
Understanding Benign Overfitting in
Gradient-based Meta Learning

Lisha Chen
Rensselaer Polytechnic Institute

Troy, NY, USA
chenl21@rpi.edu

Songtao Lu
IBM Research

Yorktown Heights, NY, USA
songtao@ibm.com

Tianyi Chen
Rensselaer Polytechnic Institute

Troy, NY, USA
chentianyi19@gmail.com

Abstract

Meta learning has demonstrated tremendous success in few-shot learning with lim-
ited supervised data. In those settings, the meta model is usually overparameterized.
While the conventional statistical learning theory suggests that overparameterized
models tend to overfit, empirical evidence reveals that overparameterized meta
learning methods still work well – a phenomenon often called “benign overfitting.”
To understand this phenomenon, we focus on the meta learning settings with a
challenging bilevel structure that we term the gradient-based meta learning, and
analyze its generalization performance under an overparameterized meta linear
regression model. While our analysis uses the relatively tractable linear models, our
theory contributes to understanding the delicate interplay among data heterogeneity,
model adaptation and benign overfitting in gradient-based meta learning tasks. We
corroborate our theoretical claims through numerical simulations.

1 Introduction

Meta learning, also referred to as “learning to learn”, usually learns a prior model from multiple
tasks so that the learned model is able to quickly adapt to unseen tasks [43, 26]. Meta learning has
been successfully applied to few-shot learning learning [2, 13], image recognition [52], federated
learning [29], reinforcement learning [21] and communication systems [10]. While there are many
exciting meta learning methods today, in this paper, we will study a representative meta learning
setting where the goal is to learn a shared initial model that can quickly adapt to task-specific models.
This adaptation may take an explicit form such as the output of one gradient descent step, which is
referred to as the model agnostic meta learning (MAML) method [21]. Alternatively, the adaptation
step may take an implicit form such as the solution of another optimization problem, which is referred
to as the implicit MAML (iMAML) method [39]. Since both MAML and iMAML will solve a bilevel
optimization problem, we term them the gradient-based meta learning thereafter. In many cases,
overparameterized models are used as the initial models in meta learning for quick adaptation. For
example, Resnet-based MAML models typically have around 6 million parameters, but are trained
on 1-3 million meta-training data [12]. Training such initial models is often difficult in meta learning
because the number of training data is much smaller than the dimension of the model parameter.

Previous works on meta learning mainly focus on addressing the optimization challenges or analyzing
the generalization performance with sufficient data [18, 19, 14]. Different from these works, we
are particularly interested in the generalization performance of the sought initial model in practical
scenarios where the total number of data from all tasks is smaller than the dimension of the initial
model, which we term overparameterized meta learning. In those overparameterized regimes, the
generalization error of meta learning models is not fully understood. Motivated by this, we ask:

If and when overparameterized meta learning models would lead to overfitting, provably?
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Empirical studies have demonstrated that the MAML with overparameterized model generally
performs better than MAML with underparameterized model [12] – a phenomenon often called
“benign overfitting.” To show this, we plot in Figure 1 the empirical results from Table A5 in [12].
Complementing this, we take an initial step by answering this theoretical question in the meta linear
regression setting.

1.1 Prior art
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Figure 1: Accuracy vs networks with increas-
ing dimensions for MAML on few-shot image
classification with different datasets [12].

We review prior art that we group in the following three
categories.

Benign overfitting analysis. The empirical success
of overparameterized deep neural networks has inspired
theoretical studies of overparameterized learning. The
most closest line of work is benign overfitting in linear
regression [5], which provides excess risk that mea-
sures the difference between expected population risk
of the empirical solution and the optimal population
risk. Analysis of overparameterized linear regression
model with the minimum-norm solution. It concludes
that certain data covariance matrices lead to benign
overfitting, explaining why overparameterized models
that perfectly fit the noisy training data can work well
during testing. The analysis has been extended to ridge
regression [46], multi-class classification [50], and adversarial learning with linear models [8]. While
previous theoretical efforts on benign overfitting largely focused on linear models, most recently, the
analysis of benign overfitting has been extended to two-layer neural networks [7, 33, 22]. However,
existing works mainly study benign overfitting for empirical risk minimization problems, rather than
bilevel problems such as gradient-based meta learning, which is the focus of this work.

Meta learning. Early works of meta learning build black-box recurrent models that can make pre-
dictions based on a few examples from new tasks [43, 26, 2, 13], or learn shared feature representation
among multiple tasks [44, 48]. More recently, meta learning approaches aim to find the initialization
of model parameters that can quickly adapt to new tasks with a few number of optimization steps
such as MAML [21, 38, 41]. The empirical success of meta learning has also stimulated recent
interests on building the theoretical foundation of meta learning methods.

Generalization of meta learning. The excess risk, as a metric of generalization ability of gradient-
based meta learning has been analyzed recently [15, 3, 9, 49, 4, 19]. The generalization of meta
learning has been studied in [32] in the context of mixed linear regression, where the focus is on
investigating when abundant tasks with small data can compensate for lack of tasks with big data.
Generalization performance has also been studied in a relevant but different setting - representation
based meta learning [14, 17]. Information theoretical bounds have been proposed in [30, 11],
which bound the generalization error in terms of mutual information between the input training data
and the output of the meta-learning algorithms. The PAC-Bayes framework has been extended to
meta learning to provide a PAC-Bayes meta-population risk bound [1, 40, 16, 20]. These works
mostly focus on the case where the meta learning model is underparameterized; that is, the total
number of meta training data from all tasks is larger than the dimension of the model parameter.
Recently, overparameterized meta learning has attracted much attention. Bernacchia [6] suggests
that in overparameterized MAML, negative learning rate in the inner loop is optimal during meta
training for linear models with Gaussian data. Sun et al. [45] shows that the optimal representation
in representation-based meta learning is overparameterized and provides sample complexity for the
method of moment estimator. Besides our work, a concurrent work [27] also studies a common
setting where the meta learning models incur overparameterization in the meta level, and we both
cover the nested MAML method. However, the two studies differ in terms of how the empirical
solution of the meta parameter is obtained. In our case, we consider the minimum ℓ-2 norm solution,
while [27] consider the solution trained with T -step stochastic gradient descent (SGD). Furthermore,
our analysis covers both MAML and iMAML, while [27] only considers MAML.
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Table 1: A comparison with closely related prior work on meta learning with linear models. “Reps.”
and “Gradient” refer to representation based methods and gradient-based methods; “Per-task” refers
to the per-task level overparameterization and “Meta” refers to the meta level overparameterization.

Prior work Type of meta learning Overparameterization Methods Focus of analysis
Reps. Gradient Per-task Meta

Bai et al. [3] ✓ ✓ iMAML Train-validation split
Bernacchia [6] ✓ ✓ MAML Optimal step size
Chen et al. [9] - ✓ ✓ MAML, BMAML Test risk comparison

Huang et al. [28] ✓ ✓ MAML SGD solution
Kong et al. [32] - - ✓ - Effect of small data tasks

Saunshi et al. [42] ✓ ✓ - Train-validation split
Sun et al. [45] ✓ ✓ - Optimal representation

Ours ✓ ✓ MAML, iMAML Benign overfitting

Compared to the most relevant works, our work is different in the following aspects. Compared to the
works that also analyze generalization error or sample complexity in linear meta learning models such
as [15, 3, 9], we focus on the overparameterized case when the total number of training data is smaller
than the dimension of the model parameter. Compared to the work that focus on representation-based
meta learning with a bilinear structure [45], we consider initialization-based meta learning methods
with a bilevel structure such as MAML and iMAML. Furthermore, we provide tight analysis of the
excess risk with explicit consideration of the benign overfitting condition.

A summary of key differences compared to prior art is provided in Table 1. We distinguish two differ-
ent overparameterization settings: i) the per-task level overparameterization where the dimension of
model parameter is larger than the number of training data per task, but smaller than the total number
of data across all tasks; and, ii) the meta level overparameterization where the dimension of model
parameter is larger than the total number of training data from all tasks.

1.2 This work

This paper provides a unifying analysis of the generalization performance for meta learning problems
with overparameterized meta linear models. To our best knowledge, this is the first work that provides
the condition for benign overfitting in gradient-based meta learning including MAML and iMAML.

Technical challenges. Before we introduce the key result of our paper, we first highlight the
challenges of analyzing the generalization of gradient-based meta learning and characterizing its
benign overfitting condition, compared to the non-bilevel setting such as in [5, 46, 45].

T1) Due to the bilevel structure of gradient-based meta learning, the solution to the meta training
objective involves high order terms of data covariance. As a result, the dominating term in the excess
risk propagated from the label noise contains higher order terms, which is harder to quantify and can
potentially lead to orders of magnitude higher excess risk than the linear regression case [5, 46, 45].

T2) The existing analysis of benign overfitting in single-level problems [5, 46] has a solution that is
directly related to the data covariance matrix. However, due to the nested structure of gradient-based
meta learning and thus the solution matrix, the solution matrix is a function of both the data covariance
matrix and the hyperparameters such as the step size. Therefore, what kind of data matrices can
satisfy the benign overfitting condition cannot be directly implied.

T3) Due to the multi-task learning nature of meta learning, the excess risk of MAML depends on the
heterogeneity across different tasks in terms of both the task data covariance and the ground truth task
parameter. As a result, the data covariance matrices from different tasks have different eigenvectors.
This is in contrast to the linear regression case where all the data follow the same distribution.

Contributions. In view of challenges, our contributions can be summarized as follows.

C1) Focusing on the relatively tractable linear models, we derive the excess risk for the minimum-
norm solution to overparameterized gradient-based meta learning including MAML and
iMAML. Specifically, the excess risk upper bound adopts the following form

Cross-task variance + Per-task variance + Bias

where the cross-task variance quantifies the error caused by finite task number and the
variation of the ground truth task specific parameter, which is a unique term compared to
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single task learning. The bias quantifies the bias resulting from the minimum-norm solution.
And the per-task variance quantifies the error caused by noise in the training data.

C2) We compare the benign overfitting condition for the overparameterized gradient-based meta
learning models and that for the empirical risk minimization (ERM) which learns a single
shared parameter for all tasks. We show that overfitting is more likely to happen in MAML
and its variants such as implicit MAML than in ERM. In addition, larger data heterogeneity
across tasks will make overfitting more likely to happen.

C3) We discuss the choice of hyperparameter, e.g., the step size in MAML and the weight of
the regularizer in iMAML, such that if the data leads to benign overfitting in ERM, it also
leads to benign overfitting in MAML and iMAML. We show that a negative step size can
preserve benign overfitting in MAML. This is complementary to the recent discovery that
the optimal step size of overparameterized MAML during training is negative [6].

2 Problem Formulation and Methods

In this section, we will introduce the problem setup and the considered meta learning methods.

Problem setup. In the meta-learning setting, assume task m is drawn from a task distribution, i.e.
m ∼ M. For each task m, we observe N samples with input feature xm ∈ Xm ⊂ Rd and target
label ym ∈ Ym ⊂ R drawn i.i.d. from a task-specific data distribution Pm. These samples are
collected in the dataset Dm = {(xm,n, ym,n)}Nn=1, which is divided into the train and validation
datasets, denoted as Dtr

m and Dva
m . And |Dtr

m| = Ntr and |Dva
m | = Nva with N = Ntr +Nva. We use

the empirical loss ℓm(θm,Dm) of per-task parameter θm ∈ Θm as a measure of the performance. In
this paper, we consider regression problems, where ℓm is defined as the mean squared error.

The goal for gradient-based meta learning methods, such as MAML [21] and iMAML [39], is to learn
an initial parameter θ0 ∈ Θ0, which, with an adaptation method A : Θ0 × (Xm × Ym)Ntr → Θm,
can generate a per-task parameter θm that performs well on the validation data for task m. Given M
tasks, our meta-learning objective is computed as the average of the per-task objective, given by

Meta training objective LA(θ0,D) :=
1

M

M∑
m=1

ℓm(A(θ0,Dtr
m),Dva

m ). (1)

Obtaining the empirical solution θ̂A0 by minimizing (1) under a meta learning method A, in the meta
testing stage, we evaluate θ̂A0 on the population risk, given by

Meta testing objective RA(θ̂A0 ) := Em

[
EDm

[
ℓm(A(θ̂A0 ,Dtr

m),Dva
m )
]]

. (2)

Figure 2: Two types of meta learning.

Methods. We focus on understanding the generalization
of two representative gradient-based meta learning meth-
ods MAML [21] and iMAML [39] in the overparameterized
regime. MAML obtains the task-specific parameter θ̂m(θ0)
by taking one step gradient descent with step size α of the
per-task loss function ℓm from the initial parameter θ0, that is

A(θ0,Dtr
m) = θ0 − α∇θ0ℓm(θ0,Dtr

m). (3)

On the other hand, iMAML obtains the task-specific param-
eter θ̂m from the initial parameter θ0 by optimizing the task-
specific loss regularized by the distance between θ̂m and θ0,
that is

A(θ0,Dtr
m) = argmin

θ
ℓm(θ,Dtr

m) +
γ

2
∥θ − θ0∥2 (4)

where γ > 0 is the weight of the regularizer. As summarized
in Figure 2, MAML has smaller computation complexity than iMAML since iMAML requires solving
an inner problem during adaptation, while iMAML may achieve smaller test error since it explicitly
minimize the loss.
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3 Main Results: Benign Overfitting for Gradient-based Meta Learning

In this section, we introduce the meta linear regression model and some necessary assumptions for the
analysis. We present the main results, highlight the key steps of the proof and conduct simulations to
verify our results. Due to space limitations, we will defer the proofs to the supplementary document.

