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Abstract

We propose a projection-free conditional gradient-type algorithm for smooth
stochastic multi-level composition optimization, where the objective function is a
nested composition of T functions and the constraint set is a closed convex set. Our
algorithm assumes access to noisy evaluations of the functions and their gradients,
through a stochastic first-order oracle satisfying certain standard unbiasedness and
second-moment assumptions. We show that the number of calls to the stochas-
tic first-order oracle and the linear-minimization oracle required by the proposed
algorithm, to obtain an ϵ-stationary solution, are of order OT (ϵ

−2) and OT (ϵ
−3)

respectively, where OT hides constants in T . Notably, the dependence of these
complexity bounds on ϵ and T are separate in the sense that changing one does not
impact the dependence of the bounds on the other. For the case of T = 1, we also
provide a high-probability convergence result that depends poly-logarithmically on
the inverse confidence level. Moreover, our algorithm is parameter-free and does
not require any (increasing) order of mini-batches to converge unlike the common
practice in the analysis of stochastic conditional gradient-type algorithms.

1 Introduction

We study projection-free algorithms for solving the following stochastic multi-level composition
optimization problem

min
x∈X

F (x) := f1 ◦ · · · ◦ fT (x), (1)

where fi : Rdi → Rdi−1 , i = 1, · · · , T (d0 = 1) are continuously differentiable functions, the
composite function F is bounded below by F ⋆ > −∞ and X ⊂ Rd is a closed convex set. We
assume that the exact function values and derivatives of fi’s are not available. In particular, we
assume that fi(y) = Eξi [Gi(y, ξi)] for some random variable ξi. Our goal is to solve the above
optimization problem, given access to noisy evaluations of ∇fi’s and fi’s.

There are two main challenges to address in developing efficient projection-free algorithms for
solving (1). First, note that denoting the transpose of the Jacobian of fi by ∇fi, the gradient of the
objective function F (x) in (1), is given by ∇F (x) = ∇fT (yT )∇fT−1(yT−1) · · · ∇f1(y1), where
yi = fi+1 ◦ · · · ◦ fT (x) for 1 ≤ i < T , and yT = x. Because of the nested nature of the gradient
∇F (x), obtaining an unbiased gradient estimator in the stochastic first-order setting, with controlled
moments, becomes non-trivial. Using naive stochastic gradient estimators lead to oracle complexities
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that depend exponentially on T (in terms of the accuracy parameter). Next, even when T = 1 in
the stochastic setting, projection-free algorithms like the conditional gradient method or its sliding
variants invariably require increasing order of mini-batches1 [28, 40, 24, 39, 52], which make their
practical implementation infeasible.

In this work, we propose a projection-free conditional gradient-type algorithm that achieves level-
independent oracle complexities (i.e., the dependence of the complexities on the target accuracy is
independent of T ) using only one sample of (ξi)1≤i≤T in each iteration, thereby addressing both of
the above challenges. Our algorithm uses moving-average based stochastic estimators of the gradient
and function values, also used recently by [19] and [4], along with an inexact conditional gradient
method used by [3] (which in turn is inspired by the sliding method by [28]). In order to establish
our oracle complexity results, we use a novel merit function based convergence analysis. To the best
of our knowledge, such an analysis technique is used for the first time in the context of analyzing
stochastic conditional gradient-type algorithms.

1.1 Preliminaries and Main Contributions

We now introduce the technical preliminaries required to state and highlight the main contributions of
this work. Throughout this work, ∥ · ∥ denotes the Euclidean norm for vectors and the Frobenius norm
for matrices. We first describe the set of assumptions on the objective functions and the constraint set.
Assumption 1 (Constraint set). The set X ⊂ Rd is convex and closed with max

x,y∈X
∥x− y∥ ≤ DX .

Assumption 2 (Smoothness). All functions f1, . . . , fT and their derivatives are Lipschitz continuous
with Lipschitz constants Lfi and L∇fi , respectively.

The above assumptions on the constraint set and the objective function are standard in the literature
on stochastic optimization, and in particular in the analysis of conditional gradient algorithms and
multi-level optimization; see, for example, [28], [50] and [4]. We emphasize here that the above
smoothness assumptions are made only on the functions (fi)1≤i≤T and not on the stochastic functions
(Gi)1≤i≤T (which would be a stronger assumption). Moreover, the Lipschitz continuity of fi’s are
implied by the Assumption 1 and assuming the functions are continuously differentiable. However,
for sake of illustration, we state both assumptions separately. In addition to these assumptions, we
also make unbiasedness and bounded-variance assumptions on the stochastic first-order oracle. Due
to its technical nature, we state the precise details later in Section 3 (see Assumption 3).

