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Abstract

Lipschitz constrained networks have gathered considerable attention in the deep
learning community, with usages ranging from Wasserstein distance estimation
to the training of certifiably robust classifiers. However they remain commonly
considered as less accurate, and their properties in learning are still not fully
understood. In this paper we clarify the matter: when it comes to classification
1-Lipschitz neural networks enjoy several advantages over their unconstrained
counterpart. First, we show that these networks are as accurate as classical ones,
and can fit arbitrarily difficult boundaries. Then, relying on a robustness metric that
reflects operational needs we characterize the most robust classifier: the WGAN
discriminator. Next, we show that 1-Lipschitz neural networks generalize well
under milder assumptions. Finally, we show that hyper-parameters of the loss
are crucial for controlling the accuracy-robustness trade-off. We conclude that
they exhibit appealing properties to pave the way toward provably accurate, and
provably robust neural networks.

1 Introduction

1-Lipschitz neural networks have drawn great attention in the last decade, with motivation ranging
from adversarial robustness to Wasserstein distance computation. In the following, we denote by
LipNet1 the class of 1-Lipschitz neural networks, by AllNet the class of neural networks without
constraints on their Lipschitz constant, i.e conventional neural networks.

Roughly speaking, the Lipschitz constant of neural networks quantifies how much their outputs
can change when inputs are perturbed. When this constant is high, as it is often the case for
neural networks of AllNet , they become vulnerable to adversarial attacks (see [1, 2] and references
therein): a carefully chosen small noise added to the inputs, usually imperceptible, can change the
class prediction. One possible defense against adversarial attacks is to constrain the network to
be 1-Lipschitz (in LipNet1 ) [3], which provides provable robustness guarantees, together with an
improvement of generalization [4] and interpretability of the model [5]. LipNet1 networks are also
used to estimate Wasserstein distance, thanks to Kantorovich-Rubinstein duality in the seminal work
of WGAN [6].

Despite their competitiveness with networks of AllNet on medium scale problems [7, 8], they still
suffer from misconceptions. A belief commonly invoked against networks of LipNet1 is that they are
less expressive: “Lipschitz-based approaches suffer from some representational limitations that may
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prevent them from achieving higher levels of performance and being applicable to more complicated
problems” [9].

Although this claim seems rational at first glance, the link between Lipschitz constant and expressive-
ness is not trivial. While there is an obvious lack of expressiveness for regression tasks, this intuition
fades when it comes to classification. Indeed, every AllNet network g : Rn → RK is L-Lipschitz
for some (generally unknown) L > 0. Then f = 1

Lg is a 1-Lipschitz neural network with the same
decision boundary, since prediction arg maxk gk is invariant by positive rescaling of the logits. In
particular, f has the same accuracy and also the same robustness to adversarial attacks as g. We
illustrate this empirically by training a LipNet1 network until it reaches 99.96% accuracy on
CIFAR-100 with random labels (see Appendix I).

We demonstrate that LipNet1 networks are theoretically better grounded than AllNet networks when it
comes to classification, through our threefold contribution on Expressiveness (Section 3), Robustness
(Section 4) and Generalization (Section 5).

First, in Section 3 we confirm that LipNet1 are as expressive as AllNet networks for classification,
and can learn arbitrary complex decision boundary. We show that hyper-parameters of the loss are of
crucial importance, and control the ability to fit properly the train set.

Then, in Section 4 we show that accuracy and robustness are often antipodal objectives. We
characterize the robustness of the highest accuracy LipNet1 classifier: it is achieved by the Signed
Distance Function (Definition 6 in Appendix A). We also characterize the classifier of highest
certifiable robustness, and we show it corresponds to the dual potential of Wasserstein-1 distance (i.e
the discriminator of a WGAN [6]).

Finally, in Section 5 we show that LipNet1 benefit from several generalization guarantees. They are
consistent estimators: contrary to AllNet , we prove that their train loss will converge to test loss
as the size of the train set increases. Moreover, we show that LipNet1 classifiers with margin are
PAC-learnable [10]: it provides bounds on the number of train examples required to reach a targeted
test accuracy. Interestingly, this bound is independent of the architecture size, which allows to train
enormous LipNet1 networks without risking overfitting.