3.1 Meta linear regression setting

To make a precise analysis, we will assume the following linear data model. Denoting the ground
truth parameter on task m as θ⋆m ∈ Rd, and the noise as ϵm, we assume the data model for task m is

ym = θ⋆⊤m xm + ϵm. (5)

Given the linear model (5), the meta training problem (1) with adaptation method (3) or (4) generally
have unique solutions when d ≤ NM . However, when the meta model θ0 and thus the per-task
model θm are overparameterized, i.e. d > NM , the training problem (1) may have multiple solutions.
In the subsequent analysis, we will analyze the performance of the minimum norm solution because
recent advances in training overparameterized models reveal that gradient descent-based methods
converge to the minimum norm solution [24, 35]. We provide a formal definition below.
Definition 1 (Minimum norm solution). Denote Xva

m := [xm,1, . . . , xm,Nva
]⊤ ∈ RNva×d, yva

m :=
[ym,1, . . . , ym,Nva

]⊤ ∈ RNva . With A(θ,Dtr
m) being either (3) or (4), the minimum norm solution to

the meta training problem (1) under the linear regression loss is expressed by

min
θ0

∥θ0∥2 s.t. θ0 ∈ argmin
θ

M∑
m=1

∥∥Xva
mA(θ,Dtr

m)− yva
m

∥∥2 . (6)

In our analysis, we make the following basic assumptions.
Assumption 1 (Overparameterized model). The total number of meta training data is smaller than
the dimension of the model parameter; i.e. NM < d.
Assumption 2 (SubGaussian data). The noise ϵm is subGaussian with E[ϵm] = 0 and E[ϵ2m] = σ2.

For the m-th task, data xm = VmΛ
1
2
mzm, where zm has centered, independent, σx-subGaussian

entries; E[zm] = 0,E[zmz⊤m] = Id, with Id being a d× d identity matrix.
Assumption 3 (Data covariance matrix). 1) Assume for all m ∈ [M ], i ∈ [d], λm,i > 0,
Tr(Λm),Tr(Λ) are bounded, i.e. for all m ∈ [M ], Tr(Λm) ≤ cλ. 2) Cross-task data hetero-
geneity V({Qm}Mm=1) := maxi,m |(λi − λm,i)/λi| is bounded above and below.
Assumption 4 (Task parameter). The ground truth parameter θ⋆m is independent of Xm and satisfies
Cov[θ⋆m] = (R2/d)Id, where R is a constant, and the entries of θ⋆m are i.i.d. O(R/

√
d)-subGaussian.

Assumption 1 defines the setting that the meta level is overparameterized, which has also been used
in [45]. Note that Assumptions 2-4 are common in the analysis of meta learning in [15, 3, 9, 23].

With the linear data model (5), the (minimum norm) solutions to the meta training objective (1) and
the meta testing objective (2) can be computed analytically which we will summarize next.
Proposition 1. (Empirical and population level solutions) Under the meta linear regression model
(5), the meta testing objective of method A in (2) can be equivalently written as

RA(θ0) = Em

[
∥θ0 − θ⋆m∥2WA

m

]
(7)

where the matrix WA
m and its empirical version ŴA

m are given in Table 2 with Q̂al
m := 1

NXal⊤
m Xal

m.
The optimal solutions to the meta-test risk and the minimum-norm solutions to the empirical meta
training loss are given below respectively

θA0 := argmin
θ0

RA(θ0) = Em

[
WA

m

]−1Em

[
WA

mθ⋆m
]

(8a)

θ̂A0 := argmin
θ0

LA(θ0,D) =
(∑M

m=1
ŴA

m

)†(∑M

m=1
ŴA

mθ⋆m

)
+∆A

M (8b)

where † denotes the Moore-Penrose pseudo inverse; ∆A
M is an error term that depends on Xm, ϵm,

and specified in the supplementary document.
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Table 2: Weight matrices under different method A.

Method Weight matrices
ERM Wer

m = Qm

Ŵer
m = Q̂m

MAML Wma
m = (I− αQm)Qm(I− αQm)

Ŵma
m = (I− αQ̂tr

m)Q̂va
m(I− αQ̂tr

m)
iMAML Wim

m = (γ−1Qm + I)−1Qm(γ−1Qm + I)−1

Ŵim
m = (γ−1Q̂tr

m + I)−1Q̂va
m(γ−1Q̂tr

m + I)−1

To study overfitting in the meta learn-
ing model, we quantify its generaliza-
tion ability via the widely used metric -
excess risk. The excess risk of method
A (which can be “ma” for MAML
and “im” for iMAML), with an empir-
ical solution θ̂A0 and population solu-
tion θA0 , is defined as

EA(θ̂A0 ) := RA(θ̂A0 )−RA(θA0 ).
(9)

In (9), the excess risk measures the difference between the population risk of the empirical solution,
θ̂0 and the optimal population risk. Given total number of training samples MN , if d → ∞, the
classic learning theory implies that the excess risk EA(θ̂A0 ) also grows, which leads to overfitting [25].
The larger the excess risk, the further the empirical solution θ̂A0 is from the optimal population
solution θA0 , indicating more severe overfitting.

3.2 Main results

With the closed-form solutions given in Proposition 1, we are ready to bound the excess risk of MAML
and iMAML in the overparameterized linear regime. For notation brevity, we first introduce some
universal constants such as c0, c1, c2, . . . , and only present the dominating terms in the subsequent
results. The precise presentation of remaining terms are deferred to the supplementary document.

We first decompose the excess risk into three terms in Proposition 2.
Proposition 2. Define WA := Em[WA

m]. The excess risk of a meta learning method A can be
bounded by

EA(θ̂A0 ) ≲ Eθ⋆
m
+ Eϵm + Eb (10)

where the first term Eθ⋆
m

is a function of θ⋆m, θA0 ,WA,ŴA
m, which quantifies the weighted variance

of the ground truth task specific parameters θ⋆m; the second term Eϵm , as a function of ϵm, is the
weighted noise variance; and the third term Eb, as a function of θA0 ,WA,ŴA

m, is the bias of the
minimum-norm solution in overparameterized MAML or iMAML.

Based on this decomposition, as we will show in Section 4, the bound of the excess risk can be
derived from the bound of these three terms Eθ⋆

m
, Eϵ⋆m , Eb, respectively, which gives Theorem 1.

Theorem 1 (Excess risk bound). Suppose Assumptions 1-4 hold. Let µ1(·) ≥ µ2(·) . . . denote the
eigenvalues of a matrix in the descending order. For the meta linear regression problem with the
minimum-norm solution (6), for 0 ≤ k ≤ d, define the effective ranks as

rk
(
WA) := ∑

i>k µi

(
WA)

µk+1 (WA)
; Rk

(
WA) := (∑

i>k µi(W
A)
)2∑

i>k µ
2
i (W

A)
. (11)

With the cross-task data heterogeneity V defined in Assumption 3, if there exist universal con-
stants c1, c2, c3 > 1 such that the effective dimension k∗ = min{k ≥ 0 : rk(W

A) ≥ c1NM},
c2 log(1/δ) < NM and k∗ < NM/c3, then with probability at least 1− δ, the excess risk satisfies

EA(θ̂A0 ) ≲ ∥E[θ⋆m]∥2λ̄
√

r0(WA)

MN
+ σ2

(
k∗

MN
+

MN

Rk∗(WA)

)(
1 + V({WA

m}Mm=1)

)
. (12)

Theorem 1 provides the excess risk bound via the effective ranks. In (11), the effective ranks rk and
Rk of a matrix capture the distribution of the eigenvalues of this matrix, and the effective dimension
k∗ determines the above upper bound by considering the asymmetry of the eigenvalues of the solution
matrix. The idea is to choose k∗ that makes Rk∗ large enough and keeps k∗ small enough compared to
MN so that the variance term of the excess risk is controlled. For example, r0 is the trace normalized
by the largest eigenvalue, which is bounded above by R0. And both r0 and R0 are no larger than the
rank of the matrix, and they are equal to the rank only when all non-zero eigenvalues are equal. If the
eigenvalues distribute more uniformly, the effective rank will be larger, otherwise smaller.
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Figure 3: Excess risk vs number of samples (N ) with different hyperparameters (M = 10, d = 200).

Remark 1. 1) The definition of effective rank has been also given in [5] but only on the data matrix
Q. And our setting reduces to the single task ERM learning, or the linear regression case in [5], when
M = 1, θ⋆m = θ0, WA

m = Q, which implies that the cross-task variance in (10) as well as the data
heterogeneity V(·) reduces to zero. Accordingly, Theorem 1 reduces to Theorem 4 in [5].
2) Given Theorem 1, in order to control the excess risk of solution θ̂A0 , we want r0(WA) to be small
compared to the total number of training samples MN , but rk∗(WA) and Rk∗(WA) to be large
compared to MN . In addition, the cross-task heterogeneity V should be small. Since for a matrix
W, rk(W) ≤ Rk(W) ≤ d, this suggests the model benefits from overparameterization.

Building upon Theorem 1, we now discuss the conditions for “benign overfitting”, which refers to the
situation that overparameterization does not “harm” the excess risk, or the excess risk still vanishes
when d > MN and N,M, d increase.

Definition 2 (Condition for benign overfitting in meta learning). The weight matrices WA for
method A satisfy the benign overfitting condition in gradient-based meta learning, if and only if

lim
NM,d→∞

r0(W
A)

NM
= lim

NM,d→∞

k∗

NM
= lim

NM,d→∞

NM

Rk∗(WA)
= 0. (13)

This guarantees the excess risk (12) goes to zero in overparameterized meta learning models with
sufficient training data from all tasks. To provide an intuitive explanation, Figure 3 plots the population
risk versus the number of the training data, which demonstrates the “double descent” curve. Namely,
as N increases, E(θ̂0) first decreases, then increases and then decreases again, as is discovered in
overparameterized neural networks [36]. The trend in Figure 3 is similar to the trend observed in [37].
When d/(NM) > 1, the model is overparameterized, which can overfit the training data, leading to
larger excess risk as N decreases. However, Figure 3 shows the excess risk does not become too large
as N decreases, indicating that overfitting does not severely harm the population risk in this case.

3.3 Examples and discussion

In this section, we discuss how the benign overfitting condition (13) in gradient-based meta learning
reduces to that in single task linear regression; e.g., in [5, 46]. We also provide examples to show

Q1) how certain properties of meta training data affect the excess risk; and,

Q2) how to choose the hyperparameters that preserve benign overfitting.

Data covariance and cross-task heterogeneity. Theorem 1 reveals that the excess risk depends
on both the eigenvalues of the data covariance matrix Qm, and the cross-task data heterogeneity,
measured by V({Qm}Mm=1). We give an example below to better demonstrate how these two
properties of gradient-based meta training data affect the excess risk.

Example 1 (Data covariance). Suppose Qm = diag(Id1
, βId−d1

), ∀m. Set M = 10, d = 200, d1 =
20, α = 0.1 for MAML and γ = 103 for iMAML. Then the benign overfitting condition (13) is
satisfied by MAML and iMAML. We plot the excess risk under different β in Figure 4.
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Figure 4: Excess risks vs number of samples (N ) for Qm = diag(Id1 , βId−d1) with different β.
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Figure 5: Excess risks of MAML and iMAML vs number of training samples (N ) for Qm =
|1 + ωm|diag(Id1

, βId−d1
), ωm ∼ N (0, σ2

ω) with different σω .

From Figure 4 we can observe that given a fixed number of training data N , the population risk
increases with β for both MAML and iMAML. This observation verifies our theory since larger β
results in a smaller RA

k (W
A), leading to a larger upper bound on the variance term in (12).

Example 1 demonstrates how the per-task data matrix Qm affects the excess risk. We consider
another example that demonstrates how the data heterogeneity across tasks affects the excess risk.

Example 2 (Data heterogeneity). Suppose Qm = |ωm + 1|diag(Id1 , βId−d1) with ωm ∼ N (0, σ2
ω)

for all m. Set M = 10, d = 200, d1 = 20, β = 0.3, α = 0.1 for MAML and γ = 0.1 for iMAML.
Then it satisfies the benign overfitting condition (13) for MAML and iMAML. Figure 5 plots the excess
risk with different choices of σω .

Observing from Figure 5 that the larger σ2
ω , the higher the excess risk, and the more difficult for the

benign overfitting condition to be satisfied for both MAML and iMAML. Therefore, compared to
ERM with a single task, the benign overfitting condition for MAML is more restrictive as it imposes
constraints for both the expected data covariance Qm, and the data heterogeneity V({WA

m}Mm=1).

Connection to multi-task ERM. To compare benign overfitting in the gradient-based meta learning
with that in the conventional ERM, where θm = θ0, we can set the step size α = 0 in MAML, or
γ → ∞ in iMAML, and Nva = N , which reduces to conventional ERM without adaptation.

Compared to that of MAML and iMAML in (13), the benign overfitting condition is less restrictive
for ERM since it does not impose constraints on α or γ. Intuitively, benign overfitting is more
likely to happen in MAML or iMAML than in ERM. The hyperparameters α and γ will affect the
eigenvalues of Wma

m , Wim
m , respectively, thus affecting their corresponding excess risk. Here we

provide a sufficient condition where the benign overfitting condition in ERM is preserved in MAML
or iMAML. We summarize the results in the corollary below.

