorough analysis. Even for 9x9 Go, the state space of 1038 possible
games is vastly larger than the number of positions that we could hope to query.

We collected a dataset of ∼3.5M expert 9x9 Go self-play games from an AlphaZero-style agent [40].
We randomly subsampled 15% of the positions from these games, leaving us with ∼50M board

5In cases where non-terminal rewards exist, we also output reward estimates for each model transition.
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state observations. These, along with metadata on the game outcome, final game board, and future
actions (all encoded as input planes), form our retrieval dataset Dr. We chose to subsample as
we hypothesised that this would reduce the chance of retrieving multiple neighbors from the same
trajectory, and therefore boost the retrieved neighbor diversity. However, we did not perform ablations
on this choice. A future solution would be to use a filtering mechanism to reject neighbors from
the same trajectory. In this initial work, training and retrieval datasets are the same – at least during
training. During training, we split Dr in two halves such that each game’s observations are only in
one of the datasets. We retrieve neighbors for an observation ot from the half it is not contained in.
This is simply to avoid retrieving the same position as the query. Other ways to obtain the same effect
could be devised.

2.3 Regularisation

We wish to make our network robust to poor quality neighbors, in order to ensure that the network can
perform well in settings for which there is lower overlap with the retrieval dataset than encountered
in training. We therefore explore several techniques to improve network robustness to irrelevant
neighbors. We randomly zero-out a subset of retrieved neighbors during training ("neighbor dropout"),
and/or more adversarially, randomly replace a subset of retrieved neighbors with the neighbors of a
different observation ("neighbor randomisation"). Inspired by [10], we also explore using a loss to
regularise the embedding produced by the neighbor retrieval towards the embedding produced with
the observation alone ("neighbor regularisation"). Further details are given in Sec. A.5.

We carried out ablations of these techniques (Appendix Fig. 7), which show that neighbor randomi-
sation is important in some contexts for maintaining performance, but that the others do not seem
to have a significant effect in our final configuration. The results reported in this study utilise all of
these augmentations, as during the development process they had been found to slightly benefit per-
formance. Interestingly, as we explore in later sections, MCTS with enough simulations compensates
for the harmful effect of low-quality neighbors, and can perform effectively without these training
augmentations.

3 Results

3.1 Qualitative examination of retrieved neighbors

Query

Ex
am

pl
e 

1
Ex

am
pl

e 
2

Ex
am

pl
e 

3

Neighbors

Figure 3: Visualisation of N=4 approximate nearest-neighbors retrieved using a learned Go-specific
distance function for 3 query positions (one per row). Red stone indicates the next action(s) – light
red stones indicate white moves, dark red stones indicate black moves. The color of the board border
indicates whether the current player to play (for each board) won the game.

6



Changing a single stone in a Go board can dramatically affect the game, and the number of Go
positions is enormous. We first wanted to assess whether, despite the combinatorial aspect of
the domain, meaningful nearest-neighbors could be retrieved from the dataset using our learned
keys/queries. Examples of retrieved positions in Go are shown in Fig. 3, where we observed relevant
matches in terms of both local and global structure. In some cases, especially in the early game, the
retrieved position is an exact match even though the rest of the game (and therefore the associated
nearest-neighbor meta-data) differs. Row 1 in Fig. 3 is an example of this – in this case, the retrieved
data effectively provides sample rollouts from the query position akin to those derived from MCTS.

�� �� ����

Figure 4: a) Test-set top-1 policy prior π̂0 accuracy (top) and value v̂0 mean-squared error (MSE)
(bottom) over the course of training, for the (non-retrieval) baseline and retrieval models with
N = 2, 10. Results are averaged over 3 seeds (error typically too small to see). Note that the sharp
transitions are due to the learning rate schedule. b) Final performance after training plotted as a
function of number of neighbors N retrieved — a different network is trained for each number of
neighbors. c) Final performance as a function of model size relative to the size used elsewhere in
this study, for networks with N = 10 retrieved neighbors and the non-retrieval baseline. d) Final
performance as a function of the evaluation retrieval dataset size, for networks with N = 10 retrieved
neighbors. The equivalent baseline performance is shown as a dashed line for reference. Note that
the networks are trained with dataset fraction = 0.5 and simply evaluated at other dataset fractions.