2 Notations and experimental setting

The core of the paper mainly deal with binary classification over Rn with label set Y = {−1,+1}.
Let (X,Y ) be a random variable taking values on X ×Y , where X ⊂ Rn is assumed to be a compact
set. Such a pair follows the joint distribution PXY , defined on the space of probability measures
P(X × Y). The marginal distribution of X is denoted by PX ∈ P(X ) and its support by supp PX .
We suppose the observation of a sample (x1, y1), . . . , (xp, yp) i.i.d. with common law PXY , and the
goal is to learn a classifier c : X → Y modeling the optimal Bayes classifier arg maxy∈Y PY |X(y|x).
P (resp. Q) denotes the input distribution of label +1 (resp. −1).

The Lipschitz constant Lip(f) of a function f : Rn → RK is defined as the smallest L ≥ 0 such that
for all x, z ∈ Rn we have ‖f(x)−f(z)‖ ≤ L‖x− z‖. In the rest of the paper, we focus on euclidean
norm ‖ · ‖ for vectors and spectral norm ‖ · ‖2 for matrices. The set of L-Lipschitz functions over
X ⊂ Rn with image in RK is denoted LipL(X ,RK).

Definition 1 (Class of AllNet networks)
AllNet denotes the set of unconstrained neural networks. It includes any feed-forward network of
fixed depth (without recurrent mechanisms) using affine layers (including convolutions and batch
normalization) with weight matrices W1,W2, . . .Wd and Lipschitz activation function σ (such as
ReLU, sigmoid, tanh, etc). No constraint is enforced on their Lipschitz constant during training.

Definition 2 (Class of LipNet1 networks)
LipNet1 denotes the set of feed-forward neural networks f defined as in Theorem 3 of Anil et al. [11]:
‖W1‖2→∞ ≤ 1 (see [12] for details on the mixed norm ‖ · ‖2→∞) and ‖Wi‖∞ ≤ 1 for i ≥ 2, and
GroupSort2 activation function. They fulfill Lip(f) ≤ 1.

Remark. AllNet networks benefit from universal approximation theorem in C(X ,RK), a classical
result of literature [13]. LipNet1 networks also benefit from an universal approximation theorem
in Lip1(X ,R) with respect to uniform convergence [11]. Note that LipL(X ,RK) = {Lf | f ∈
Lip1(X ,RK)} so LipNet1 can be used to approximate functions in LipL(X ,RK).
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In practice authors of [11] noticed that using orthogonal weight matrices (i.e WT
i W = I) yielded the

best results. All our experiments use the Deel.Lip1 library [8], following ideas of [11]. The networks
use 1) orthogonal weight matrices and 2) GroupSort2 activations [11]. Orthogonalization is enforced
using Spectral normalization [14] and Björck algorithm [15]. These networks belong to LipNet1 by
construction (see Appendix D for our choice of architecture and relevant related work).

LipNet1 networks provide robustness radius certificates against adversarial attacks [16]. Comput-
ing these certificates is straightforward and does not increase runtime, contrary to methods based
on bounding boxes or abstract interpretation [17, 18, 19, 20]. There is no need for adversarial
training [21] that fails to produce guarantees, or for randomized smoothing [22] which is costly.

Confusingly, any network of AllNet has a finite Lipschitz constant, but computing it is NP-hard [23].
Only a loose upper bound can be cheaply estimated: Lip(f) ≤ Lip(σ)dΠd

i=1‖Wi‖2 using the property
that Lip(fd ◦ fd−1 ◦ . . . ◦ f1) ≤ Πd

i=1Lip(fi). In practice, this bound is often too high to provide
meaningful certificates and besides, AllNet networks have usually very small robustness radius [1].

Definition 3 (Adversarial Attack)
For any classifier c : X → Y , any x ∈ Rn, consider the following optimization problem:

ε = min
δ∈Rn

‖δ‖ such that c(x+ δ) 6= c(x). (1)

δ is an adversarial attack, x+ δ is an adversarial example, and ε is the robustness radius of x.