Corollary 1 (Hyperparameters that preserve benign overfitting). Recall λ1 is the largest eigenvalue
of Q. For MAML, when 0 < α ≤ 1

3λ1
, and for iMAML, when γ ≥ λ1, then the effective ranks of

Wma and Wim are bounded above and below by a positive constant times the effective rank of Q,
and therefore the benign overfitting condition holds for MAML and iMAML if it holds for ERM. To
summarize, there are constants c1, c2, c3, c such that for k∗ = min{k ≥ 0 : rk(Q) ≥ c1NM}. For

8



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
log10 d=N (M = 5; s = 0:5)

-2

-1.5

-1

-0.5

0

lo
g

ra
ti
o

ERM
MAML
iMAML

(a) Cross-task variance ratio vs model dimension

0 10 20 30 40 50 60
M (N = 10; d = 200; s = 0:5)

0

1

2

3

4

5

b
ia

s

ERM
MAML
iMAML

(b) Bias vs task number

Figure 6: Cross-task variance and bias versus task number to elaborate Lemma 1 and Lemma 2.

δ < 1, c2 log(1/δ) < NM and k∗ < NM/c3, with probability at least 1− 7e−2NM/c, it follows

EA(θ̂A0 ) ≲ ∥E[θ⋆m]∥2λ̄
√

r0(Q)

MN
+ σ2

(
k∗

MN
+

MN

Rk∗(Q)

)(
1 + V({Qm}Mm=1)

)
. (14)

Remark 2. For MAML, let the unordered eigenvalues µ̃i(W
ma) = λi(1− αλi)

2. One challenge
to control µ̃i(W

ma) is that µ̃i(W
ma) are not necessarily monotonic w.r.t. λi; that is, it does not

necessarily hold that µ̃1 ≥ µ̃2 ≥ · · · ≥ µ̃d. For any λi ≥ λj , if µ̃i(W
A) ≥ µ̃j(W

A), then we say
the order of the eigenvalues is preserved. For this to hold, it requires µ̃i(λi) to be a monotonically
non-decreasing function of λi, which yields α ≤ 1

3λ1
. Similar results can be obtained for iMAML by

controlling the value of γ. And the bound on α or γ further ensures that µ̃i(W
A) is bounded above

and below by a positive constant times the effective rank of Q.

4 Proof Outline

In this section, we highlight the key steps of the proof for Theorem 1. We achieve so by analyzing
the three terms in Proposition 2 respectively.

The first two terms in (10) can be bounded based on the concentration inequalities on subGaussian
variables, given in Lemmas 1 and 2.
Lemma 1 (Bound on cross-task variance). With probability at least 1− δ, it follows

Eθ⋆
m
=

∥∥∥∥∥(
M∑

m=1

ŴA
m

)†( M∑
m=1

ŴA
m(θ⋆m − θA0 )

)∥∥∥∥∥
2

WA

≤ Õ
(
N

d

)
Eϵm (15)

where Õ(·) hides the log polynomial dependence on N,M, d.

The cross-task variance term analzyed in Lemma 1 is unique in meta learning, which captures the
data heterogeneity across different tasks. To elaborate Lemma 1, we plot the cross-task variance
versus the task number in Figure 6a with task number M = 5, training validation split parameter
s = Ntr/N = 0.5, per-task data number N = 10. This figure demonstrates that the ratio of cross-task
variance and per-task variance decreases with d/N , which is consistent with Lemma 1.
Lemma 2 (Bound on bias). For any 1 < log(1/δ) < MNva, with probability at least 1− δ, we have

Eb ≲ ∥θA0 ∥2∥WA∥max


√

r0(WA)

MNva
,
r0(W

A)

MNva
,

√
log(1/δ)

MNva

 . (16)

This term is similar to the bias term in the linear regression case, but directly depending on the
solution matrix W instead of the data matrix Q. To elaborate Lemma 2, Figure 6b demonstrates that
the bias term decays with M until it reaches zero when the model is underparameterized. These two
terms in Lemma 1 and Lemma 2 do not go to infinity as N,M, d increase.

Note that, the key step is the bound on Eϵm , which is the dominating term in the decomposition of
excess risk (10) in the overparameterized regime. We will bound it below.

9



Lemma 3 (Bound on per-task variance). There exist constants c1, c2, c3 such that for 0 ≤ k ≤
2NM/c1, rk(WA) ≥ c2NM , and k0 ≤ k, with probability at least 1− 7e−2NM/c3 , it follows

Eϵm ≲

(
k0

MNva
+

MNva

Rk0(W
A)

)(
1 + V({WA

m}Mm=1)
)
. (17)

Note that, in the single task linear regression case, the there is no cross-task data heterogeneity, i.e.,
V = 0. This term is unique in the meta learning setting with multiple tasks. Plugging the results of
Lemmas 1, 2 and 3 into (10), we will reach Theorem 1.

5 Conclusions and Limitations

This paper studies the generalization performance of the gradient-based meta learning with an
overparameterized model. For a precise analysis, we focus on linear models where the total number
of data from all tasks is smaller than the dimension of the model parameter. We show that when
the data heterogeneity across tasks is relatively small, the per-task data covariance matrices with
certain properties lead to benign overfitting for gradient-based meta learning with the minimum-norm
solution. This explains why overparameterized meta learning models can generalize well in new
data and new tasks. Furthermore, our theory shows that overfitting is more likely to happen in meta
learning than in ERM, especially when the data heterogeneity across tasks is relatively high.

One limitation of this work is that the analysis focuses on the meta linear regression case. While this
analysis can capture practical cases where we reuse the feature extractor from pre-trained models and
only meta-train the parameters in the last linear layer, it is also promising to extend our analysis to
nonlinear cases via means of random features and neural tangent kernels in the future work.
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[29] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning personaliza-
tion via model agnostic meta learning. arXiv preprint:1909.12488, September 2019.

[30] Sharu Theresa Jose and Osvaldo Simeone. Information-theoretic generalization bounds for meta-learning
and applications. Entropy, 23(1):126, 2021.

[31] Vladimir Koltchinskii and Karim Lounici. Concentration inequalities and moment bounds for sample
covariance operators. Bernoulli, 23(1):110–133, 2017.

[32] Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, and Sewoong Oh. Meta-learning for mixed
linear regression. In Proc. International Conference on Machine Learning, pages 5394–5404, virtual,
2020.

[33] Zhu Li, Zhi-Hua Zhou, and Arthur Gretton. Towards an understanding of benign overfitting in neural
networks. arXiv preprint arXiv:2106.03212, 2021.

[34] L. Mirsky. A trace inequality of john von neumann. Monatshefte für Mathematik, 79:303–306, 1975.

[35] Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless interpolation of
noisy data in regression. IEEE Journal on Selected Areas in Information Theory, 1(1):67–83, 2020.

[36] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory and
Experiment, 2021(12):124003, 2021.

[37] Preetum Nakkiran, Prayaag Venkat, Sham M Kakade, and Tengyu Ma. Optimal regularization can mitigate
double descent. In Proc. International Conference on Learning Representations, virtual, 2020.

[38] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[39] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. In Proc. Advances in Neural Information Processing Systems, pages 113–124, Vancouver,
Canada, 2019.

[40] Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, and Andreas Krause. PACOH: Bayes-optimal meta-
learning with pac-guarantees. In Proc. International Conference on Machine Learning, pages 9116–9126,
virtual, 2021.

[41] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal meta-
policy search. In Proc. International Conference on Learning Representations, Vancouver, Canada,
2018.

[42] Nikunj Saunshi, Arushi Gupta, and Wei Hu. A representation learning perspective on the importance
of train-validation splitting in meta-learning. In International Conference on Machine Learning, pages
9333–9343, 2021.

[43] J. Schmidhuber. A neural network that embeds its own meta-levels. In Proc. IEEE International Conference
on Neural Networks, pages 407–412 vol.1, 1993.

[44] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In Proc.
Advances in Neural Information Processing Systems, pages 4080–4090, Long Beach, CA, 2017.

[45] Yue Sun, Adhyyan Narang, Halil Ibrahim Gulluk, Samet Oymak, and Maryam Fazel. Towards sample-
efficient overparameterized meta-learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Proc. Advances in Neural Information Processing Systems, virtual, 2021.

[46] Alexander Tsigler and Peter L. Bartlett. Benign overfitting in ridge regression. arXiv: Statistics Theory,
2020.

[47] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018.

[48] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. In Proc. Advances in Neural Information Processing Systems, volume 29, pages 3630–3638,
Barcelona, Spain, 2016.

12



[49] Haoxiang Wang, Ruoyu Sun, and Bo Li. Global convergence and generalization bound of gradient-based
meta-learning with deep neural nets. arXiv preprint arXiv:2006.14606, 2020.

[50] Ke Wang, Vidya Muthukumar, and Christos Thrampoulidis. Benign overfitting in multiclass classification:
All roads lead to interpolation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Proc. Advances in Neural Information Processing Systems, virtual, 2021.

[51] Hermann Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichun-
gen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische Annalen, 71(4):441–479,
1912.

[52] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8697–8710, Salt Lake City, UT, June 2018.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Work of

theoretical nature, no potential negative societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Supplementary

material for the complete proofs.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [N/A] Work of
theoretical nature.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] Work of theoretical

nature. We cite the authors who propose the baseline models.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13



Supplementary Material
In this supplementary document, we present the missing derivations of some claims, as well as the
proofs of all the lemmas and theorems in the paper.

Table of Contents
A Notations 14

B Proof of Proposition 1 15
B.1 Model agnostic meta learning method . . . . . . . . . . . . . . . . . . . . . . . 15
B.2 Implicit model agnostic meta learning method . . . . . . . . . . . . . . . . . . 16

C Proof of Theorem 1 17
C.1 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
C.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
C.3 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
C.4 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D Auxiliary Lemmas 27
D.1 Algebraic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
D.2 Concentration inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
D.3 Other supporting lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A Notations

We use [Xm] to represent row stack of matrices Xm with indices m, i.e.

[Xm] =
[
X⊤

1 ,X
⊤
2 , . . . ,X

⊤
M

]⊤
.

For a given square matrix Dm, define

diag[Dm] =


D1 0 . . . 0

0 D2

...
...

. . . 0
0 . . . 0 DM

 .

We use µi(·) to denote the i-th eigenvalue of a matrix with descending order, ∥ · ∥ to denote the
operator norm, and ∥ · ∥F to denote the Frobenious norm.

For any matrix M ∈ Rn×d, denote M0:k to be the matrix which is comprised of the first k columns
of M, and Mk:d to be the matrix comprised of the rest of the columns of M. For any vector
η ∈ Rd denote η0:k to be the vector comprised of the first k components of η, and ηk:∞ to be
the vector comprised of the rest of the coordinates of η. Denote Λ0:k = diag(λ1, . . . , λk), and
Λk:∞ = diag(λk+1, λk+2, . . .), Λk:d = diag(λk+1, λk+2, . . . λd).

For t ≥ 0, N ∈ Z+, define cr0(r0(Λ), N, t) := max
{√

r0(Λ)
N , r0(Λ)

N ,
√

t
N , t

N

}
.

We use E[·] to denote expectation and Cov[·] to denote covariance.

We use superscript “ma” and “im” to represent quantities related to the MAML and iMAML
algorithms, respectively. For notation simplicity, we omit the superscript A when the arguments hold
for both MAML and iMAML.
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B Proof of Proposition 1

Proposition 3 (Empirical and population level solutions). Under the data model (5), the meta-test
risk of method A defined in (2) can be computed by

RA(θ0) = Em

[
∥θ0 − θ⋆m∥2WA

m

]
+ c.

The optimal solutions to the meta-test risk and the minimum-norm solution are given below respec-
tively

θA0 := argmin
θ0

RA(θ0) = Em

[
WA

m

]−1Em

[
WA

mθ⋆m
]

(18a)

θ̂A0 := argmin
θ0

LA(θ0,D) =
( M∑

m=1

ŴA
m

)†( M∑
m=1

ŴA
mθ⋆m

)
+∆A

M (18b)

where † denotes the Moore–Penrose pseudo inverse, the error term ∆A
M is a polynomial function

of M,N, d, which will be specified in the following sections for MAML and iMAML. And Q̂al
m :=

1
NXal⊤

m Xal
m. The weight matrices of different methods, WA

m and ŴA
m, are given in Table 2.

