
A Reproducibility

A.1 Environment description

We run experiments on two benchmarks as described in Table 1. All these benchmarks are imple-
mented in MuJoCo [Todorov et al., 2012]. Huang et al. [2020] created Walker++, Humanoid++,
Hopper++ and Walker-Humanoid-Hopper++, by removing some limbs and joints from the origi-
nal intact morphology of Gym MuJoCo robots [Todorov et al., 2012, Brockman et al., 2016]. In
this benchmark, every robot has the ability to hop, walk, or run, i.e., only the robots that can move
forward are left. Following Huang et al. [2020], Kurin et al. [2020], Hong et al. [2021], we use this
benchmark for the evaluation of multi-task learning (Sec. 4.2) and zero-shot generalization ability
(Sec. 4.3). As for the single-task learning benchmark, we sampled some morphologies from UNI-
MALS [Gupta et al., 2021b,a]. Gupta et al. [2021b] created UNIMALS by evolution on robots’
morphologies, kinematics, and dynamics. At the end of the evolution, they had 100 task optimized
robots. We choose a subset of these robots that are optimized for locomotion in flat terrain envi-
ronment for single-task evaluation in Sec. 4.5. We ensure that the selected robots have different
morphologies from each other. For multi-task evaluation, we use the whole 100 robots for train-
ing in Appendix B.1. And for zero-shot evaluation in robots’ dynamic and kinematic properties in
Appendix B.1, we use the test set created by Gupta et al. [2021a], which contains 2400 robots.

The reward of these tasks is given by the speed of the robot moving forward, and is penalized by the
action norm. An episode terminates when the robot’s height is low or the episode length exceeds
1000 time steps. For all the environments, we can extract the morphology of the robot as a graph
from the corresponding MuJoCo XML file. Then the morphological information is concatenated in
observations in baselines or is used to generate embeddings for action transformation in SOLAR. The
visualization of these robots can be found in synergy clustering results: Walker++ as in Figure 11,
Humanoid++ as in Figure 5, Hopper++ as in Figure 10 and UNIMALS as in Figure 12. The number
of actuators we evaluated in this work varies from three to nine.

Table 1: Full list of environments.
Environment Train set Test set

Walker++

walker_2_main
walker_4_main
walker_5_main
walker_7_main

Humanoid++

humanoid_2d_7_left_arm
humanoid_2d_lower_arms
humanoid_2d_7_right_leg
humanoid_2d_8_left_knee
humanoid_2d_8_right_knee
humanoid_2d_9_full

humanoid_2d_7_left_leg
humanoid_2d_7_right_arm

Hopper++
hopper_3
hopper_4
hopper_5

Walker-Humanoid-Hopper++. Union of Walker++, Humanoid++ and Hopper++

UNIMALS unimalA, unimalB, unimalC

A.2 Implementation details

We implement SOLAR based on AMORPHEUS [Kurin et al., 2020], which is built on Official PyTorch
Tutorial [Seq, 2020]. AMORPHEUS also shares the codebase with SMP [Huang et al., 2020]. Table 2
provides the hyperparameters needed to replicate our experiments.

As in Figure 1, there are three main components in our implementation, i.e., Intra-Synergy
Self-Attention, Inter-Synergy Self-Attention and Action Transformation. To achieve Intra-Synergy
Self-Attention efficiently, we pass a synergy-based mask into PyTorch’s TranformerEncoderLayer

14



Table 2: Hyperparameters of our SOLAR.
Hyperparameter Value

Learning rate 0.0001
Gradient clipping 0.1

Normalization LayerNorm
Total attention layers 3

Intra-synergy attention layers 1
Inter-synergy attention layers 2

Attention heads 2
Attention hidden size 256
Encoder output size 128

Mini-batch size 100
Replay buffer size 10M

Attention embedding size 128

through src_mask function argument. The synergy-based mask is discussed in detail in Sec. 3.2.
Inter-Synergy Self-Attention is implemented by the normal TranformerEncoderLayer without masks.