Property 1 (Local Robustness Certificates [16]). For any f ∈ LipNet1 the robustness radius ε of
binary classifier sign ◦ f at example x verifies ε ≥ |f(x)|.

Losses: The Binary Cross-Entropy (BCE) loss (also called logloss) is among the most popular
choices of loss within the deep learning community. Let f : Rn → R a neural network. For an
example x ∈ Rn with label y ∈ Y , and σ(x) = 1

1+exp (−x) the logistic function mapping logits
to probabilities, the BCE is written Lbceτ (f(x), y) = − log σ(yτf(x)), with temperature scaling
parameter τ > 0. This hyper-parameter of the loss defaults to τ = 1 in most frameworks such as
Tensorflow or Pytorch. Note thatLbceτ (f(x), y) = Lbce1 (τf(x), y) so we can equivalently tune τ or the
Lipschitz constant L. We show in Section 5.1 that for LipNet1 the temperature τ allow to control
the generalization gap. We also consider the Hinge loss LHm(f(x), y) = max (0,m− yf(x)) with
margin m > 0, as used in [3] for LipNet1 networks training.

We focus on binary classification for readability and clarity purposes; however, we prove in Appen-
dices A.2 and E that the following theoretical results generalize to the multi-class case, as done
in experiments. The proofs of all propositions can be found in the appendix.

3 1-Lipschitz classifiers are expressive

In this section, we show that LipNet1 are as powerful as any other classifier, like their unconstrained
counterpart. In particular, when classes are separable they can achieve 100% accuracy.

3.1 Boundary decision fitting

Proposition 1. Lipschitz Binary classification. For any binary classifier c : X → Y with closed
pre-images (c−1({y}) is a closed set) there exists a 1-Lipschitz function f : Rn → R such that
sign(f(x)) = c(x) on X and such that ‖∇xf‖ = 1 almost everywhere (w.r.t Lebesgue measure).

The level-sets of a Lip1(X ,RK) functions (and especially the decision boundary) can be arbitrarily
complex: restraining classifiers to Lip1(X ,R) does not affect the classification power.

Definition 4 (ε-separated distributions)
Distributions P and Q are ε-separated if the distance between supp P and supp Q exceeds ε > 0.

Corollary 1. Separable classes implies zero error. If P and Q are ε-separated, then there exists a
network f ∈ LipNet1 such that error E(sign ◦ f) := E(x,y)∼PXY [1{sign(f(x)) 6= y}] = 0.

1https://github.com/deel-ai/deel-lip distributed under MIT License (MIT).
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(a) Complex Decision Boundary ∂. We chose ∂ as
the fourth iteration of Von Koch Snowflake. We chose
P as the interior ring, while the center and the exterior
correspond to Q. We train a LipNet1 network with
MSE to fit the SDF (Definition 6 in Appendix) ground
truth (160 000 pixels), until MAE is inferior to 1. It
proves empirically that LipNet1 networks can handle
very sharp (almost fractal) decision boundary.

(b) Importance of τ in BCE. We train a
LipNet1 network with BCE and different values for
τ . We chose a toy example where P and Q are Gaus-
sian mixtures with two modes of weights 0.9 and 0.1.
We highlight the different shapes of the minimizer
σ ◦ f as function of τ . High values of τ leads to bet-
ter fitting, whereas for lower τ the small weights
Gaussian of the mixture are treated as noise and
ignored.

Figure 1

The class of LipNet1 networks does not suffer from bias for classification tasks. Some empirical
studies show that indeed most datasets classes are separable [24] such as CIFAR10 or MNIST.
Furthermore, even if the classes are not separable, functions of LipNet1 can nonetheless approximate
the optimal Bayes classifier. Lipschitz constraint is not a constraint on the shape of the boundary
(Figure 1a), but on the slope of the landscape of f .

3.2 Understanding why LipNet1 are often perceived as not expressive

LipNet1 networks cannot reach zero loss with BCE: this may explain why they are perceived as not
expressive enough. Yet the minimizer of BCE exists and is well defined.