B.1 Model agnostic meta learning method

Without loss of generality, assume σ = 1 to simplify notation. We use meta-test risk RA
N to represent

expected test risk with finite number of adaptation data N during testing, which is slightly different
compared to population risk RA = limN→∞ RA

N . The MAML meta-test risk is defined as [23]

Rma
N (θ0) :=E

[(
ym − θ̂ma

m (θ0,Dm,N )⊤xm

)2]
=Em

[
∥θ0 − θ⋆m∥2Wma

m,N

]
+ 1 +

α2

N
Em[Tr(Q2

m)] (19)

where the matrix is defined as

Wma
m,N =EQ̂m

[
(I− αQ̂m)Qm(I− αQ̂m)

]
=(I− αQm)Qm (I− αQm) +

α2

N

(
Exm,i

[
xm,ix

⊤
m,iQmxm,ix

⊤
m,i

]
−Q3

m

)
. (20)

Assume during meta testing, we have infinite adaptation data, i.e., N → ∞, then the optimal
population risk of MAML is

Rma(θ0) = lim
N→∞

Rma
N (θ0) = Em

[
∥θ0 − θ⋆m∥2Wma

m

]
+ 1. (21)

In MAML, define θma
0 as the minimizer of the optimal population risk of MAML, given by

θma
0 = argmin

θ0

Rma(θ0) = argmin
θ0

Em

[
∥θ0 − θ⋆m∥2Wma

m

]
= Em [Wma

m ]
−1 Em [Wma

m θ⋆m] . (22)

Using the optimality condition of Lma(θ0,D) given in (1) , we have

θ̂ma
0 =

( M∑
m=1

Ŵma
m

)†( M∑
m=1

Ŵma
m θ⋆m +

(
I− αQ̂tr

m

)( 1

Nva
Xva⊤

m evam − α

Ntr
Q̂va

mXtr⊤
m etrm

))
(23a)

Ŵma
m = (I− αQ̂tr

m)Q̂va
m(I− αQ̂tr

m). (23b)

Therefore, we can arrive at (8b) by defining

∆ma
M :=

( M∑
m=1

Ŵma
m

)†( M∑
m=1

(I− αQ̂tr
m)

1

N2
Xva⊤

m evam − (I− αQ̂tr
m)Q̂va

m

α

Ntr
Xtr⊤

m etrm

)
. (24)
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B.2 Implicit model agnostic meta learning method

For the iMAML method, the task-specific parameter θ̂imm is computed from the initial parameter θ0
by optimizing the regularized task-specific empirical loss, given by

θ̂imm (θ0,Dm) = argmin
θm

1

N
∥ym −Xmθm∥2 + γ∥θm − θ0∥2 (25)

where γ is the weight of the regularizer, and Dm is the adaptation data during meta-testing or training
data during meta-training.

The estimated task-specific parameter can be computed by

θ̂imm (θ0,Dm) = (Q̂al
m + γI)−1

( 1

N
X⊤

mym + γθ0

)
. (26)

The empirical loss of iMAML is defined as the average per-task loss, given by

Lim
M,N (θ0,D) =

1

MNva

M∑
m=1

∥∥∥yva
m −Xva

mθ̂imm (θ0,Dtr
m)
∥∥∥2 (27)

whose minimizer is

θ̂im0 = argmin
θ0

1

MNva

M∑
m=1

∥∥∥Xva
m,Nθ⋆m + eval

m,Nva
−Xva

mθ̂imm (θ0,Dtr
m)
∥∥∥2. (28)

Using the optimality condition of the above problem, we obtain

θ̂im0 =
( M∑

m=1

Ŵim
m

)†( M∑
m=1

Ŵim
m θ⋆m

)
+∆im

M (29a)

with ∆im
M =

( M∑
m=1

Ŵim
m

)†( M∑
m=1

γΣθm

1

Nva
Xva⊤

m eva
m,N − γ−1Ŵim

m

1

Ntr
Xtr⊤

m etr
m

)
(29b)

where we define

Σθm :=
( 1

Ntr
XTr⊤

m XTr
m + γI

)−1

= (Q̂tr
m + γI)−1 (29c)

Ŵim
m := γ2Σθm

1

Nva
Xva⊤

m Xva
mΣθm = γ2ΣθmQ̂va

mΣθm . (29d)

The meta-test risk of iMAML is defined as
Rim

Na
(θ0) = E

[(
ym − θ̂imm (θ0,Dm,Na

)⊤xm

)2]
= Em

[
∥θ0 − θ⋆m∥2Wim

m,Na

]
+ 1 +

1

Na
E[γ−2Tr(Wim

m,Na
Q̂m,Na

)] (30a)

where the weight matrix is defined as

Wim
m,Na

= Exm

[
(Q̂m,Na + γI)−1Qm(Q̂m,Na + γI)−1

]
= Wim

m Exm

[
Σθm

(
Qm − Q̂m,Na

)
Wim

m

(
Qm − Q̂m,Na

)
Σθm +Σθm

(
Qm − Q̂m,Na

)
Wim

m

+Wim
m

(
Qm − Q̂m,Na

)
Σθm

]
(30b)

where Wim
m = (γ−1Qm + I)−1Qm(γ−1Qm + I)−1.

Simplify the notation of Xm,Na ,ym,Na , Q̂m,Na as Xm,ym, Q̂m. The derivation of (30) is given by

Rim
Na

(θ0) =E
[
∥θ̂imm (θ0,Dm,Na)− θ⋆m∥2Qm

]
+ 1 (31)

=E
[
∥(Q̂m + γI)−1(

1

Na
X⊤

mym + γθ0)− θ⋆m∥2Qm

]
+ 1

(a)
=E

[
θ⊤0 W

im
m,Na

θ0 + 2γ(
1

Na
y⊤
mXmΣθm − θ⋆⊤m )QmΣθmθ0+

1

Na
y⊤
mXmΣθmQmΣθm

1

Na
X⊤

mym − 2θ⋆⊤m QmΣθm

1

Na
X⊤

mym + θ⋆⊤m Qmθ⋆m

]
+ 1
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where (a) follows from the definition of Σθm = (Q̂al
m + γI)−1, and Wim

m,Na
= γ2ΣθmQmΣθm .

Applying the fact that ym = Xmθ⋆m + em and Eem
[em] = 0, one can further derive from (31) that

Rim
Na

(θ0)=E
[
θ⊤0 W

im
m,Na

θ0 + 2γ(θ⋆⊤m Q̂mΣθm − θ⋆⊤m )QmΣθmθ0 + θ⋆⊤m Q̂mΣθmQmΣθmQ̂mθ⋆m

− 2θ⋆⊤m QmΣθmQ̂mθ⋆m + θ⋆⊤m Qmθ⋆m +
1

N2
a

e⊤mXmΣθmQmΣθmX⊤
mem

]
+ 1. (32)

Based on the linearity of trace and expectation, and the cyclic property of trace, the last term inside
the expectation in the above equation can be computed as

Eem [e⊤mXmΣθmQmΣθmX⊤
meAm] = Tr(XmΣθmQmΣθmX⊤

mEem [eAme⊤m])

=Tr(XmΣθmQmΣθmX⊤
m) = NaTr(ΣθmQmΣθmQ̂m) = NaTr(W

im
m,Na

Q̂m).

To derive all the terms related to θ⋆m, based on the Woodbury matrix identity, I − Q̂mΣθm =

I− ΣθmQ̂m = γΣθm , we have

(θ⋆⊤m Q̂mΣθm − θ⋆⊤m ) = θ⋆⊤m (Q̂mΣθm − I) = −γθ⋆⊤m Σθm (33)
and then the terms related to θ⋆m in (32) can be computed by

θ⋆⊤m Q̂mΣθmQmΣθmQ̂mθ⋆m − 2θ⋆⊤m QmΣθmQ̂mθ⋆m + θ⋆⊤m Qmθ⋆m

=θ⋆⊤m
(
(Q̂mΣθm − I)QmΣθmQ̂m +Qm(I− ΣθmQ̂m)

)
θ⋆m

(a)
=θ⋆⊤m

(
− γΣθmQmΣθmQ̂m +QmγΣθm

)
θ⋆m

(b)
=γ−1θ⋆⊤m

(
−Wim

m,Na
Q̂m + (Q̂m + γI)Wim

m,Na

)
θ⋆m (34)

where (a) follows from (33), and (b) follows from the definition of Wim
m,Na

.

Combining (32) and (34) and rearranging the equations, we obtain

Rim
Na

(θ0)=E
[
θ⊤0 W

im
m,Na

θ0 − 2θ⋆⊤m Wim
m,Na

θ0+

γ−1θ⋆⊤m
(
−Wim

m,Na
Q̂m + (Q̂m + γI)Wim

m,Na

)
θ⋆m +

1

Naγ2
Tr(Wim

m,Na
Q̂m)

]
+ 1

(c)
=E
[
∥θ0 − θ⋆m∥2Wim

m,Na

+ γ−1θ⋆⊤m
(
−Wim

m,Na
Q̂m + Q̂mWim

m,Na

)
θ⋆m +

1

Naγ2
Tr(Wim

m,Na
Q̂m)

]
+ 1

(d)
=E
[
∥θ0 − θ⋆m∥2Wim

m,Na

+
1

Naγ2
Tr(Wim

m,Na
Q̂m)

]
+ 1 (35)

where (c) follows from rearranging the equations; (d) follows from the fact that

θ⋆⊤m
(
Wim

m,Na
Q̂m

)
θ⋆m =

(
θ⋆⊤m (Wim

m,Na
Q̂m)θ⋆m

)⊤
= θ⋆⊤m

(
Q̂mWim

m,Na

)
θ⋆m. (36)

Since limNa→∞
1
Na

E[γ−2Tr(Wim
m,Na

Q̂m,Na)] = 0, from the definition of the population risk in (2),
the population risk of iMAML is given by

Rim(θ0) := lim
Na→∞

Rim
Na

(θ0) = Em

[
∥θ0 − θ⋆m∥2Wim

m

]
+ 1 (37a)

with Wim
m = (γ−1Qm + I)−1Qm(γ−1Qm + I)−1 (37b)

whose minimizer is given by

θim0 = argmin
θ0

Rim(θ0) = Em

[
Wim

m

]−1Em

[
Wim

m θ⋆m
]
. (38)

The above discussion provides proof for Proposition 1.

C Proof of Theorem 1

Section B gives solutions to the empirical and population risks. In this section, we provide proof to
the main theorem, starting with the decomposition of the excess risk in Proposition 2. Note that our
proof of the bound on the variance follows the idea of [5] by separately bounding the terms related to
the first k largest eigenvalues and the rest eigenvalues of the per-task weight matrices.
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C.1 Proof of Proposition 2

Next we analyze the excess risk defined in (9) based on the solutions of MAML and iMAML. First
we restate the complete version of Proposition 2 in Lemma 4.
Lemma 4 (Restatement of Proposition 2). With probability at least 1 − δ, the excess risk of the
MAML with the minimum-norm solution is bounded by

EA(θ̂0) ≲
∥∥∥( M∑

m=1

ŴA
m)†(

M∑
m=1

ŴA
m(θ⋆m − θ0))

∥∥∥2
WA

Eθ∗m

+ θ⊤0 B
Aθ0

Eb

+ c1σ
2 log

1

δ
Tr(CA)

Eϵm

(39)

where the weight matrix and the constants are defined as

WA := Em[WA
m], X̃ma := [Xva

m(I− αQ̂tr
m)], X̃im := [Xva

m(I+ γ−1Q̂tr
m)−1]

BA :=
(
X̃A⊤(X̃AX̃A⊤)−1X̃A − I

)
WA

(
X̃A⊤(X̃AX̃A⊤)−1X̃A − I

)
,

CA = CA
1 +CA

2 , CA
1 := (X̃AX̃A⊤)−1X̃AWAX̃A⊤(X̃AX̃A⊤)−1,

Cma
2 :=

α2

Ntr
Cma

1 diag[Xva
mQ̂tr

mXva⊤
m ]

Cim
2 :=

1

Ntr
Cim

1 diag[Xva
m(I+ γ−1Q̂tr

m)−1Q̂tr
m(I+ γ−1Q̂tr

m)−1Xva⊤
m ].

Note that CA
2 can be either Cma

2 for MAML or Cim
2 for iMAML.

Proof. The excess risk EA can be derived as

EA(θ̂0) := R(θ̂0)−R(θ0) = Em

[
∥θ̂0 − θ⋆m∥2WA

m

]
− Em

[
∥θ0 − θ⋆m∥2WA

m

]
=θ̂⊤0 Wθ̂0 − θ⊤0 Wθ0 − 2(θ̂0 − θ0)

⊤Em[Wmθ⋆m] = θ̂⊤0 Wθ̂0 − θ⊤0 Wθ0 − 2(θ̂0 − θ0)
⊤Wθ0

=θ̂⊤0 Wθ̂0 − 2θ̂⊤0 Wθ0 + θ⊤0 Wθ0 = ∥θ̂0 − θ0∥2WA

=
∥∥∥( M∑

m=1

Ŵm

)†( M∑
m=1

Ŵmθ⋆m

)
+∆M − θ0

∥∥∥2
WA

≤2
∥∥∥(∑

m
Ŵm

)†(∑
m
Ŵmθ⋆m

)
− θ0

∥∥∥2
WA

I1

+2
∥∥∆M

∥∥2
WA

I2

. (40)

In (40), I1 can be bounded by

I1 =

∥∥∥∥(∑m
Ŵm

)† (∑
m
Ŵmθ⋆m

)
− θ0

∥∥∥∥2
WA

=

∥∥∥∥(∑m
Ŵm

)†(∑
m
Ŵm(θ⋆m − θ0)

)
+
((∑

m
Ŵm

)†(∑
m
Ŵm)− I

)
θ0

∥∥∥∥2
WA

≤2
∥∥∥(∑

m
Ŵm

)†(∑
m
Ŵm(θ⋆m − θ0)

)∥∥∥2
WA

+ 2
∥∥∥((∑

m
Ŵm

)†(∑
m
Ŵm)− I

)
θ0

∥∥∥2
WA

=2
∥∥∥(∑

m
Ŵm

)†(∑
m
Ŵm(θ⋆m − θ0)