We next turn our attention to the convergence criterion that we use in this work to evaluate the
performance of the proposed algorithm. Gradient-based algorithms iteratively solve sub-problems in
the form of

argmin
u∈X

{
⟨g, u⟩+ β

2
∥u− x∥2

}
, (2)

for some β > 0, g ∈ Rd and x ∈ X . Denoting the optimal solution of the above problem by
PX (x, g, β) and noting its optimality condition, one can easily show that

−∇F (x̄) ∈ NX (x̄) + B
(
0, ∥g −∇F (x̄)∥DX + β∥x− PX (x, g, β)∥(DX + ∥∇F (x̄)∥/β)

)
,

where NX (x̄) is the normal cone to X at x̄ and B(0, r) denotes a ball centered at the origin with radius
r. Thus, reducing the radius of the ball in the above relation will result in finding an approximate first-
order stationary point of the problem for non-convex constrained minimization problems. Motivated
by this fact, we can define the gradient mapping at point x̄ ∈ X as

GX (x̄,∇F (x̄), β) := β (x̄− PX (x̄,∇F (x̄), β)) = β

(
x̄−ΠX

(
x̄− 1

β
∇F (x̄)

))
, (3)

where ΠX (y) denotes the Euclidean projection of the vector y onto the set X . The gradient mapping
is a classical measure has been widely used in the literature as a convergence criterion when solving
nonconvex constrained problems [35]. It plays an analogous role of the gradient for constrained
optimization problems; in fact when the set X ≡ Rd the gradient mapping just reduces to ∇F (x̄). It
should be emphasized that while the gradient mapping cannot be computed in the stochastic setting, it

1We discuss in detail about some recent works that avoid requiring increasing mini-batches, albeit under
stronger assumptions, in Section 1.2.

2



Algorithm Criterion # of levels Batch size SFO LMO

SPIFER-SFW [52] FW-gap 1 O(ϵ−1) O(ϵ−3) O(ϵ−2)
1-SFW [54] FW-gap 1 1 O(ϵ−3) O(ϵ−3)
SCFW [1] FW-gap 2 1 O(ϵ−3) O(ϵ−3)
SCGS [39] GM 1 O(ϵ−1) O(ϵ−2) O(ϵ−2)
SGD+ICG [3] GM 1 O(ϵ−1) O(ϵ−2) O(ϵ−2)
LiNASA+ICG (Algorithm 1) GM T 1 OT (ϵ

−2) OT (ϵ
−3)

Table 1: Complexity results for stochastic conditional gradient type algorithms to find an ϵ-stationary
solution in the nonconvex setting. FW-Gap and GM stands for Frank-Wolfe Gap (see (4)) and
Gradient Mapping (see (3)) respectively. OT hides constants in T . Existing one-sample based
stochastic conditional gradient algorithms are either (i) not applicable to the case of general T > 1,
or (ii) require strong assumptions [54], or (iii) are not truly online [1]; see Section 1.2 for detailed
discussion. The results in [3] are actually presented for the zeroth-order setting; however the above
stated first-order complexities follow immediately.

still serves as a measure of convergence. Our main goal in this work is to find an ϵ-stationary solution
to (1), in the sense described below.
Definition 1. A point x̄ ∈ X generated by an algorithm for solving (1) is called an ϵ-stationary point,
if we have E[∥GX (x̄,∇F (x̄), β)∥2] ≤ ϵ, where the expectation is taken over all the randomness
involved in the problem.

In the literature on conditional gradient methods for the nonconvex setting, the so-called Frank-Wolfe
gap is also widely used to provide convergence analysis. The Frank-Wolfe Gap is defined formally as

gX (x̄,∇F (x̄)) := max
y∈X

⟨∇F (x̄), x̄− y⟩. (4)

As pointed out by [3], the gradient mapping criterion and the Frank-Wolfe gap are related to each
other in the following sense.
Proposition 1. [3] Let gX (·) be the Frank-Wolfe gap defined in (4) and GX (·) be the gradient
mapping defined in (3). Then, we have ∥GX (x,∇F (x), β)∥2 ≤ gX (x,∇F (x)),∀x ∈ X . Moreover,

under Assumption 1, 2, we have gX (x,∇F (x)) ≤
[
(1/β)

∏T
i=1 Lfi +DX

]
∥GX (x,∇F (x), β)∥.