Proposition 2. BCE minimization for 1-Lipschitz functions. Let X ⊂ Rn be a compact and
τ > 0. Then the infimum in Equation 2 is a minimum, denoted fτ ∈ Lip1(X ,R):

fτ ∈ arg inf
f∈Lip1(X ,R)

E(x,y)∼PXY [Lbceτ (f(x), y)]. (2)

Moreover, the LipNet1 networks will not suffer of vanishing gradient of the loss (see Appendix F).

Machine learning practitioners are mostly interested in maximizing accuracy.However, the minimizer
of BCE is not necessarily a minimizer of the error (see Figure 1b). Yet, BCE is notoriously a
differentiable proxy of the error E(sign ◦ f), and as τ → ∞ we get asymptotically closer to
maximum empirical accuracy. Bigger value for τ might ultimately lead to overfitting, playing the
same role as the Lipschitz constant L (see Figure 1b).

The implicit parameter τ = 1 of the loss is partially responsible of the poor accuracy of
LipNet1 networks in literature, and not by any means the hypothesis space LipNet1 itself. This
can be observed in practice : when temperature τ (resp. margin m) of cross-entropy (resp. hinge loss)
is correctly adjusted a small LipNet1 CNN can reach a competitive 88.2% validation accuracy on
the CIFAR-10 dataset (results synthetized and discussed in Figure 3) without residual connections,
batch normalization or dropout. Conversely, AllNet networks are roughly equivalent to learning a
LipNet1 network with τ → ∞: without regularization or data augmentation, such a network can
always reach 100% train accuracy without generalization guarantees.
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Figure 2: Accuracy-robustness tradeoff: Each network is optimal with respect to a certain criterion.
The leftmost network is the most accurate at robustness radius ε ≤ 0.3, the rightmost maximizes the
MCR at the cost of low clean accuracy. The center network corresponds to a compromise.

4 1-Lipschitz classifiers are certifiably robust

Is there a trade-off between accuracy and robustness? Although the existence of a trade-off
between accuracy and robustness is commonly admitted, some works argue that “Robustness is not
inherently at odds with accuracy”[24]. We propose a unified consideration by stating that for a given
train accuracy, robustness can be maximized up to a certain point, but allowing a lower train accuracy
helps achieving a higher robustness. Finally one must keep in mind that this trade-off lives in the
shade of generalization (see Section 5).

4.1 Improving the robustness of the maximally accurate classifier

The Signed Distance Function [25] (SDF) (see Definition 6 in Appendix A) associated to the frontier
∂ of Bayes classifier b is the 1-Lipschitz function that provides the largest certificates among the
classifiers of maximum accuracy. Moreover, those certificates are exactly equal to the distance of
adversarial samples. Iterative gradient based attacks (see [26] and references therein) can succeed in
one step: far from being a weakness, this may improve the interpretability of the model [27, 28, 29].
Corollary 2. For the SDF(b), the bound of Property 1 is tight: ε = |f(x)|. In particular δ =
−f(x)∇xf(x) is guaranteed to be an adversarial attack. The risk is the smallest possible. There is
no classifier with the same risk and better certificates. Said otherwise the SDF(b) is the solution to:

max
f∈Lip1(Rn,R)

min
x∈X

min
δ∈Rn

sign(f(x+δ)) 6=sign(f(x))

‖δ‖,

under the constraint f ∈ arg min
g∈Lip1(Rn,R)

E(sign ◦ g).
(3)

The SDF(b) cannot be explicitly constructed since it relies on the (unknown) optimal Bayes classifier.

4.2 Improving the accuracy of the maximally robust classifier

On the opposite side, we exhibit a family of classifiers with lower accuracy but with higher certifiable
robustness. We insist that the quantity of interest is the certifiable robustness |f(x)| and not the
true empirical robustness ε (which can be higher). The former is computed exactly and freely,
while the latter is a difficult problem for which only upper bounds returned by attacks are available.
In the literature, the robustness is only evaluated on well classified examples. The certificate can
be both interpreted as a form of “confidence” of the network, and as the minimal perturbations
required to switch the class. Hence, we shall weight negatively this certificate for the examples that
are misclassified since confidence in presence of errors is worse. For this reason, we propose in
Definition 5 a new metric called the Mean Certifiable Robustness (MCR).
Definition 5 (Mean Certifiable Robustness – MCR)
For any function f : X → R ∈ LipNet1 we define its weighted mean certifiable robustnessR(P,y)(f)
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on class P with label y as:

R(P,y)(f) := Ex∼P [1{yf(x) > 0}|f(x)|] + Ex∼P [−1{yf(x) < 0}|f(x)|] = Ex∼P yf(x).
(4)

We can readily see from the definition that the classifier with highest MCR for class P is the constant
classifier f = y × ∞. The interest of this notion arises when we consider minimizing the loss
function LW (f(x), y) := −yf(x), i.e when looking for classifier with the highest MCR.
Property 2. Wasserstein classifiers (i.e WGAN discriminators) are optimally robust. The mini-
mum of LW (f(x), y) over P and Q is the Wasserstein-1 distance [30] between P and Q according
to the Kantorovich-Rubinstein duality:

max
f∈Lip1(X ,R)

R(P,+1)(f) +R(Q,−1)(f) = min
f∈Lip1(Rn,R)

EPXY [LW (f(x), y)] =W1(P,Q). (5)

Even though the minimizer of LW (f(x), y) can have low accuracy, it has the highest MCR. Inter-
estingly, the minimizer f∗ of equation 5 is invariant by translation: f∗ − T is also a minimizer for
any T ∈ R. When T →∞ (resp. −∞) the classifier has 100% recall on Q (resp. P ), and 0% on P
(resp. Q). Does it always exist T ∗ with 100% accuracy overall? Sadly, even when the P and Q have
disjoint support, the answer is no. We precise this empirical observation of [8] in Proposition 3.
Proposition 3. WGAN discriminators are weak classifiers. For every 1

2 ≥ ε > 0 there exist
distributions P and Q with disjoint supports in R such that for any optimum f of equation 5, the
error of classifier sign ◦ f is superior to 1

2 − ε.

Note that this minimum also invariant by dilatation: any finite upper bound L can be chosen for
Equation 5 (see Appendix G).

4.3 Controlling the accuracy/robustness tradeoff with loss parameters

Now that the extrema of the accuracy robustness tradeoff were characterized in 4.1 and 4.2, is yet to
be answered if it is possible to control this tradeoff using conventional loss (and its parameters, as
introduced in 3.2).

Interestingly, observe that Lbceτ (f(x), y) = log 2− yτf(x)
2 +O(τ2f2(x)) so when τ → 0 we get:

min
f∈Lip1(X ,R)

4

τ

(
E(x,y)∼PXY [Lbceτ (f(x), y)]− log 2

)
= −W1(P,Q).

In the limit of small temperatures, the BCE minimizer essentially behaves like the classifier of the
highest MCR (see Figure 3 and Appendix H). Similarly, the HKR loss Lhkr introduced in [8] for
LipNet1 training allows fine grained control of the accuracy-robustness tradeoff:

Lhkrm,α(f(x), y) = LW (f(x), y) + αLHm(f(x), y) = −yf(x) + αmax (0,m− yf(x)). (6)

We recoverW1 behavior for α = 0, and hinge LHm behavior for α→∞, in a fashion that reminds
the role of τ for Lbce.
A key takeaway is that BCE, HKR and hinge loss have parameters that allow to control the accuracy
robustness tradeoff, reaching on one side the maximum robustness of MCR, and the accuracy of
unconstrained networks on the other. Empirically this tradeoff is observed as a Pareto front with
accuracy on one axis, and robustness on the other. Figure 3 shows this on the CIFAR10 dataset using
the ε robustness as robustness measures (other robustness measure yield similar observations, see fig
10a and 10b).

In conclusion, these last two sections demonstrate that restraining networks to be in LipNet1 does
not impact the classification capabilities while providing certificates of robustness; however, for these
networks the loss parameters play an important role in this trade-off.