3.2 Impact of retrieval on supervised training

We next evaluated the extent to which the model can learn to exploit retrieved information for
better model predictions and better decision-making. First, we evaluated the impact of retrieval on
supervised learning losses. As a baseline comparison, we trained the same network architectures
but setting xi = 0 for all i — this has the effect of maintaining the number of parameters, flops,
and useful capacity in the network, while removing access to the retrieval data. We evaluated losses
for retrieval networks trained with different N (Fig. 4b) and model sizes (Fig. 4c, see Sec. A.1 for
details). Across conditions, we consistently observed a significant boost in test-set accuracy for all
metrics and over the course of training. This improvement to predictions is further observed across
game trajectories, and is not limited, for example, to opening play positions.

One advantage of the semi-parametric approach we outlined is that we can modify the retrieval
dataset and potentially see immediate effects on the prediction, without changing the parameters θ.
We first verified this by evaluating our model when allowed access to varying fractions of the full
dataset Dr (Fig. 4d). We observed clear gains in prediction accuracy from increasing the size of
the retrieval set (only half is used at train time). A further important observation is that large-scale
datasets are clearly important - the evaluation metrics drop below the baseline level for a dataset Dr
that is 1% the size of the full dataset.
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3.3 Evaluation against a reference opponent

While the results observed on the offline dataset suggest a strong positive effect from learning to
leverage the retrieval data, this is in the context of a fixed test data distribution that matches the
retrieval data distribution. When deployed, games played against different opponents will likely
diverge from that distribution. We evaluated the performance of our search policy πs (nsims = 200)
by playing against a fixed reference opponent — the Pachi program [5], which can perform beyond
strong amateur level of play in 9x9 Go given sufficient simulation budget (we evaluate against 400k
simulations). We observed a significant boost to performance for retrieval-based networks over the
equivalent baseline network of the same capacity (Fig. 5). Interestingly, as shown in Appendix Fig. 8,
playing using only the base policy prior π̂0 shows a much smaller boost over the baseline network.
As we explore further below, the quality of retrieved neighbors available during play is much lower
than for training - we hypothesise that the search policy is more robust to this distributional shift than
π̂0.

�� ��

Figure 5: Win rate against a fixed reference opponent (Pachi) when playing using the MCTS policy πs
for (a) retrieval networks using varying numbers of retrieved neighbors and for a baseline non-retrieval
network. (b) Win rate as a function of model size relative to the size used elsewhere in this study.
Retrieval leads to a clear performance boost compared to non-retrieval baselines of the same capacity.

3.4 Augmenting the retrieval dataset

����

Figure 6: (a) Distribution of similarity distances from an encoded observation to its retrieved nearest
neighbors. Retrieving from the original retrieval dataset using positions from the test dataset (orange)
gives neighbors with a markedly different distance distribution to positions queried during play
against a Pachi opponent (blue). Augmenting the retrieval dataset with ∼600k recorded agent-Pachi
game states improves the similarity distribution (green). (b) For play with the MCTS policy πs, this
augmentation also leads to a consistent win-rate boost (green) over using the train retrieval dataset
alone (blue).