)∥∥∥2
WA

+ 2θ⊤0 Bθ0 (41)

with the matrix B defined as

B =
((∑

m
Ŵm

)†(∑
m
Ŵm)− I

)
WA

((∑
m
Ŵm

)†(∑
m
Ŵm

)
− I
)

(a)
=
(
(X̃⊤X̃)†X̃⊤X̃− I

)
WA((X̃⊤X̃)†X̃⊤X̃− I

)
=
(
X̃⊤(X̃X̃⊤)−1X̃− I

)
WA(X̃⊤(X̃X̃⊤)−1X̃− I

)
. (42)

And (a) is from the relationship of Ŵ and X̃, recall we use [·] to represent row concatenation of
matrices or vectors.
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In (40), I2 can be bounded by

I2 =
∥∥∥( M∑

m=1

ŴA
m

)†( M∑
m=1

(I− αQ̂tr
m)

1

N2
Xva⊤

m evam − (I− αQ̂tr
m)Q̂va

m

α

Ntr
Xtr⊤

m etrm

)∥∥∥2
WA

(b)
= [evam ]⊤CA

1 [e
va
m ] + [etrm]⊤CA

2 [e
tr
m]− 2[evam ]⊤CA

3 [etrm]

≤ 2[evam ]⊤CA
1 [e

va
m ] + 2[etrm]⊤CA

2 [e
tr
m]

= 2Tr(CA
1 [e

va
m ][evam ]⊤ +CA

2 [e
tr
m][etrm]⊤)

= 2Tr(CA
1 +CA

2 ) + 2Tr
(
CA

1 ([e
va
m ][evam ]⊤ − I) +CA

2 ([e
tr
m][etrm]⊤ − I)

)
where (b) follows from expanding the quadratic terms, and

CA
1 =

1

N2
X̃
( M∑

m=1

ŴA
m

)†
WA

( M∑
m=1

ŴA
m

)†
X̃⊤

= X̃
(
X̃⊤X̃

)†
WA(X̃⊤X̃

)†
X̃⊤ =

(
X̃X̃⊤)−1

X̃WAX̃⊤(X̃X̃⊤)−1
, (43)

Cma
2 =

α2

N2
tr

[Xtr
mXva⊤

m X̃m]
( M∑

m=1

ŴA
m

)†
WA

( M∑
m=1

ŴA
m

)†
[Xtr

mXva⊤
m X̃m]⊤

=
α2

N2
tr

[Xtr
mXva⊤

m X̃m]X̃⊤(X̃X̃⊤)−2
X̃WAX̃⊤(X̃X̃⊤)−2

X̃[Xtr
mXva⊤

m X̃m]⊤. (44)

By taking the expectation w.r.t. em, we need to bound Tr(C1),Tr(C2). Based on the cyclic property
of trace, Tr(Cma

2 ) can be further derived as

Tr(Cma
2 ) =

α2

N2
tr

Tr
(
[Xtr

mXva⊤
m X̃m]X̃⊤(X̃X̃⊤)−2

X̃WAX̃⊤(X̃X̃⊤)−2
X̃[Xtr

mXva⊤
m X̃m]⊤

)
=

α2

N2
tr

Tr
(
X̃⊤(X̃X̃⊤)−2

X̃WAX̃⊤(X̃X̃⊤)−2
X̃

M∑
m=1

X̃⊤
mXva

mXt⊤
m Xtr

mXva⊤
m X̃m

)
=

α2

N2
tr

Tr
(
X̃⊤(X̃X̃⊤)−2

X̃WAX̃⊤(X̃X̃⊤)−2
X̃X̃⊤[Xva

mXt⊤
m Xtr

mXva⊤
m X̃m]

)
.

Then Tr(Cma
2 ) can be further written as

Tr(Cma
2 ) =

α2

N2
tr

Tr
(
X̃⊤(X̃X̃⊤)−2

X̃WAX̃⊤(X̃X̃⊤)−1
diag[Xva

mXt⊤
m Xtr

mXva⊤
m ]X̃

)
=

α2

N2
tr

Tr
((

X̃X̃⊤)−1
X̃WAX̃⊤(X̃X̃⊤)−1

diag[Xva
mXtr⊤

m Xtr
mXva⊤

m ]
)

=
α2

Ntr
Tr
((

X̃X̃⊤)−1
X̃WAX̃⊤(X̃X̃⊤)−1

diag[Xva
mQ̂tr

mXva⊤
m ]

)
. (45)

Since we have

Eϵ[I2] =Eϵ

[
[evam ]⊤C1[e

va
m ]
]
+ Eϵ

[
[etrm]⊤C2[e

tr
m]
]

=Tr(C1 Cov[[e
va
m ]]) + Tr(C2 Cov[[e

tr
m]]) = σ2Tr(C1 +C2)

by the subGaussian concentration inequality [47], it holds with probability at least 1− δ over ϵ that

2I2 ≤ c1σ
2 log

1

δ
Tr(C1 +C2). (46)

Combining the bounds for I1 and I2 in (41) and (46) completes the proof.
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C.2 Proof of Lemma 1

Define

∆θA :=
[
(θ⋆1 − θA0 )⊤, . . . , (θ⋆M − θA0 )⊤

]⊤ ∈ RdM ,

UA :=
[
ŴA

1

( M∑
m=1

ŴA
m

)†
, . . . ,ŴA

M

( M∑
m=1

ŴA
m

)†]⊤
∈ RdM×d.

Then we can derive that∥∥∥( M∑
m=1

ŴA
m

)†( M∑
m=1

ŴA
m(θ⋆m − θ0)

)∥∥∥2
WA

=∥U⊤
A∆θA∥2WA .

By the Hanson-Wright inequality, with probability at least 1− δ over θ⋆m, we have∣∣∣∣∥∥∥U⊤
A∆θA

∥∥∥2
WA

− Eθ⋆
m|ŴA

m

[∥∥∥U⊤
A∆θA

∥∥∥2
WA

]∣∣∣∣ = Õ
( R2

M
√
d

)
. (47)

To compute Eθ⋆
m|ŴA

m

[∥∥U⊤
A∆θA

∥∥2
WA

]
, first recall Cov[θ⋆m] = R2

d I, then we have

Eθ⋆
m|ŴA

m
[∆⊤

θAUAW
AU⊤

A∆θA ] =
R2

d

〈( M∑
m=1

ŴA
m

)†
WA

( M∑
m=1

ŴA
m

)†
,

M∑
m=1

(ŴA
m)2

〉
=
R2

d
Tr

(
X̃
( M∑
m=1

ŴA
m

)†
WA

( M∑
m=1

ŴA
m

)†
X̃⊤diag[X̃mX̃⊤

m]

)

=
R2

d
Tr
(
X̃
(
X̃⊤X̃

)†
WA(X̃⊤X̃

)†
X̃⊤diag[X̃mX̃⊤

m]
)

=
R2

d
Tr(CA

1 diag[X̃mX̃⊤
m]) ≤ R2

d
Tr(CA

1 )∥diag[Xva
mXva⊤

m ]∥

≤R2

d
Tr(CA

1 ) max
m∈[M ]

∥Xva
mXva⊤

m ∥ ≤ R2

d
Tr(CA

1 ) max
m∈[M ]

∥Xva
mXva⊤

m ∥ (48)

where from Lemma 19, with high probability ∥Xva
mXva⊤

m ∥ can be bounded by

∥Xva
mXva⊤

m ∥ = ∥Xva⊤
m Xva

m∥ ≲
( d∑

i=1

λ2
mi + λ2

m1N2

)
≤ O(Nva). (49)

Combining (47), (48) and (49) leads to the following with high probability

Eθ⋆
m|ŴA

m
[∆⊤

θAUAW
AU⊤

A∆θA ] ≤
R2

d
Tr(CA

1 ) max
m∈[M ]

∥Xva
mXva⊤

m ∥ ≲
R2Nva

d
Tr(CA

1 )

which proves that this term Eθ⋆
m|ŴA

m
[∆⊤

θA
UAW

AU⊤
A∆θA ] is non-dominant compared to Tr(CA

1 ).

C.3 Proof of Lemma 2

Proof. Recall B :=
(
X̃⊤(X̃X̃⊤)−1X̃− I

)
W
(
X̃⊤(X̃X̃⊤)−1X̃− I

)
. First note that(

X̃⊤(X̃X̃⊤)−1X̃− I
)
X̃⊤ = X̃⊤ − X̃⊤ = 0. (50)

Thus, for any u in the column space of X̃⊤, u can be represented as u = X̃⊤ū, ū ̸= 0, then we have(
X̃⊤(X̃X̃⊤)−1X̃− I

)
u = 0. (51)

And for any u orthogonal to the colomn space of X̃⊤, X̃u = 0, therefore(
X̃⊤(X̃X̃⊤)−1X̃− I

)
u = −u. (52)
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Since any u ∈ Rd can be represented as a combination of a vector in the colomn space of X̃⊤ and a
vector orthogonal to the colomn space of X̃⊤,

(
X̃⊤(X̃X̃⊤)−1X̃−I

)
has eigenvalues whose absolute

values are smaller than 1, i.e. ∥∥X̃⊤(X̃X̃⊤)−1X̃− I
∥∥ ≤ 1. (53)

Then let M =
(
X̃⊤(X̃X̃⊤)−1

X̃− I
)

, expanding θ⊤0 Bθ0, we have

θ⊤0 Bθ0 = θ⊤0

(
X̃⊤(X̃X̃⊤)−1

X̃− I
)
W
(
X̃⊤(X̃X̃⊤)−1

X̃− I
)
θ0

(a)
= θ⊤0 M

(
W − 1

MNva
X̃⊤X̃

)
Mθ0

= θ⊤0 M
(
W − 1

MNva
X̄⊤X̄+

1

MNva
X̄⊤X̄− 1

MNva
X̃⊤X̃

)
Mθ0

(b)

≤
∥∥∥W − 1

MNva
X̄⊤X̄

∥∥∥∥θ0∥2 + 1

MNva

∥∥∥X̄⊤X̄− X̃⊤X̃
∥∥∥∥θ0∥2 (54)

where (a) follows from (50), and (b) follows from (53).

Thus, due to Lemma 16, there is an absolute constant c such that for any 1 ≤ t ≤ MNva with
probability at least 1− e−t over Zva, it holds that

∥∥∥W − 1

MNva
X̄⊤X̄

∥∥∥∥θ0∥2 ≤ c ∥θ0∥2 ∥W∥max


√

r(W)

MNva
,
r(W)

MNva
,

√
t

MNva

 (55)

where r(W) is defined as

r(W) :=
(E∥x̄∥)2

∥W∥
≤

E
(
∥x̄∥2

)
∥W∥

=
Tr(W)

∥W∥
= r0(W). (56)

The bound on
∥∥X̄⊤X̄ − X̃⊤X̃

∥∥ can be found in Lemma 17, which shows when |α| <

minm min{1/λm1, 1/µ1(Λ
1
2
mD̂tr

mΛ
1
2
m)}, with probability at least 1 − 2Me−t over Ztr and Zva

for any 1 ≤ t ≤ Nva, it holds that

1

MNva

∥∥X̄⊤X̄− X̃⊤X̃
∥∥ ≤c|α|

M

M∑
m=1

λ2
m1 max


√

r(Wm)

Ntr
,
r(Wm)

Ntr
,

√
t

Ntr
,

t

Ntr

 . (57)

Applying the union bound we have for MAML with |α| < minm min{1/λm1, 1/µ1(Λ
1
2
mD̂tr

mΛ
1
2
m)}

and for iMAML with γ > 0, for any 1 ≤ t ≤ Nva, with probability at least 1− (2M + 1)e−t over
Ztr and Zva, there exists c > 1 that

θ⊤0 Bθ0 ≲ ∥θ0∥2∥W∥max

{√
r(W)

MNva
,
r(W)

MNva
,

√
t

MNva

}
. (58)

The proof is complete.

C.4 Proof of Lemma 3

To prove Lemma 3, we need to bound Tr(C) = Tr(C1) + Tr(C2). We first show in Lemma 5 that
Tr(C2) can be bounded as Θ(Tr(C1)). Then the key step is to bound Tr(C1). To bound Tr(C1),
first we show in Lemma 7 that Tr(C1) can be decomposed into terms that are related to the first k
largest eigenvalues of W and the term that is only related to the rest eigenvalues. Next we bound the
term related to the d− k smallest eigenvalues of, as a function of µn(A), given in Lemma 8. And
then we bound the term related to the k largest eigenvalues, given in Lemma 9. Finally, we bound the
eigenvalues of µn(A) in Lemma 10.
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Lemma 5 (Bound on Tr(CA
2 ) in terms of Tr(CA

1 )). Recall α is the step size for MAML, γ is the
regularization parameter for iMAML, and

Tr(Cma
2 ) =

α2

Ntr
Tr
(
Cma

1 diag[Xva
mQ̂tr

mXva⊤
m ]

)
, (59)

Tr(Cim
2 ) =

1

Ntr
Tr
(
Cim

1 diag[Xva
m(I+ γ−1Q̂tr

m)−1Q̂tr
m(I+ γ−1Q̂tr

m)−1Xva⊤
m ]

)
. (60)

Let c > cλ +maxm λm1(1 + cσxt+
√

cλ/λm1), it holds with probability at least 1− 2Me−t that

Tr(Cma
2 ) ≤Tr(Cma

1 )c2α2Nva

Ntr
, and Tr(Cim

2 ) ≤ Tr(Cim
1 )c2

Nva

Ntr
. (61)

Proof. We can derive Tr(Cma
2 ) by

Tr(Cma
2 ) =

α2

Ntr
Tr(C1diag[X

va
mQ̂tr

mXva⊤
m ])

(a)

≤ α2

Ntr
Tr(Cma

1 )
∥∥diag[Xva

mQ̂tr
mXva⊤

m ]
∥∥

(b)
=

α2

Ntr
Tr(Cma

1 )max
m

∥∥Xva
mQ̂tr

mXva⊤
m

∥∥ (c)

≤ α2

Ntr
Tr(Cma

1 )max
m

∥∥Q̂tr
m

∥∥∥∥Xva
mXva⊤

m

∥∥ (62)

where (a) follows from Lemma 13, (b) follows because the largest eigenvalue of a symmetric block
diagonal matrix is the maximum largest eigenvalue of the block matrices, (c) follows because for any
unit vector u, u⊤Xva

mQ̂tr
mXva⊤

m u ≤
∥∥Q̂tr

m

∥∥u⊤Xva
mXva⊤

m u ≤
∥∥Q̂tr

m

∥∥∥∥Xva
mXva⊤

m

∥∥.