5 1-Lipschitz classifiers have generalization guarantees

In this section, we explore the statistical and optimization properties of LipNet1 networks, and we
prove the assumption of [31] that “adjusting the Lipschitz constant of a feed-forward neural network
controls how well the model will generalise to new data”.
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Figure 3: Accuracy-Robustness trade-off on CIFAR10 with Hinge, HKR and Categorical Cross-
Entropy (CCE) hyper-parameters. Overall, for a given network architecture, a Pareto front appears
between clean accuracy and robust accuracy. We move along it by tuning the parameters of each loss.
We trained small LipNet1 CNNs (0.4M params) with basic data augmentation (see appendix K for
detailed experimental setting).

5.1 Consistency of LipNet1 class

LipNet1 class enjoys another remarkable property since it is a Glivenko-Cantelli class: minimizers of
Lipschitz losses are consistent estimators. In other words, as the size of the training set increases, the
training loss becomes a proxy for the test loss: LipNet1 neural networks will not overfit in the limit
of (very) large sample sizes.
Proposition 4. Train Loss is a proxy of Test Loss. Let PXY a probability measure on X × Y
where X ⊂ Rn is a bounded set. Let (xi, yi)1≤i≤p be a sample of p iid random variables with law
PXY . Let L be a Lipschitz loss function over R× Y . We define:

Ep(f) :=
1

p

p∑
i=1

L(f(xi), yi) and E∞(f) := E(x,y)∼PXY [L(f(x), y)]. (7)

Then the empirical loss Ep(f) converges to the test loss E∞(f) (taking the limit p→∞):

min
f∈LipL(X ,R)

Ep(f)
a.s−−→ min

f∈LipL(X ,R)
E∞(f). (8)

It is another flavor of the bias-variance trade-off in learning. Thanks to Corollary 1 we know the
LipNet1 class does not suffer of bias, while the generalization gap (i.e the variance) can be made as
small as we want by increasing the size of the training set (see Figure 4). The number of examples
required to close the generalization gap is dataset specific in general, however it seems that with low
τ fewer examples are required. This result may seem obvious, but we emphasize this property is not
shared by AllNet networks (see Proposition 9 in Appendix C.2). Nonetheless, most practitioners
take for granted that bigger training sets ensure generalization for AllNet networks.

5.2 Understanding why unconstrained networks are prone to overfitting

Surprisingly, on AllNet networks, minimization of BCE leads to uncontrolled growth of Lipschitz
constant and saturation of the predicted probabilities. This is an impediment to generalization results.
Proposition 5. Optimizing BCE over AllNet leads to divergence. Let ft be a sequence of neural
networks, that minimizes the BCE over a non-trivial training set (at least two different examples with
different labels) of size p, i.e assume that:

lim
t→∞

1

p

p∑
i=1

Lτ (ft(xi), yi) = 0. (9)

Let Lt be the Lipschitz constant of ft. Then limt→∞ Lt = +∞. There is at least one weight matrix
W such that limt→∞ ‖Wt‖ = +∞. Furthermore, the predicted probabilities are saturated:

lim
t→∞

σ(ft(xi)) ∈ {0, 1}. (10)
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Figure 4: Link between LipNet1 and generalization gap, dataset size and cross-entropy tem-
perature. We train a CNN on different fractions of the CIFAR10 train set (2%, 5%, 10%, 25%, 50%
and 100% on x-axis) with different values of temperature τ (highlighted by different colors). Train
(resp. validation) accuracy forms the upper (resp. lower) bound of each envelope. As τ increases,
more samples are required to reduce the generalization gap. Conversely, training a LipNet1 network
with small τ is equivalent to training a Lipschitz network with small L: the network generalizes
well but the accuracy reaches a plateau (under-fitting). The AllNet network (in red) severely overfit:
the generalization gap is large and validation accuracy corresponds to the limit that would reach a
LipNet1 as τ increases. See appendix J for detailed experimental setting.

This issue is especially important since Lipschitz constant and adversarial vulnerabilities are re-
lated [32]. The predicted probability σ(f(x)) will either be 0 or 1 (regardless of the train set), which
do not carry any useful information on the true confidence of the classifier

Example 1. Consider a classification task on R with
linearly separable inputs {−1, 1} and labels {−1, 1}.
We use an affine model f(x) = Wx + b for the logits
(with W ∈ R and b ∈ R) (one-layer neural network). It
exists W̄ , b̄ such that f achieves 100% accuracy. How-
ever, as noticed in [33] (Section 4.3.2) the BCE loss
will not be zero. The minimization occurs only with the
diverging sequence of parameters (λW̄ , λb̄) as λ→∞.
It turns out the infimum is not a minimum!