For stochastic conditional gradient-type algorithms, the oracle complexity is measured in terms
of number of calls to the Stochastic First-order Oracle (SFO) and the Linear Minimization Oracle
(LMO) used to the solve the sub-problems (that are of the form of minimizing a linear function over
the convex feasible set) arising in the algorithm. In this work, we hence measure the number of calls
to SFO and LMO required by the proposed algorithm to obtain an ϵ-stationary solution in the sense
of Definition 1. We now highlight our main contributions:

• We propose a projection-free conditional gradient-type method (Algorithm 1) for solving (1). In
Theorem 2, we show that the SFO and LMO complexities of this algorithm, in order to achieve an
ϵ-stationary solution in the sense of Definition 1, are of order O(ϵ−2) and O(ϵ−3), respectively.

• The above SFO and LMO complexities are in particular level-independent (i.e., the dependence
of the complexities on the target accuracy is independent of T ). The proposed algorithm is
parameter-free and does not require any mini-batches, making it applicable for the online setting.

• When considering the case of T ≤ 2, we present a simplified method (Algorithm 3 and 4) to
obtain the same oracle complexities. Intriguingly, while this simplified method is still parameter-
free for T = 1, it is not when T = 2 (see Theorem 3 and Remark 3.1). Furthermore, for the case
of T = 1, we also establish high-probability bounds (see Theorem 5).

A summary of oracle complexities for stochastic conditional gradient-type algorithms is in Table 1.

1.2 Related Work

Conditional Gradient-Type Method. The conditional gradient algorithm [15, 29], has had a
renewed interest in the machine learning and optimization communities in the past decade; see [33,
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26, 20, 27, 5, 17] for a partial list of recent works. Considering the stochastic convex setup, [22, 24]
provided expected oracle complexity results for the stochastic conditional gradient algorithm. The
complexities were further improved by a sliding procedure in [28], based on Nesterov’s acceleration
method. [40, 52, 24] considered variance reduced stochastic conditional gradient algorithms, and
provided expected oracle complexities in the non-convex setting. [39] analyzed the sliding algorithm
in the non-convex setting and provided results for the gradient mapping criterion. All of the above
works require increasing orders of mini-batches to obtain their oracle complexity results.

[34] and [54] proposed a stochastic conditional gradient-type algorithm with moving-average
gradient estimator for the convex and non-convex setting that uses only one-sample in each iteration.
However, [34] and [54] require several restrictive assumptions, which we explain next (focusing
on [54] which considers the nonconvex case). Specifically, [54] requires that the stochastic function
G1(x, ξ1) has uniformly bounded function value, gradient-norm, and Hessian spectral-norm, and the
distribution of the random vector ξ1 has an absolutely continuous density p such that the norm of the
gradient of log p and spectral norm of the Hessian of log p has finite fourth and second-moments
respectively. In contrasts, we do not require such stringent assumptions. Next, all of the above
works focus only on the case of T = 1. [1] considered stochastic conditional gradient algorithm for
solving (1), with T = 2. However, [1] also makes stringent assumptions: (i) the stochastic objective
functions G1(x, ξ1) and G2(x, ξ1) themselves have Lipschitz gradients almost surely and (ii) for a
given instance of random vectors ξ1 and ξ2, one could query the oracle at the current and previous
iterations, which makes the algorithm not to be truly online. See Table 1 for a summary.

Stochastic Multi-level Composition Optimization. Compositional optimization problems of the
form in (1) have been considered as early as 1970s by [12]. Recently, there has been a renewed
interest on this problem. [13] and [10] considered a sample-average approximation approach for
solving (1) and established several asymptotic results. For the case of T = 2, [48], [49] and [6]
proposed and analyzed stochastic gradient descent-type algorithms in the smooth setting. [9] and
[11] considered the non-smooth setting and established oracle complexity results. Furthermore, [25]
proposed algorithms when the randomness between the two levels are not necessarily independent.
For the general case of T ≥ 1, [50] proposed stochastic gradient descent-type algorithms and
established oracle complexities established that depend exponentially on T and are hence sub-optimal.
Indeed, large deviation and Central Limit Theorem results established in [13, 10], respectively, show
that in the sample-average approximation setting, the argmin of the problem in (1) based on n
samples, converges at a level-independent rate (i.e., dependence of the convergence rate on the target
accuracy is independent of T ) to the true minimizer, under suitable regularity conditions.