Then because
∥∥Xva

mXva⊤
m

∥∥ =
∥∥Xva⊤

m Xva
m

∥∥ = Nva

∥∥Q̂va
m

∥∥. The bound on
∥∥Q̂tr

m

∥∥ and
∥∥Q̂va

m

∥∥ can be
obtained by Lemma 19. Applying the union bound over Ztr and Zva, we have that there exists a
constant c > 0 that depends on σx such that, for all t ≥ 1, with probability at least 1− 2e−t

∥Q̂tr
m∥ ≤λm1 + cλm1 max

{√
r(Qm)

Ntr
,
r(Qm)

Ntr
,

√
t

Ntr
,

t

Ntr

}
,

and ∥Q̂va
m∥ ≤λm1 + cλm1 max

{√
r(Qm)

Nva
,
r(Qm)

Nva
,

√
t

Nva
,

t

Nva

}
.

Then applying the union bound over M tasks, we have that there exists a constant cσx > 0 that
depends on σx, and c > cλ + maxm λm1(1 + cσxt +

√
cλ/λm1) such that, for all t ≥ 1, with

probability at least 1− 2Me−t

max
m

∥∥Q̂tr
m

∥∥∥∥Xva
mXva⊤

m

∥∥ ≤c2Nva. (63)

Combining the above results with (62) completes the proof for MAML.

Similarly, for iMAML, we have

Tr(Cim
2 ) =

1

Ntr
Tr
(
Cim

1 diag[Xva
m(I+ γ−1Q̂tr

m)−1Q̂tr
m(I+ γ−1Q̂tr

m)−1Xva⊤
m ]

)
≤ 1

Ntr
Tr(Cim

1 )
∥∥diag[Xva

m(I+ γ−1Q̂tr
m)−1Q̂tr

m(I+ γ−1Q̂tr
m)−1Xva⊤

m ]
∥∥

=
1

Ntr
Tr(Cim

1 )max
m

∥∥Xva
m(I+ γ−1Q̂tr

m)−1Q̂tr
m(I+ γ−1Q̂tr

m)−1Xva⊤
m

∥∥
≤ 1

Ntr
Tr(Cim

1 )max
m

∥∥(I+ γ−1Q̂tr
m)−1Q̂tr

m(I+ γ−1Q̂tr
m)−1

∥∥∥∥Xva
mXva⊤

m

∥∥
≤ 1

Ntr
Tr(Cim

1 )max
m

∥∥Q̂tr
m

∥∥∥∥Xva
mXva⊤

m

∥∥. (64)

Combining the above results with (63) on the same high probability event for Z completes the proof
for iMAML.
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Lemma 5 shows that Tr(C2) can be bounded as Θ(Tr(C1)). Then we proceed to bound Tr(C1). In
Lemma 7, we decompose Tr(C1) into terms that are related to the first k largest eigenvalues of W
and the term that is only related to the rest eigenvalues of W.
Lemma 6 (Bound of Tr(C1) in terms of X̄). Recall Tr(C1) and X̄ is computed by

Tr(C1) = Tr
(
X̃WX̃⊤A−2

)
, and X̄ = [Zva

mΛ̄mV⊤
m]m

Then we have with high probability

Tr(C1) ≤cTr
(
X̄WX̄⊤A−2

)
.

Proof. By Lemma 13 and the properties of trace, we have

Tr(C1) =Tr
(
X̄WX̄⊤A−2

)
+Tr

(
W(X̃− X̄)⊤A−2(X̃+ X̄)

)
≤Tr

(
A−2X̄WX̄⊤)+Tr(W)∥(X̃− X̄)⊤A−2(X̃+ X̄)∥

≤Tr
(
A−2X̄WX̄⊤)+Tr(W)µ−2

n (A)∥X̃− X̄∥∥X̃+ X̄∥
≤Tr

(
A−2X̄WX̄⊤)+Tr(W)µ−2

n (A)∥X̃− X̄∥
(
2∥X̄∥+ ∥X̃− X̄∥

)
.

where ∥X̃−X̄∥ is bounded by Lemma 18 and ∥X̄∥ is bounded by Lemma 19, which can be controlled
by choosing proper hyperparameters γ and α to make the first term dominate.

Lemma 7 (Decomposition of Tr
(
X̄WX̄⊤A−2

)
in Tr(C1)). Recall X̃ = [Zva

mΛ̃mPm], X̄ =

[Zva
mΛ̄mVm], X̄P = [Zva

mΛ̄mPm]. Define A = X̃X̃⊤, and XP = [Zva
mΛ̄mPm]. For both MAML

and iMAML, Tr
(
X̄WX̄⊤A−2

)
in Tr(C1) can be bounded by

Tr
(
X̄WX̄⊤A−2

)
≤ cTr

(
(X̄PΛW,0:kX̄

⊤
P + X̄VW,k:dΛW,k:dV

⊤
W,k:dX̄

⊤)A−2
)
.

Proof. Recall the singular value decomposition of W as W = VWΛWV⊤
W , then for any 0 ≤ k ≤ d,

W can be computed by

W = VW,0:kΛW,0:kV
⊤
W,0:k +VW,k:dΛW,k:dV

⊤
W,k:d. (65)

Therefore we have

Tr
(
X̄WX̄⊤A−2

)
= Tr

(
(X̄VW,0:kΛW,0:kV

⊤
W,0:kX̄

⊤ + X̄VW,k:dΛW,k:dV
⊤
W,k:dX̄

⊤)A−2
)

where X̄VW,0:kΛW,0:kV
⊤
W,0:kX̄

⊤ can be further decomposed by

X̄VW,0:kΛW,0:kV
⊤
W,0:k = X̄PΛW,0:kX̄

⊤
P

+ [Zva
mΛ̄m(VmVW,0:k −Pm,0:k)]ΛW,0:k[Z

va
mΛ̄m(VmVW,0:k −Pm,0:k)]

⊤.

By Lemma 13, we have the last term can be bounded by

Tr
(
A−2[Zva

mΛ̄m(V⊤
mVW,0:k +Pm,0:k)]ΛW,0:k[Z

va
mΛ̄m(V⊤

mVW,0:k −Pm,0:k)]
⊤)

≤Tr
(
ΛW,0:k

)
µn(A)−2∥[Zva

mΛ̄m(V⊤
mVW,0:k +Pm,0:k)]∥∥[Zva

mΛ̄m(V⊤
mVW,0:k −Pm,0:k)]

⊤∥

where ∥[Zva
mΛ̄m(V⊤

mVW,0:k +Pm,0:k)]∥ can be further bounded with high probability by

∥[Zva
mΛ̄m(V⊤

mVW,0:k +Pm,0:k)]∥

=
∥∥[Zva

mΛ̄m(V⊤
mVW,0:k +Pm,0:k)]

⊤[Zva
mΛ̄m(V⊤

mVW,0:k +Pm,0:k)]
∥∥ 1

2

=
∥∥∥ M∑

m=1

(V⊤
mVW,0:k +Pm,0:k)

⊤Λ̄⊤
mZva⊤

m Zva
mΛ̄m(V⊤

mVW,0:k +Pm,0:k)
∥∥∥ 1

2

≲
√
Nva

( M∑
m=1

Tr
(
Wm

)) 1
2

where the last inequality follows from Lemma 16.
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Similarly, ∥[Zva
mΛ̄m(V⊤

mVW,0:k −Pm,0:k)]∥ can be further bounded with high probability by

∥[Zva
mΛ̄m(V⊤

mVW,0:k −Pm,0:k)]∥

=
∥∥[Zva

mΛ̄m(V⊤
mVW,0:k −Pm,0:k)]

⊤[Zva
mΛ̄m(V⊤

mVW,0:k −Pm,0:k)]
∥∥ 1

2

=
∥∥∥ M∑

m=1

(V⊤
mVW,0:k −Pm,0:k)

⊤Λ̄⊤
mZva⊤

m Zva
mΛ̄m(V⊤

mVW,0:k −Pm,0:k)
∥∥∥ 1

2

≲
√
MNva max

m
Tr

1
2
(
Wm

)
∥V⊤

mVW,0:k −Pm,0:k∥.

Based on the assumption the last term is smaller compared to the rest terms.

Then we bound the term related to the d − k smallest eigenvalues of W as a function of µn(A),
given in Lemma 8.

Lemma 8 (Bound on Tr(X̄VW,k:dΛW,k:dV
⊤
W,k:dX̄

⊤A−2) in Tr(C1)). With probability at least
1− e−t over Z, and for c ≥ t, it holds that

Tr(X̄VW,k:dΛW,k:dV
⊤
W,k:dX̄

⊤A−2) ≤ cMNvaµ
−2
n (A)

∑
i>k

µ2
i (W)

where µn is the smallest eigenvalue of a matrix.

Proof. By Von Neumann’s trace inequality in Lemma 13, Tr(X̄VW,k:dΛW,k:dV
⊤
W,k:dX̄

⊤A−2) is
bounded by

Tr(X̄VW,k:dΛW,k:dV
⊤
W,k:dX̄

⊤A−2) ≤ Tr(VW,k:dΛW,k:dV
⊤
W,k:dX̄

⊤X̄)µ−2
n (A).

To bound Tr(VW,k:dΛW,k:dV
⊤
W,k:dX̄

⊤X̄), we first rewrite it as

Tr(VW,k:dΛW,k:dV
⊤
W,k:dX̄

⊤X̄) = MNvaTr
(
(VW,k:dΛW,k:dV

⊤
W,k:d)

2
)

+Tr
(
VW,k:dΛW,k:dV

⊤
W,k:d(X̄

⊤X̄−MNvaVW,k:dΛW,k:dV
⊤
W,k:d)

)
=MNvaTr

(
Λ2

W,k:d

)
+
∥∥∥X̄VW,k:dΛ

1
2

W,k:d

∥∥∥2
F
−MNva

∥∥∥VW,k:dΛW,k:dV
⊤
W,k:d

∥∥∥2
F

=MNva

(∑
i>k

µ2
i (W)

)
+
∥∥X̄VW,k:dΛ

1
2

W,k:d

∥∥2
F
− E

[∥∥X̄VW,k:dΛ
1
2

W,k:d

∥∥2
F

]
I1

(66)

where the last equation follows because

E
[∥∥X̄VW,k:dΛ

1
2

W,k:d

∥∥2
F

]
= E

[
Tr(VW,k:dΛW,k:dV

⊤
W,k:dX̄

⊤X̄)
]

=MNvaE
[
Tr(VW,k:dΛW,k:dV

⊤
W,k:dW)

]
= MNvaE

[
Tr
(
(VW,k:dΛW,k:dV

⊤
W,k:d)

2
)]

=MNva

∥∥∥VW,k:dΛW,k:dV
⊤
W,k:d

∥∥∥2
F
.

Let x̄m,n be the n-th row of X̄m, I1 can be further bounded with probability at least 1− e−t by

|I1| =MNva

∣∣∣∣∣ 1

MNva

M∑
m=1

Nva∑
n=1

∥∥x̄m,nVW,k:dΛ
1
2

W,k:d

∥∥2
F
− E

[∥∥x̄m,nVW,k:dΛ
1
2

W,k:d

∥∥2
F

]∣∣∣∣∣
≤MNva

∥∥∥VW,k:dΛW,k:dV
⊤
W,k:d

∥∥∥2
F
max

{√ t

MNva
,

t

MNva

}
where the last inequality follows because ∥x̄m,nVW,k:dΛ

1
2

W,k:d∥2F are sub-exponential for m ∈
[M ], n ∈ [Nva].
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Also because ∥VW,k:dΛW,k:dV
⊤
W,k:d∥2F = Tr(Λ2

W,k:d) =
∑

i>k µ
2
i (W), we have with probability

at least 1− e−t

Tr(X̄VW,k:dΛW,k:dV
⊤
W,k:dX̄

⊤A−2) ≤ cMNvaµ
−2
n (A)

∑
i>k

µ2
i (W).

This completes the proof.

Next we bound the term related to the k largest eigenvalues of W, given in Lemma 9.
Lemma 9 (Bound on terms in Tr(C1) related to the first k eigenvalues). Recall

X̄P = [Zva
mΛ̄mPm]m, X̄P,0:k := [Zva

mΛ̄mPm,0:k]m

There exists c with 0 ≤ k ≤ c such that with probability at least 1− 2eMNva/c, the following holds

Tr
(
X̄P,0:kΛW,0:kX̄

⊤
P,0:kA

−2
)
≤ ck

MNva
.