Figure 5

Even on toy example 1 with a trivial model, the minimization problem is ill-defined. Without weight
regularization, the minimizer can not be attained. This is compliant with the high Lipschitz constant
of AllNet networks that have been observed in practice [23], and is confirmed by our experiment on
MNIST with a ConvNet (see Figure 12). The spectral norm of the weights is multiplied by 5 over the
course of 25 epochs, whereas the validation accuracy remains the same (around 99%).

Furthermore, there is an issue of vanishing gradients with BCE : first order methods struggle to
saturate the logits of AllNet networks, whereas second order methods in float64 diverge as expected.
The poor properties of the optimizer, and the rounding errors in 32 bits floating point arithmetic, have
greatly contributed to the caveat of BCE minimization remaining mostly unnoticed by the community.

5.3 Lipschitz classifiers are PAC learnable

Hinge loss LHm and HKR loss Lhkr benefit from Proposition 4. The certificate |f(x)| can be
understood as confidence. Hence, we are interested in a classifier that makes a decision only if the
prediction is above some threshold m > 0, while |f(x)| < m can be understood as examples x
for which the classifier is unsure: the label may be flipped using attacks of norm ε ≤ m. In this
setting, we fall back to PAC learnability [10]: this theory gives bounds on the number of train samples
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Properties AllNet network LipNet1 network

Fit any boundary yes [13] yes (Proposition 1)
Robustness certificates no yes (Property 1)
Consistent estimator no (App C.2) yes (Proposition 4, Figures 1b, 4)

Gradients exploding or vanishing preserved for GNP (App F)
VC dimension bounds architecture dependent [35] when m > 0 (Proposition 6)

BCE Lbceτ
minimizer ill-defined Lt )∞ (Proposition 5) attained (Proposition 2)

remark vanishing gradient (Ex 1) L or τ must be tuned (Figure 3)

Wasserstein LW minimizer ill-defined Lt )∞ attained, robust (Property 2)
remark diverges during training weak classifier (Proposition 3)

Hinge LHm
minimizer attained attained

remark no guarantees on margin m must be tuned

HKR Lhkrm,α
minimizer ill-defined Lt )∞ accuracy-robustness tradeoff

remark diverges during training α and m must be tuned (Figure 3)

Table 1: Summary of notable results and the contributions.

required to guarantee that the test error will fall below some threshold 0 ≤ e < 1
2 with probability at

least 1 > β ≥ 0, through the use of Vapnik Chervonenkis (VC) dimension bounds [34].
Proposition 6. 1-Lipschitz Functions with margin are PAC learnable. Assume P and Q have
bounded support X . Let m > 0 the margin. Let Cm(X ) = {cmf : X → {−1,⊥,+1}, f ∈
Lip1(X ,R)} be the hypothesis class defined as follow.

cmf (x) =


+1 if f(x) ≥ m,
−1 if f(x) ≤ −m,
⊥ otherwise, meaning “f doesn’t feel confident”.

(11)

Let B be the unit ball. Then the VC dimension of Cm is finite:

(
1

m
)n
vol(X )

vol(B)
≤ V Cdim(Cm(X )) ≤ (

3

m
)n
vol(X )

vol(B)
. (12)

Interestingly if the classes are ε separable (ε > 0), choosing m = ε guarantees that 100% accuracy is
reachable. Prior over the separability of the input space is turned into VC bounds over the space of
hypothesis. When m = 0 the VC dimension of space Cm(X ) becomes infinite and the class is not
PAC learnable anymore: the training error will not converge to test error in general, regardless of the
size of the training set. It is not a contradiction with Proposition 4: error E(cmf (x)) lacks continuity
w.r.t f(x) so it is not a consistent estimator.