[19] proposed a single time-scale Nested Averaged Stochastic Approximation (NASA) algorithm
and established optimal rates for the cases of T = 1, 2. For the general case of T ≥ 1, [4]
proposed a linearized NASA algorithm and established level-independent and optimal convergence
rates. Concurrently, [43] considered the case when the function fi are non-smooth and established
asymptotic convergence results. [53] also established non-asymptotic level-independent oracle
complexities, however, under stronger assumptions than that in [4]. Firstly, they assumed that for
a fixed batch of samples, one could query the oracle on different points, which is not suited for
the general online stochastic optimization setup. Next, they assume a much stronger mean-square
Lipschitz smoothness assumption on the individual functions fi and their gradients. Finally, they
required mini-batches sizes that depend exponentially on T , which makes their method impractical.
Concurrent to [4], level-independent rates were also obtained for unconstrained problems by [7],
albeit, under the stronger assumption that the stochastic functions Gi(x, ξi) are Lipschitz, almost
surely. It is also worth mentioning that while some of the above papers considered constrained
problems, the algorithms proposed and analyzed in the above works are not projection-free, which is
the main focus of this work.

2 Methodology

In this section, we present our projection-free algorithm for solving problem (1). The method
generates three random sequences, namely, approximate solutions {xk}, average gradients {zk},
and average function values {uk}, defined on a certain probability space (Ω,F , P ). We let Fk

to be the σ-algebra generated by {x0, . . . , xk, z0, . . . , zk, u0
1, . . . , u

k
1 , . . . , u

0
T , . . . , u

k
T }. The overall

method is given in Algorithm 1. In (7), the stochastic Jacobians Jk+1
i ∈ Rdi×di−1 , and the product
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Algorithm 1 Linearized NASA with Inexact Conditional Gradient Method (LiNASA+ICG)
Input: x0 ∈ X , z0 = 0 ∈ Rd, u0

i ∈ Rdi , i = 1, . . . , T , βk > 0, tk > 0, τk ∈ (0, 1], δ ≥ 0.
for k = 0, 1, 2, . . . , N do

1. Update the solution:

ỹk = ICG(xk, zk, βk, tk, δ), (5)

xk+1 = xk + τk(ỹ
k − xk), (6)

and compute stochastic Jacobians Jk+1
i , and function values Gk+1

i at uki+1 for i = 1, . . . , T .
2. Update average gradients z and function value estimates ui for each level i = 1, . . . , T

zk+1 = (1− τk)z
k + τk

T∏
i=1

Jk+1
T+1−i, (7)

uk+1
i = (1− τk)u

k
i + τkG

k+1
i + ⟨Jk+1

i , uk+1
i+1 − uki+1⟩. (8)

end for
Output: (xR, zR, uR1 , · · · , uRT ), where R is uniformly distributed over {1, 2, . . . , N}

Algorithm 2 Inexact Conditional Gradient Method (ICG)
Input: (x, z, β,M, δ)
Set w0 = x.
for t = 0, 1, 2, . . . ,M do

1. Find vt ∈ X with a quantity δ ≥ 0 such that

⟨z + β(wt − x), vt⟩ ≤ min
v∈X

⟨z + β(wt − x), v⟩+ βD2
X δ

t+ 2
.

2. Set wt+1 = (1− µt)w
t + µtv

t with µt = min

{
1, ⟨β(x−wt)−z,vt−wt⟩

β∥vt−wt∥2

}
.