Proof. Recall Λ̄P,m = P⊤
mΛ̄mPm, X̄P and X̄P,0:k can be written as

X̄P =[Zva
mPmP⊤

mΛ̄mPm]m = [Zva
P,mΛ̄P,m]m, X̄P,0:k = [Zva

P,m,0:kΛ̄P,m,0:k]m. (67)

Derive Tr
(
X̄P,0:kΛW,0:kX̄

⊤
P,0:kA

−2
)

as follows

Tr
(
X̄P,0:kΛW,0:kX̄

⊤
P,0:kA

−2
)
= Tr

(
[Zva

P,m,0:kΛ̄P,m,0:k]mΛW,0:k[Z
va
P,m,0:kΛ̄P,m,0:k]

⊤
mA−2

)
=

k∑
i=1

λW,i[z
va
P,m,iλ̄P,m,i]

⊤
mA−2[zvaP,m,iλ̄P,m,i]m =

k∑
i=1

λW,ix̄
⊤
P,iA

−2x̄P,i

Based on Lemma 11, let A−j = A− x̄P,jx̄
⊤
P,j ≻ 0, we have

x̄⊤
P,jA

−2x̄P,j = x̄⊤
P,j(x̄P,jx̄

⊤
P,j +A−j)

−2x̄P,j =
x̄⊤
P,jA

−2
−j x̄P,j

(1 + x̄⊤
P,jA

−1
−j x̄P,j)2

≤
x̄⊤
P,jA

−2
−j x̄P,j

(x̄⊤
P,jA

−1
−j x̄P,j)2

≤ µ−2
n (A−j)∥x̄P,j∥2

µ−2
k+1(A−j)∥ΠLj x̄P,j∥4

where by Lemma 15, there exists cz1 that, with probability at least 1− 3e−t, it holds that

∥x̄P,j∥2 =

M∑
m=1

λ̄2
P,m,i∥zvaP,m,i∥2 ≤

M∑
m=1

λ̄2
P,m,i

(
Nva + aσ2

x(t+
√

Nvat)
)
≤ cz1Nva

M∑
m=1

λ̄2
P,m,i.

(68)

And Lj is the span of the MNva − k eigenvectors with the smallest eigenvalues of A−j , and ΠLj

represents the projection to Lj . Let M = Π⊤
L ⊥

j
ΠL ⊥

j
. By Lemma 15, with probability at least

1− 3e−t, it holds that

∥ΠL ⊥
j
x̄P,j∥2 = x̄⊤

P,jM x̄P,j ≤ cz1(2k + 4t)cP
1

M

M∑
m=1

λ̄2
P,m,i.

Therefore

∥ΠLj
x̄P,j∥2 = ∥x̄P,j∥2 − ∥ΠLj⊥x̄P,j∥2

≥cz1(MNva − (2k + 4t)cP )
1

M

M∑
m=1

λ̄2
P,m,i ≥ (MNva/cz2)

1

M

M∑
m=1

λ̄2
P,m,i

Since A−j = A − x̄P,jx̄
⊤
P,j ⪯ A, which, combined with Lemma 12, leads to µk+1(A−j) <

µk+1(A) = µ1(Ak).
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Since µn(A−j) ≥ µn(Ak) , we have

x̄⊤
P,jA

−2x̄P,j ≤
µ−2
n (A−j)∥x̄P,j∥2

µ−2
k+1(A−j)∥ΠLj x̄P,j∥4

(a)

≤ c1
µn(Ak)

µ1(Ak)MNva

(b)

≤ c2
1

MNva

where (a) is because µn(A−j) ≥ µn(Ak) and µk+1(A−j) < µ1(Ak). And (b) is from Lemma 10.

Finally in Lemma 10, we bound the eigenvalues of A to complete the bound on the term related to
the d− k smallest eigenvalues of W.
Lemma 10 (Bound on eigenvalues of A). Recall that

A = X̃X̃⊤ = [Zva
m1

Λ̃m1
V⊤

m1
Vm2

Λ̃⊤
m2

Zva⊤
m2

]m1m2

Ā = X̄VWV⊤
W X̄⊤ = [Zva

m1
Λ̄m1V

⊤
m1

VWV⊤
WVm2Λ̄m2Z

va⊤
m2

]m1m2

ĀP = X̄PX̄
⊤
P = [Zva

m1
Λ̄m1Pm1P

⊤
m2

Λ̄m2Z
va⊤
m2

]m1m2 .

Let µi(·) denote the i-th largest eigenvalue of a matrix, and let n = MNva. Define WP,M :=
1
M

∑M
m=1 P

⊤
mΛ̄2

mPm, ĀP,k := X̄P,k:dX̄
⊤
P,k:d, WP,M,k := 1

M

∑M
m=1 P

⊤
m,k:dΛ̄

2
mPm,k:d. Then

there exists constants b, c ≥ 1, c0 ≥ 0 that if r0(WM,k) ≥ bMNva, with probability at least
1− 2e−MNva/c

µn(A) ≥ µn(Ā)− c0 ≥ µn(Āk)− c0 ≥ 1

c
µ1(Wk)r0(Wk) (69)

µ1(Āk) ≤ cµ1(Wk)r0(Wk) (70)

µn(A) ≥ µn(ĀP)− 2c0 ≥ µn(ĀP,k)− 2c0 ≥ 1

c
µ1(Wk)r0(Wk) (71)

µ1(ĀP,k) ≤ µ1(Āk) + c0 ≤ cµ1(Wk)r0(Wk). (72)

Proof. First A can be written as

A = Ā+ X̃X̃⊤ − X̄X̄⊤ = ĀP + X̄X̄⊤ − X̄PX̄
⊤
P + X̃X̃⊤ − X̄X̄⊤.

Therefore

ĀP − 2c0I ⪯ Ā− c0I ⪯ A ⪯ Ā+ c0I ⪯ ĀP + 2c0I

and c0 = max{∥X̃X̃⊤ − X̄X̄⊤∥, ∥X̄X̄⊤ − X̄PX̄
⊤
P∥}, where ∥X̃X̃⊤ − X̄X̄⊤∥ can be bounded by

∥X̃X̃⊤ − X̄X̄⊤∥ ≤∥(X̃+ X̄)(X̃− X̄)⊤∥ ≤ ∥X̃− X̄∥
(
2∥X̄∥+ ∥X̃− X̄∥

)
.

where ∥X̃− X̄∥ is bounded by Lemma 18 and ∥X̄∥ is bounded by Lemma 19.

For sufficiently small |α| and γ−1, and c1 > 1, we can control∥∥X̄⊤X̄− X̃⊤X̃
∥∥ ≤ 1

c1
µ1(Wk)r0(Wk) (73)

Furthermore, by the bounded task heterogeneity assumption, ∥X̄X̄⊤ − X̄PX̄
⊤
P∥ can be bounded as

∥X̄X̄⊤ − X̄PX̄
⊤
P∥ =∥(X̄+ X̄P)

⊤(X̄− X̄P)∥

≤
M∑

m=1

∥I+P⊤
mV⊤

mVW ∥∥X̄⊤
mX̄m∥∥I−V⊤

WVmPm∥

≤2M max
m

∥P⊤
m −V⊤

WVm∥∥X̄⊤
mX̄m∥ ≤ 1

c1
µ1(Wk)r0(Wk).

Then we have there exists c1 > 1 that

c0 ≤ 1

c1
µ1(Wk)r0(Wk). (74)
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Next we bound ∥Ā∥ and ∥ĀP∥. For ∥Ā∥ we have

∥Ā∥ = ∥X̄VWV⊤
W X̄⊤∥ = ∥V⊤

W X̄⊤X̄VW ∥

≤MNva

∥∥∥ΛW

∥∥∥+ ∥∥∥MNvaΛW −V⊤
W X̄⊤X̄VW

∥∥∥
≤MNvaµ1(ΛW ) +

∥∥∥MNvaΛW −V⊤
W X̄⊤X̄VW

∥∥∥.
From Lemma 19, we have there exists a constant c that with probability at least 1− e−t

∥Ā∥ ≤ cMNvaµ1(ΛW ) + cMNvaµ1(ΛW )cr0(r0(ΛW ), N, t),

∥Ā∥ ≥ cMNvaµ1(ΛW )− cMNvaµ1(ΛW )cr0(r0(ΛW ), N, t).

Similarly, because

Wk = V⊤
W,k:dWVW,k:d, Tr(Wk) = Tr(ΛW,k:d), µ1(Wk) = µ1(ΛW,k:d) = µk+1(W).

If rk(W) ≥ bMNva, then there exists a constant c that depends on σx such that with probability at
least 1− 2e−MNva/c

∥Āk∥ ≥ 1

c
µk+1(W)rk(W), ∥Āk∥ ≤ cµk+1(W)rk(W).

D Auxiliary Lemmas

D.1 Algebraic properties

Lemma 11. (Lemma 20 in [5]) Suppose k < n,A ∈ Rn×n is an invertible matrix, and Z ∈ Rn×k

is such that ZZ⊤ +A is invertible. Then
Z⊤(ZZ⊤ +A)−2Z = (I+ Z⊤A−1Z)−1Z⊤A−2Z(I+ Z⊤A−1Z)−1. (75)

Lemma 12 (Weyl’s inequality [51]). Let B = A+E,A,E be n× n Hermitian matrices. Let µi(·)
denote the i-th largest eigenvalues of a matrix. Then, we have

µi(A) + µn(E) ≤ µi(B) ≤ µi(A) + µ1(E), ∀i ∈ [n].

Lemma 13 (Von Neumann’s trace inequality [34]). If A,B ∈ Rn×n. Let σi(·) denote the i-th largest
singular values of a matrix. σ1(A) ≥ · · · ≥ σn(A), σ1(B) ≥ · · · ≥ σn(B) respectively, then

|Tr(AB)| ≤
n∑

i=1

σi(A)σi(B) ≤ σ1(B)

n∑
i=1

σi(A). (76)

D.2 Concentration inequalities

Lemma 14. (Corollary 23 in [5]) There is a universal constant c such that for any non-increasing
sequence {λi}∞i=1 of non-negative numbers such that

∑∞
i=1 λi < ∞, and any independent, centered,

σ-subexponential random variables {ξi}∞i=1, and any t > 0, with probability at least 1− 2e−t

∣∣∣ ∞∑
i=1

λiξi

∣∣∣ ≤ cσmax

{
tλ1,

√√√√t

∞∑
i=1

λ2
i

}
.

Lemma 15. (Corollary 24 in [5]) Suppose z ∈ Rn is a centered random vector with independent
σ2-subGaussian entries with unit variances, L is a random subspace of Rn of codimension k, and
L is independent of z. Then for some constant a and any t > 0, with probability at least 1− 3e−t,

∥z∥2 ≤ n+ aσ2(t+
√
nt), ∥ΠL z∥2 ≥ n− aσ2(k + t+

√
nt)

where ΠL is the orthogonal projection on L .
Lemma 16 (Theorem 9 in [31]). Let x,x1, . . . ,xn be i.i.d. weakly square integrable centered
random vectors in a separable Banach space with covariance Σ and sample covariance Σ̂. If x is
subgaussian and pregaussian, define r(Σ) := (E[∥x∥])2/∥Σ∥, then there exists a constant c > 0
such that, for all t ≥ 1, with probability at least 1− e−t

∥Σ̂−Σ∥ ≤ c∥Σ∥max
{√r(Σ)

n
,
r(Σ)

n
,

√
t

n
,
t

n

}
. (77)
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D.3 Other supporting lemmas

Lemma 17 (Bound of ∥X̃⊤X̃− X̄⊤X̄∥). Recall that X̄⊤X̄ and X̃⊤X̃ are computed by

X̄⊤X̄ =Nva

M∑
m=1

VmΛ̄mD̂va
mΛ̄mV⊤

m, and X̃⊤X̃ = Nva

M∑
m=1

VmΛ̃⊤
mD̂va

mΛ̃mV⊤
m.

For MAML, for |α| < minm min{1/λm1, 1/µ1(Q̂
tr
m)}, and for 1 ≤ t ≤ Nva, there exists c > 1 such

that with probability at least 1− 2Me−t

∥∥X̄ma⊤X̄ma − X̃ma⊤X̃ma
∥∥ ≤c|α|Nva

M∑
m=1

λ2
m1cr0(r0(Λm), Ntr, t).

For iMAML, for γ > 0, and for 1 ≤ t ≤ Nva, there exists c > 1 such that with probability at least
1− 2Me−t

∥∥X̄im⊤X̄im − X̃im⊤X̃im
∥∥ ≤cγ−1Nva

M∑
m=1

λ2
m1cr0(r0(Λm), Ntr, t).

Proof. First we have the following relationship

X̄⊤X̄− X̃⊤X̃ =
1

2

(
(X̄+ X̃)⊤(X̄− X̃) + (X̄− X̃)⊤(X̄+ X̃)

)
.