This VC bound is architecture independent which contrasts with the rest of literature on
AllNet networks. Practically, it means that the LipNet1 network architecture can be chosen as big as
we want without risking overfitting, as long as the margin m is chosen appropriately. Proposition 7
also provides an architecture dependant bound for LipNet1 networks.
Proposition 7. VC dimension of LipNet1 neural networks. Let fθ : Rn → R a LipNet1 neural
network with parameters θ ∈ Θ, with GroupSort2 activation functions, and a total of W neurons.
LetH = {signfθ|θ ∈ Θ} the hypothesis class spanned by this architecture. Then we have:

V Cdim(H) = O
(
(n+ 1)2W

)
. (13)

In literature, tighter VC dimension bounds for neural networks exist, but they assume element-wise
activation function [35]. This hypothesis does not apply to GroupSort2 which is known to be more
expressive [36], however we believe that this preliminary result can be strengthened.

6 Related work

LipNet1 networks parametrization benefit from a rich literature (see Appendix D) to enforce
the Lipschitz constraint in various layers [37, 38, 6, 39, 40, 14, 41, 42, 43, 44] such as activation
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functions, affine layers, attention layers or recurrent units. Residual connections are also Lipschitz
(see Appendix F). Gradient Norm Preserving networks avoid the vanishing gradients [3, 45]
phenomenon to which the LipNet1 networks are prone, by using orthogonal matrices in affine layers.
This justifies the “orthogonal neural network” terminology [46, 47, 48]. ReLU based Lipschitz
networks suffer from expressiveness issues [11], and activation functions like GroupSort [11, 36]
(a special case of Householder reflection [49, 50]) have been proposed in replacement. Orthogonal
kernels are still an active research area [51, 52, 53, 54, 3, 55, 56, 57]. They are used in normalizing
flows [58], ensemble methods [59], reinforcement learning [60] or graph neural networks [61]. The
optimization over the group of orthogonal matrices (known as Stiefel manifold) has been extensively
studied in [62], and algorithms suitable for deep learning are detailed in [63, 64, 64, 65, 66, 67, 68,
69].

Generalization bounds for general Lipschitz classifiers are given in [70, 71, 72]. Links between
adversarial robustness, large margins classifiers and optimization bias are studied in [73, 74, 16, 75].
The importance of the loss in adversarial robustness is studied in [76]. See Appendix C.5.

7 Conclusions

In this paper, we challenged the common belief that constraining Lipschitz constant degrades the
classification performance of neural networks. We proved that LipNet1 networks exhibit numerous
attractive properties (see Table 1 in summary): they provide robustness radius certificates without
restrictions on their expressive power. They benefit from generalization guarantees. We showed that
the hidden parameters of the loss allow to control the generalization gap and certifiable robustness.

While the question of the LipNet1 architecture is often in the spotlight, the loss is overlooked. We
pointed out that Cross-Entropy is not necessarily the best choice, margin-based losses, such as hinge
or its variant HKR, have appealing properties (table 1).

8 Perspectives

This paper aims to be at the intersection between theoretical ML and (empirical) deep learning.
Lipschitz constrained networks allow to directly put in perspective mathematical proofs and we are
confident that this theory can be verified empirically on very large-scale vision datasets (such as
Imagenet [77]).

This paper also provides a toolbox of results and experiments to serve as a basis for future works. We
aim to open new research directions, including outside the field of robust learning. AllNet networks
could benefit from LipNet1 literature: the absence of control over the Lipschitz constant of AllNet is
mitigated in practice by elements such as mixup or weight decay. Such elements would be better
understood by looking at how they affect the (uncontrolled) Lipschitz constant of AllNet .

The efficient training over LipNet1 is still an active research area. Moreover, AllNet networks benefits
from architectural elements such as skip connections and batch normalization (see appendix F). As
LipNet1 networks get more mature, empirical results will improve, matching theory even more
(explaining the emphasis on the theoretical proofs instead of the design of LipNet1 depicted in
appendix D).

Many practices in deep learning entangle the questions of architecture, of generalization and of
optimization. However, these elements usually have unexpected consequences on the nature of the
optimum and the optimization process. Our work is a first step toward a better separation of these
components and their role.
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