end for
Output: wM

∏T
i=1 J

k+1
T+1−i is calculated as Jk+1

T Jk+1
T−1 · · · J

k+1
1 ∈ RdT×d1 ≡ RdT×1. In (8), we use the notation

⟨·, ·⟩ to represent both matrix-vector multiplication and vector-vector inner product. There are two
aspects of the algorithm that we highlight specifically: (i) In addition to estimating the gradient of
F , we also estimate a stochastic linear approximation of the inner functions fi by a moving-average
technique. In the multi-level setting we consider, it helps us to avoid the accumulation of bias, when
estimating the fi directly. Linearization techniques were used in the stochastic optimization since
the work of [42]. A similar approach was used in [4] in the context of projected-based methods for
solving (1). It is also worth mentioning that other linearization techniques have been used in [9]
and [11] for estimating the stochastic inner function values for weakly convex two-level composition
problems, and (ii) The ICG method given in Algorithm 2 is essentially applying deterministic
conditional gradient method with the exact line search for solving the quadratic minimization
subproblem in (2) with the estimated gradient zk in (7). It was also used in [3] as a sub-routine and is
motivated by the sliding approach of [28].

3 Main Results

In this section, we present our main result on the oracle complexity of Algorithm 1. Before we
proceed, we present our assumptions on the stochastic first-order oracle.

Assumption 3 (Stochastic First-Order Oracle). Denote ukT+1 ≡ xk. For each k, uki+1 being the input,
the stochastic oracle outputs Gk+1

i ∈ Rdi and Jk+1
i such that given Fk and for any i ∈ {1, . . . , T}

(a) E[Jk+1
i |Fk] = ∇fi(u

k
i+1), E[G

k+1
i |Fk] = fi(u

k
i+1),
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(b) E[∥Gk+1
i − fi(u

k
i+1)∥2|Fk] ≤ σ2

Gi
, E[∥Jk+1

i −∇fi(u
k
i+1)∥2|Fk] ≤ σ2

Ji
,

(c) The outputs of the stochastic oracle at level i, Gk+1
i and Jk+1

i , are independent. The outputs of
the stochastic oracle are independent between levels, i.e., {Gk+1

i }i=1,...,T are independent and
so are {Jk+1

i }i=1,...,T .

Parts (a) and (b) in Assumption 3 are standard unbiasedness and bounded variance assumptions on
the stochastic gradient, common in the literature. Part (c) is essential to establish the convergence
results in the multi-level case. Similar assumptions have been made, for example, in [50] and [4].
We also emphasize that unlike some prior works (see e.g., [54]), Assumption 3 allows the case of
endogenous uncertainty, and we do not require the distribution of the random variables (ξi)1≤i≤T to
be independent of the distribution of the decision variables (ui)1≤i≤T .

Remark. Under Assumption 2, and 3, we can immediately conclude that E[∥Jk+1
i ∥2|Fk] =

E[∥Jk+1
i − ∇fi(u

k
i+1)∥2|Fk] + ∥∇fi(u

k
i+1)∥2 ≤ σ2

Ji
+ L2

fi
:= σ̂2

Ji
. In the sequel, σ̂2

Ji
will be

used to simplify the presentation.

We start with the merit function used in this work and its connection to the gradient mapping criterion.
Our proof leverages the following merit function:

Wα,γ(x, z, u) = F (x)− F ⋆ − η(x, z) + α∥∇F (x)− z∥2 +
T∑
i=1

γi∥fi(ui+1)− ui∥2, (9)

where α, {γi}1≤i≤T are positive constants and

η(x, z) = min
y∈X

{
H(y;x, z, β) := ⟨z, y − x⟩+ β

2
∥y − x∥2

}
. (10)

Compared to [4], we require the additional term ∥∇F (x)− z∥2, which turns out to be essential in
our proof due to the ICG routine. The following proposition relates the merit function above to the
gradient mapping.
Proposition 2. Let GX (·) be the gradient mapping defined in (3) and η(·, ·) be defined in (10). For
any pair of (x, z) and β > 0, we have ∥GX (x,∇F (x), β)∥2 ≤ −4βη(x, z) + 2∥∇F (x)− z∥2.

Proof. By expanding the square, and using the properties of projection operation, we have

∥ΠX (x− 1

β
z)− x∥2 + ∥ΠX (x− 1

β
z)− (x− 1

β
z)∥2 ≤ ∥x̄− (x− 1

β
z)∥2 = ∥ 1

β
z∥2.

Thus, we have η(x, z) ≤ −β
2 ∥ΠX (x− 1

β z)− x∥2. The proof is completed immediately by noting

that ∥G(x,∇F (x), β)∥2 ≤ 2β2∥ΠX (x− 1
β z)− x∥2 + 2 ∥∇F (x)− z∥2 .