We observed a significant distribution shift between game positions observed in play against the Pachi
opponent versus positions in the retrieval dataset (Fig. 6a), as measured by the empirical distance
distribution of game observations to their approximate nearest neighbors. Changing or augmenting
the retrieval datasetDr modifies this distributional shift. A particularly interesting modification in this
setting is to augment the dataset with play recorded between our agents and the Pachi opponent. As
can be seen in Fig. 6a, augmenting the dataset with a set of ∼600k agent-Pachi game states increases
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the similarity between positions observed in play and their retrieved neighbors. Strikingly, we found
that integrating these games into our retrieval dataset leads to improvements in performance without
further training for subsequent play against the Pachi opponent (play with the MCTS policy πs is
shown in Fig. 6b, play with the policy prior π̂0 is shown in Appendix Fig. 9). This highlights the
potential of a semi-parametric model to rapidly integrate recent experience without further training.

As a related intervention, we instead inputted randomly retrieved neighbors into the model at
evaluation time (see Appendix Fig. 6). This significantly impaired performance for play using the
policy prior π̂0, but somewhat unexpectedly, for play with the MCTS policy πs, performance did not
fully regress to the level of the baseline network. This suggests that our retrieval network is able to
amortise some information from neighbors during training, leading to better performance even when
no relevant neighbors are available.

4 Related work

The idea of supporting decision making by directly attending to a cache of related events has
been visited many times in different contexts, under the names of case-based reasoning [30], non-
parametric RL [16, 4, 1, 27], or episodic memory [20, 23]. The aim of some methods is to better
support the working memory of an agent during a given episode [26, 42] or a series of successive
related episodes [33]. Other methods, including ours, aim to leverage a broader class of relevant
experience or persistent knowledge (including across episodes, and from other agents) to better
support reasoning and planning. One differentiating factor in our work to these past approaches is that
we do not prescribe how to process the information from the available data (e.g. through specifying
the agent’s action-value directly in terms of previously generated value estimates [6, 13, 15, 29], or a
model from observed transitions [39]) but rather learn end-to-end how the data can support better
predictions within the parametric model. A recent approach by Goyal et al. [10] has considered an
attention mechanism to select where and what to use from available trajectories, but over a small
retrieval batch of data rather than the full available experience data. Another class of method to
leverage a transition dataset is to replay the data at training time in order to perform more gradient
steps per experience, this is a widespread technique in modern RL algorithms [21, 22, 25, 36] but it
does not benefit the agent at test time, requires additional learning steps to adapt to new data, and
does not allow end-to-end learning of how to relate past experience to new situations.

5 Discussion

Our approach and empirical results highlight how reinforcement learning agents can benefit from
direct access to a large collection of raw interaction data at inference time, through a retrieval
mechanism, in addition to their already effective parametric representation. We showed this was the
case even 1) when the domain is large enough to require generalisation in how to interpret past data,
2) when there is significant distribution shift when acting, and 3) at a scale where only approximate
nearest-neighbors can be retrieved. We believe this already demonstrates the potential of this approach
for many possible scenarios and applications.

We show that retrieval can be effectively combined with model-based search. We find that the
benefits from retrieval and search are synergistic, with increasing numbers of retrieved neighbors and
increasing simulations both leading to performance increases in almost all contexts we investigated.
Furthermore, empirical evidence suggests that search significantly improves agent robustness to
distributional shift as compared to playing with the policy prior. In Appendix Fig. 10, we compare
the boost in performance as a function of parametric-model compute cost for increasing MCTS simu-
lations versus increasing the number of retrieved neighbors processed by the model. This provides a
tentative indication that retrieval is also a compute efficient means of improving performance.

A key future direction is to investigate the online learning scenario in which recent experience of the
agent is rapidly made available for retrieval, hence progressively growing the retrieval dataset over
the course of training. While there are additional challenges associated with the online paradigm
(e.g., it may be desirable to update the queries and/or keys during training [12]), the fast adaptation
effect we highlighted in this work may have even more impact there.

There are many potentially relevant sources of information beyond an agent’s own experience, or
that of other humans or agents. For example, it has been shown that YouTube videos are useful
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for learning to play the Atari game Montezuma’s revenge [2]. Training an embedding network on
sufficiently diverse data may enable retrieval of information from a wide range of contexts [43],
including third-person demonstrations, videos and perhaps even books.
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