Therefore we have∥∥X̄⊤X̄− X̃⊤X̃
∥∥ ≤

∥∥(X̄+ X̃)⊤(X̄− X̃)
∥∥ =

∥∥∥ M∑
m=1

Vm(Λ̄m + Λ̃m)⊤Z⊤
mZm(Λ̄m − Λ̃m)V⊤

m

∥∥∥
For MAML, we have∥∥X̄ma⊤X̄ma − X̃ma⊤X̃ma

∥∥
≤Nva

∥∥∥ M∑
m=1

Vm

(
(I− αΛm) + (I− αΛ

1
2
mD̂tr

mΛ
1
2
m)
)
Λ

1
2
mD̂va

mΛ
1
2
m

(
αΛ

1
2
m(D̂tr

m − I)Λ
1
2
m

)
V⊤

m

∥∥∥
≤Nva

M∑
m=1

∥∥∥(I− αΛm) + (I− αΛ
1
2
mD̂tr

mΛ
1
2
m)
∥∥∥

I1

∥∥∥Λ 1
2
mD̂va

mΛ
1
2
m

∥∥∥
I2

∥∥∥αΛ 1
2
m(D̂tr

m − I)Λ
1
2
m

∥∥∥
I3

where we choose α such that ∥αΛ
1
2
mD̂tr

mΛ
1
2
m∥ < 1 and ∥αΛm∥ < 1. Therefore

I1 =
∥∥(I− αΛm) + (I− αΛ

1
2
mD̂tr

mΛ
1
2
m)
∥∥ ≤ 4. (78)

Also based on Lemma 16 we can bound I2 and I3 since Λ
1
2
mD̂tr

mΛ
1
2
m and Λ

1
2
mD̂va

mΛ
1
2
m are the sample

covariances of Λm.

There exists a constant c that for all t ≥ 1, with probability at least 1− e−t we have

I2 =
∥∥Λ 1

2
mD̂va

mΛ
1
2
m

∥∥ ≤
∥∥Λm

∥∥+ ∥∥Λm −Λ
1
2
mD̂va

mΛ
1
2
m

∥∥
≤λm1 + cλm1cr0(r0(Λm), Nva, t) (79)

and for all t ≥ 1, with probability at least 1− e−t we have

I3 =
∥∥αΛ 1

2
m(D̂tr

m − I)Λ
1
2
m

∥∥ ≤ c|α|λm1cr0(r0(Λm), Ntr, t) (80)

Combining the bounds for I1, I2, I3 and applying union bound over training and validation data for
all tasks, when |α| < minm min{1/λm1, 1/µ1(Λ

1
2
mD̂tr

mΛ
1
2
m)}, and for 1 ≤ t ≤ Nva, there exists

c > 1 such that the following holds with probability at least 1− 2Me−t

∥∥X̄ma⊤X̄ma − X̃ma⊤X̃ma
∥∥ ≤c|α|Nva

M∑
m=1

λ2
m1cr0(r0(Λm), Ntr, t).
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Similarly, for iMAML, we have

∥∥X̄im⊤X̄im − X̃im⊤X̃im
∥∥ ≤

∥∥∥ M∑
m=1

Vm(Λ̄m + Λ̃m)⊤Z⊤
mZm(Λ̄m − Λ̃m)V⊤

m

∥∥∥
=Nva

∥∥∥ M∑
m=1

Vm

(
(I+ γ−1Λm)−1 + (I+ γ−1Λ

1
2
mD̂tr

mΛ
1
2
m)−1

)
Λ

1
2
mD̂va

mΛ
1
2
m

·
(
(I+ γ−1Λm)−1(γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m)(I+ γ−1Λ

1
2
mD̂tr

mΛ
1
2
m)−1

)
V⊤

m

∥∥∥
≤Nva

M∑
m=1

∥∥∥(I+ γ−1Λm)−1 + (I+ γ−1Λ
1
2
mD̂tr

mΛ
1
2
m)−1

∥∥∥
I4

∥∥∥Λ 1
2
mD̂va

mΛ
1
2
m

∥∥∥
I2

·
∥∥∥(I+ γ−1Λm)−1(γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m)(I+ γ−1Λ

1
2
mD̂tr

mΛ
1
2
m)−1

∥∥∥
I5

where I4 can be bounded by

I4 =
∥∥∥(I+ γ−1Λm)−1 + (I+ γ−1Λ

1
2
mD̂tr

mΛ
1
2
m)−1

∥∥∥ ≤ 2. (81)

And I5 can be bounded by

I5 =
∥∥∥(I+ γ−1Λm)−1(γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m)(I+ γ−1Λ

1
2
mD̂tr

mΛ
1
2
m)−1

∥∥∥
≤
∥∥∥(I+ γ−1Λm)−1

∥∥∥∥∥∥γ−1Λ
1
2
m(D̂tr

m − I)Λ
1
2
m

∥∥∥∥∥∥(I+ γ−1Λ
1
2
mD̂tr

mΛ
1
2
m)−1

∥∥∥
≤
∥∥∥γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m

∥∥∥ (82)

Based on Lemma 16, we can bound I5 similarly as I3. There exists a constant c that for all t ≥ 1,
with probability at least 1− e−t we have

I5 ≤
∥∥∥γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m

∥∥∥ ≤ cγ−1λm1cr0(r0(Λm), Ntr, t). (83)

Combining the bounds for I4, I2, I5 and applying union bound over training and validation data
for all tasks, for γ > 0, and for 1 ≤ t ≤ Nva, there exists c > 1 such that the following holds with
probability at least 1− 2Me−t

∥∥X̄im⊤X̄im − X̃im⊤X̃im
∥∥ ≤cγ−1Nva

M∑
m=1

λ2
m1cr0(r0(Λm), Ntr, t).

This completes the proof for Lemma 17.

Lemma 18 (Bound of ∥X̃− X̄∥). Recall that X̄ and X̃ are defined as

X̄ =[Zva
mΛ̄mV⊤

m], and X̃ = [Zva
mΛ̃mV⊤

m].

Define cr0(r(Λ), N, t) := max
{√ r(Λ)

N , r(Λ)
N ,

√
t
N , t

N

}
. For MAML, and for 1 ≤ t ≤ Nva, there

exists c > 1 such that with probability at least 1− 2Me−t

∥∥X̄ma − X̃ma
∥∥ ≤c|α|Nva

( M∑
m=1

λ2
m1c

2
r0(r(Λm), Ntr, t)

) 1
2

.

For iMAML, and for γ > 0, and for 1 ≤ t ≤ Nva, there exists c > 1 such that with probability at
least 1− 2Me−t

∥∥X̄im − X̃im
∥∥ ≤cγ−1Nva

( M∑
m=1

λ2
m1c

2
r0(r(Λm), Ntr, t)

) 1
2

.
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Proof. First we have the following relationship

∥X̃− X̄∥ =
∥∥(X̄− X̃)⊤(X̄− X̃)

∥∥ 1
2 .

For MAML, we have∥∥(X̄ma − X̃ma)⊤(X̄ma − X̃ma)
∥∥

=Nva

∥∥∥ M∑
m=1

Vm

(
αΛ

1
2
m(D̂tr

m − I)Λ
1
2
m

)
Λ

1
2
mD̂va

mΛ
1
2
m

(
αΛ

1
2
m(D̂tr

m − I)Λ
1
2
m

)
V⊤

m

∥∥∥
≤Nva

M∑
m=1

∥∥∥αΛ 1
2
m(D̂tr

m − I)Λ
1
2
m

∥∥∥
I1

∥∥∥Λ 1
2
mD̂va

mΛ
1
2
m

∥∥∥
I2

∥∥∥αΛ 1
2
m(D̂tr

m − I)Λ
1
2
m

∥∥∥
I1

where based on Lemma 16 we can bound I1 and I2 since Λ
1
2
mD̂tr

mΛ
1
2
m and Λ

1
2
mD̂va

mΛ
1
2
m are the sample

covariances of Λm.

There exists a constant c that for all t ≥ 1, with probability at least 1− e−t we have

I2 =
∥∥Λ 1

2
mD̂va

mΛ
1
2
m

∥∥ ≤
∥∥Λm

∥∥+ ∥∥Λm −Λ
1
2
mD̂va

mΛ
1
2
m

∥∥
≤λm1 + cλm1cr0(r0(Λm), Nva, t) (84)

and for all t ≥ 1, with probability at least 1− e−t we have

I1 =
∥∥αΛ 1

2
m(D̂tr

m − I)Λ
1
2
m

∥∥ ≤ c|α|λm1cr0(r0(Λm), Ntr, t) (85)

Combining the bounds for I1, I2 and applying union bound over training and validation data for all
tasks, we have for 1 ≤ t ≤ Nva, there exists c > 1 such that the following holds with probability at
least 1− 2Me−t

∥∥(X̄ma − X̃ma)⊤(X̄ma − X̃ma)
∥∥ ≤c|α|2Nva

M∑
m=1

λ3
m1c

2
sample(r(Λm), Ntr, t).

Similarly, for iMAML, we have

∥∥(X̄im − X̃im)⊤(X̄im − X̃im)
∥∥ =

∥∥∥ M∑
m=1

Vm(Λ̄m − Λ̃m)⊤Z⊤
mZm(Λ̄m − Λ̃m)V⊤

m

∥∥∥
=Nva

∥∥∥ M∑
m=1

Vm

(
(I+ γ−1Λm)−1(γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m)(I+ γ−1Λ

1
2
mD̂tr

mΛ
1
2
m)−1

)
Λ

1
2
mD̂va

mΛ
1
2
m

·
(
(I+ γ−1Λm)−1(γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m)(I+ γ−1Λ

1
2
mD̂tr

mΛ
1
2
m)−1

)
V⊤

m

∥∥∥
≤Nva

M∑
m=1

∥∥∥(I+ γ−1Λm)−1(γ−1Λ
1
2
m(D̂tr

m − I)Λ
1
2
m)(I+ γ−1Λ

1
2
mD̂tr

mΛ
1
2
m)−1

∥∥∥
I3

∥∥∥Λ 1
2
mD̂va

mΛ
1
2
m

∥∥∥
I2

·
∥∥∥(I+ γ−1Λm)−1(γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m)(I+ γ−1Λ

1
2
mD̂tr

mΛ
1
2
m)−1

∥∥∥
I3

where I3 can be bounded by

I3 =
∥∥∥(I+ γ−1Λm)−1(γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m)(I+ γ−1Λ

1
2
mD̂tr

mΛ
1
2
m)−1

∥∥∥
≤
∥∥∥(I+ γ−1Λm)−1

∥∥∥∥∥∥γ−1Λ
1
2
m(D̂tr

m − I)Λ
1
2
m

∥∥∥∥∥∥(I+ γ−1Λ
1
2
mD̂tr

mΛ
1
2
m)−1

∥∥∥
≤
∥∥∥γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m

∥∥∥ (86)
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Based on Lemma 16, we can bound I3 similarly as I1. There exists a constant c that for all t ≥ 1,
with probability at least 1− e−t we have

I3 ≤
∥∥∥γ−1Λ

1
2
m(D̂tr

m − I)Λ
1
2
m

∥∥∥ ≤ cγ−1λm1cr0(r(Λm), Ntr, t). (87)

Combining the bounds for I2, I3 and applying union bound over training and validation data for
all tasks, for γ > 0, and for 1 ≤ t ≤ Nva, there exists c > 1 such that the following holds with
probability at least 1− 2Me−t

∥∥(X̄im − X̃im)⊤(X̄im − X̃im)
∥∥ ≤cγ−2Nva

M∑
m=1

λ3
m1c

2
r0(r(Λm), Ntr, t).

This completes the proof for Lemma 18.

Lemma 19 (Bound of ∥Λ 1
2Z⊤ZΛ

1
2 ∥, ∥ZΛZ⊤∥ and ∥ZΛ 1

2 ∥). Let Z ∈ RN×d, consists of centered,
independent, σx-subGaussian entries. And Λ = diag(λ1, . . . , λd) ∈ Rd×d be a positive definite
diagonal matrix with λ1 ≥ λ2 ≥ · · · ≥ λd. Then ∥Λ 1

2Z⊤ZΛ
1
2 ∥ = ∥ZΛZ⊤∥ , and there exists a

constant c > 0 such that, for all t ≥ 1, with probability at least 1− e−t

∥ZΛZ⊤∥ ≤Nλ1 + cNλ1cr0(r0(Λ), N, t), ∥ZΛ 1
2 ∥ ≤

√
Nλ1

(
1 + ccr0(r0(Λ), N, t)

) 1
2

.

Proof.

∥Λ 1
2Z⊤ZΛ

1
2 ∥ = ∥Λ 1

2Z⊤ZΛ
1
2 −NΛ+NΛ∥ ≤N

∥∥∥ 1

N
Λ

1
2Z⊤ZΛ

1
2 −Λ

∥∥∥+N∥Λ∥.

By Lemma 16, we have there exists a constant c > 0 such that, for all t ≥ 1, with probability at least
1− e−t ∥∥∥ 1

N
Λ

1
2Z⊤ZΛ

1
2 −Λ

∥∥∥ ≤ c∥Λ∥cr0(r0(Λ), N, t).

Therefore, there exists a constant c > 0 such that, for all t ≥ 1, with probability at least 1− e−t∥∥Λ 1
2Z⊤ZΛ

1
2

∥∥ ≤Nλ1 + cNλ1cr0(r0(Λ), N, t).

Because ∥ZΛZ⊤∥ = ∥Λ 1
2Z⊤ZΛ

1
2 ∥, and ∥ZΛ 1

2 ∥ = ∥Λ 1
2Z⊤ZΛ

1
2 ∥ 1

2 , it leads to the conclusion.
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