We now present out main result on the oracle complexity of Algorithm1.
Theorem 2. Under Assumption 1, 2, 3, let {xk, zk, {uki }1≤i≤T }k≥0 be the sequence generated by
Algorithm 1 with N ≥ 1 and

βk ≡ β > 0, τ0 = 1, t0 = 0, τk =
1√
N

, tk = ⌈
√
k⌉, ∀k ≥ 1, (11)

where β is an arbitrary positive constant. Provided that the merit function Wα,γ(x, z, u) is defined
as (9) with

α =
β

20L2
∇F

, γ1 =
β

2
, γj =

(
2α+

1

4αL2
∇F

)
(T − 1)C2

j +
β

2
, 2 ≤ j ≤ T, (12)

we have,

E
[
∥GX (xR,∇F (xR), β)∥2

]
≤

2(β +
20L2

∇F

β )
[
2Wα,γ(x

0, z0, u0) + B(β, σ2, L,DX , T, δ)
]

√
N

,

(13)
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E
[
∥fi(uRi+1)− uRi ∥2

]
≤ 2Wα,γ(x

0, z0, u0) + B(β, σ2, L,DX , T, δ)

β
√
N

, 1 ≤ i ≤ T. (14)

where uT+1 = x,B(β, σ2, L,DX , T, δ) = 4σ̂2+32βD2
X (1+ δ)

(
3
5 +

5L2
∇F

β2

)
, and σ̂2 is a constant

depending on the parameters (β, σ2, L,DX , T ) given in (42). The expectation is taken with respect
to all random sequences generated by the method and an independent random integer number R
uniformly distributed over {1, . . . , N}. That is to say, the number of calls to SFO and LMO to get an
ϵ-stationary point is upper bounded by OT (ϵ

−2),OT (ϵ
−3) respectively.

Remark. The constant B(β, σ2, L,DX , T, δ) is O(T ) given the definition of σ̂2 and the value of γj
in (12), which further implies that the total number of calls to SFO and LMO of Algorithm 1 for finding
an ϵ-stationary point of (1), are bounded by O(T 2ϵ−2) = OT (ϵ

−2) and O(T 3ϵ−3) = OT (ϵ
−3)

respectively. Furthermore, it is worth noting that this complexity bound for Algorithm 1 is obtained
without any dependence of the parameter βk on Lipschitz constants due to the choice of arbitrary
positive constant β in (11), and τk, tk depend only on the number of iterations N and k respectively.
This makes Algorithm 1 parameter-free and easy to implement.
Remark. As discussed in Section 2, the ICG routine given in Algorithm 2 is a deterministic method
with the estimated gradient zk in (7). The number of iterations, tk, required to run Algorithm 2
is given by tk = ⌈

√
k⌉. That is, we require more precise solutions for the ICG routine, only for

later outer iterations. Furthermore, due to the deterministic nature of the ICG routine, further
advances in the analysis of deterministic conditional gradient methods under additional assumptions
on the constraint set X (see, for example, [16, 18]) could be leveraged to improve the overall LMO
complexity.

3.1 The special cases of T = 1 and T = 2

We now discuss several intriguing points regarding the choice of tuning parameter β, for the case
of T = 2, and the more standard case of T = 1. Specifically, the linearization technique used
in Algorithm 1 turns out to be not necessary for the case of T = 2 and T = 1 to obtain similar
rates. However, without linearization, the choice of β is dependent on the problem parameters for
T = 2. Whereas it turns out to be independent of the problem parameters (similar to Algorithm 1 and
Theorem 2 which holds for all T ≥ 1) for T = 1. As the outer function value estimates (i.e., uk+1

1
sequence) are not required for the convergence analysis, we remove them in Algorithms 3 and 4.

Algorithm 3 NASA with Inexact Conditional Gradient Method (NASA+ICG) for T = 2

Replace Step 2 of Algorithm 1 with the following:
2’. Update the average gradient z and the function value estimate u2 respectively as:

zk+1 = (1− τk)z
k + τkJ

k+1
2 Jk+1

1 and uk+1
2 = (1− τk)u

k + τkG
k+1
2

Algorithm 4 ASA with Inexact Conditional Gradient Method (ASA+ICG) for T = 1

Replace Step 2 of Algorithm 1 with the following:
2”. Update the average gradient z as: zk+1 = (1− τk)z

k + τkJ
k+1
1 .

Theorem 3. Let Assumptions 1, 2, 3 be satisfied by the optimization problem (1). Let C1, C2 and C3
be some constants depending on the parameters (β, σ2, L,DX , δ), as defined in (54) and (62). Let
τ0 = 1, t0 = 0, τk = 1√

N
, tk = ⌈

√
k⌉,∀k ≥ 1, where N is the total number of iterations.

(a) Let T = 2, and let {xk, zk, uk2}k≥0 be the sequence generated by Algorithm 3 with

βk ≡ β ≥ 6ρL∇F + (2ρ+
2

3ρ
)L∇f1L

2
f2 , ρ > 0. (15)

Then, we have ∀N ≥ 1,

E
[
∥GX (xR,∇F (xR), β)∥2

]
≤ C1√

N
, E

[
∥f2(xR)− uR2 ∥2

]
≤ C2√

N
.

7



(b) Let T = 1 and let {xk, zk}k≥0 be the sequence generated by Algorithm 4 with βk ≡ β > 0.
Then, we have ∀N ≥ 1,

E
[
∥GX (xR,∇F (xR), β)∥2

]
≤ C3√

N
.

All expectations are taken with respect to all random sequences generated by the respective algorithms
and an independent random integer number R uniformly distributed over {1, . . . , N}. In both cases,
the number of calls to SFO and LMO to get an ϵ-stationary point is upper bounded by O(ϵ−2),O(ϵ−3)
respectively.
Remark. While we can obtain the same complexities without using the linear approximation of the
inner function for T = 2, it seems necessary to have a parameter-free algorithm as the choice of
β in (15) depends on the knowledge of the problem parameters. Indeed, the linearization term in
(8) helps use to better exploit the Lipschitz smoothness of the gradients get an error bound in the
order of τ2k∥dk∥2 for estimating the inner function values. Without this term, we are only able to use
the Lipschitz continuity of the inner functions and so the error estimate will increase to the order of
τk∥dk∥. Hence, we need to choose a larger beta (as in (15)) to reduce ∥dk∥ and handle the error
term without compromising the complexities. However, this is not the case for T = 1 as it can be
seen as a two-level problem whose inner function is exactly known (the identity map). In this case,
the choice of β is independent of the problem parameters with or without the linearization term.

3.2 High-Probability Convergence for T = 1

In this subsection, we establish an oracle complexity result with high-probability for the case of
T = 1. We first provide a notion of (ϵ, δ)-stationary point and a related tail assumption on the
stochastic first-order oracle below.
Definition 4. A point x̄ ∈ X generated by an algorithm for solving (1) is called an (ϵ, δ)-stationary
point, if we have ∥GX (x̄,∇F (x̄), β)∥2 ≤ ϵ with probability 1− δ.

Assumption 4. Let ∆k+1 = ∇F (xk) − Jk+1
1 for k ≥ 0. For each k, given Fk we have

E[∆k+1|Fk] = 0 and ∥∆k+1∥
∣∣Fk is K-sub-Gaussian.

The above assumption is commonly used in the literature; see [23, 21, 30, 55]. We also refer to
[45] and Appendix E for additional details. The high-probability bound for solving non-convex
constrained problems by Algorithm 4 is given below.
Theorem 5. Let Assumptions 1, 2, 4 be satisfied by the optimization problem (1) with T = 1. Let
τ0 = 1, t0 = 0, τk = 1√

N
, tk = ⌈

√
k⌉,∀k ≥ 1, where N is the total number of iterations. Let T = 1

and let {xk, zk}k≥0 be the sequence generated by Algorithm 4 with βk ≡ β > 0. Then, we have
∀N ≥ 1, δ > 0, with probability at least 1− δ,

min
k=1,...,N

∥∥GX (xk,∇F (xk), β)
∥∥2 ≤ O

(
K2 log(1/δ)√

N

)
Therefore, the number of calls to SFO and LMO to get an (ϵ, δ)-stationary point is upper bounded by
O(ϵ−2 log2(1/δ)),O(ϵ−3 log3(1/δ)) respectively.
Remark. To the best of our knowledge, the above result is (i) the first high-probability bound for
one-sample stochastic conditional gradient-type algorithm for the case of T = 1, and (ii) the first
high-probability bound for constrained stochastic optimization algorithms in the non-convex setting;
see Appendix J of [32].

4 Proof Sketch of Main Results

In this section, we only present the proof sketch. The complete proofs are provided in the appendix.
For convenience, let uT+1 = x, and we denote Hk as the function value of the subproblem at step k,
yk as the optimal solution of the subproblem i.e.,

Hk(y) := H(y;xk, zk, βk), yk = argmin
y∈X

Hk(y). (16)

Then, the proof of Theorem 2 proceeds via the following steps:
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1. We first leverage the merit function Wk := Wα,γ(x
k, zk, uk) defined in (9) with appropriate

choices of α, γ for any β > 0 to obtain

Wk+1 −Wk ≤− τk
2

(
β

[
∥dk∥2 +

T∑
i=1

∥fi(uki+1)− uki ∥2
]
+

β

20L2
∇F

∥∇F (xk)− zk∥2
)

+Rk + τk

(
12

5
+

20L2
∇F

β2

)(
Hk(ỹ

k)−Hk(y
k)
)
, ∀k ≥ 0

where Rk is the residual term (see (31)) and E[Rk|Fk] ≤ σ̂2τ2k , as shown in Proposition 3.
2. Telescoping the above inequality, in Lemma 11 we obtain the following:

N∑
k=1

τk

[
β

(
∥dk∥2 +

T∑
i=1

∥fi(uki+1)− uki ∥2
)

+
β

20L2
∇F

∥∇F (xk)− zk∥2
]

≤ 2W0 + 2

N∑
k=0

Rk +

(
24

5
+

40L2
∇F

β2

) N∑
k=0

τk
(
Hk(ỹ

k)−Hk(y
k)
)
, ∀N ≥ 1.

3. To further control the error term Hk(ỹ
k)−Hk(y

k) introduced by the ICG method, we set tk, the
number of iterations in ICG method at step k, to ⌈

√
k⌉. By Lemma 8, we therefore have

Hk(ỹ
k)−Hk(y

k) ≤ 2βD2
X (1 + δ)

tk + 2
≤ 2βD2

X (1 + δ)√
k

, ∀k ≥ 1.

Also, with the choice of τk = 1√
N

and z0 = 0, we can conclude that

N∑
k=0

τk
(
Hk(ỹ

k)−Hk(y
k)
)
≤ 2βD2

X (1 + δ)√
N

N∑
k=1

1√
k
≤ 4βD2

X (1 + δ).

4. Then, taking expectation of both sides and by the definition of random integer R, we have

E

[
β

(
∥dR∥2 +

T∑
i=1

∥fi(uRi+1)− uRi ∥2
)

+
β

20L2
∇F

∥∇F (xR)− zR∥2
]
≤ 2W0 + B,

∀N ≥ 1, where B is a constant depending on the problem parameters (β, σ2, L,DX , T, δ).
5. As a result, we can obtain (13) and (14) by noting that ∀k ≥ 1

∥G(xk,∇F (xk), β)∥2 ≤ 2β2∥dk∥2 + 2β2

∥∥∥∥ΠX

(
xk − 1

β
∇F (xk)

)
−ΠX

(
xk − 1

β
zk
)∥∥∥∥2

≤ 2β2∥dk∥2 + 2∥∇F (xk)− zk∥2.
where the second inequality follows the non-expansiveness of the projection operator.

The proofs of Theorems 3 and 5 follow the same argument with appropriate modifications. The
high-probability convergence proof of Theorem 5 mainly consists of controlling the tail probability
of the residual term Rk being large.

5 Discussion

In this work, we propose and analyze projection-free conditional gradient-type algorithms for con-
strained stochastic multi-level composition optimization of the form in (1). We show that the
oracle complexity of the proposed algorithms is level-independent in terms of the target accuracy.
Furthermore, our algorithm does not require any increasing order of mini-batches under standard
unbiasedness and bounded second-moment assumptions on the stochastic first-order oracle, and is
parameter-free. Some open questions for future research: (i) Considering the one-sample setting,
either improving the LMO complexity from O(ϵ−3) to O(ϵ−2) for general closed convex constraint
sets or establishing lower bounds showing that O(ϵ−3) is necessary while keeping the SFO in the
order of O(ϵ−2), is extremely interesting; and (ii) Providing high-probability bounds for stochastic
multi-level composition problems (T > 1) and under sub-Gaussian or heavy-tail assumptions (as in
[32, 31]) is interesting to explore.
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