As for Action Transformation, the main challenge is how to obtain a transformation matrix T ∈
RKn×Ln , where Kn and Ln are the number of actuators and the number of synergies of robot
n ∈ {1, 2, · · · , N}. Ln may change during the learning process. Intuitively, the matrix T is depen-
dent on the robot’s morphology. Here we use a traversal-based positional embedding [Hong et al.,
2021] technique, and these embeddings together represent the robot’s morphological information.
To obtain the traversal-based positional embedding, we first apply left-child-right-sibling represen-
tation to represent a general tree as a binary tree. Then, we traverse the binary tree in pre-order,
in-order and post-order, which forms a triple for each actuator consisting of its orders. And these
triples together are sufficient to reconstruct the original tree, which indicates that each triple contains
the structural information of the corresponding actuator. The triple of each joint serves as indices
into a embedding pool {r1, r2, . . . , rp} where p = maxn Kn is the maximum number of actuators
in a robot, and each ri ∈ Rs is a learnable vector. The selected embeddings are processed by a net-
work, and we concatenate the outputs to obtain a representation of the corresponding actuator. Using
dot product between representations of two actuators, we get a matrix H ∈ RKn×Kn where Hi,j

indicates the relation between actuator i and actuator j. Finally, we average the columns correspond-
ing to actuators in the same synergy cluster and obtain the transformation matrix T ∈ RKn×Ln . The
embedding pool and network are updated by backpropagating the RL loss.

Experiments are carried out on NVIDIA GTX 2080 Ti GPUs. For Humanoid++, our method re-
quires approximately 10G of RAM and 5G of video memory, and takes about 23 hours to finish 2M
timesteps of training.

The code for our method is included in the supplementary materials with sufficient setup and running
instructions. The code follows the MIT license.

A.3 Baselines and ablations

We compare our method against various baselines and ablations. Here we explain the implementa-
tions of these baselines and ablations.

AMORPHEUS. We use the original implementation of AMORPHEUS released by Kurin et al. [2020].
For fair comparison, SOLAR uses the same value for those hyperparameters that are shared with
AMORPHEUS (Table 2).

SMP. We use the implementation of SMP in the AMORPHEUS codebase, which is the same as the
original implementation of SMP provided by Huang et al. [2020].

Monolithic. Following the setup by Huang et al. [2020], we choose TD3 as the standard monolithic
RL baseline. The actor and critics of TD3 are implemented by fully-connected neural networks,
which take the concatenation of observations of all actuators as input. Since number of actuators

15



varies in different robots, the dimension of observations is incompatible. To overcome this issue, we
zero-pad the observations and actions to the maximum dimension across all robots.

AMORPHEUS w/ synergy mask. We passed a synergy-based mask to the first layer of self-attention
in AMORPHEUS, and the mask is learned in the same way as in our method. The other two layers of
AMORPHEUS are not modified.

SOLAR w/o preference. We simply set the preference vector of the affinity propagation clustering
algorithm to None, and the algorithm will use the median of the input affinity matrix as a default
preference vector.

B Additional experiments and discussions

B.1 UNIMALS Locomotion task and Manipulation task

0 10 20 30 40 50 60
7 (mLO)

0

500

1000

1500

2000

(S
Ls
Rd
e 
5e
w
ar
d

LRcRmRtLRn

0 10 20 30 40 50 60
7 (mLO)

0

250

500

750

1000

(S
Ls
Rd
e 
5e
w
ar
d

0anLSuOatLRn
62LA5 (2urs) 0eta0RrSh

Manipulation Task

Box
Goal

Figure 8: Left: Multi-Task performance in UNIMALS of our method SOLAR compared to Meta-
Morph. Right: Manipulation task.

To further analyze the scalability of our SOLAR when the number of robots and the number of actu-
ators are large, we use the original UNIMALS [Gupta et al., 2021b] Locomotion tasks in flat terrain
and Manipulation tasks in variable terrain. In Locomotion tasks, the robot needs to go forward as
fast as possible. In Manipulation tasks, the robot needs to first reach a box, and then push this box to
a randomly generated goal. The UNIMALS has 100 robots with different morphologies, kinematics,
and dynamics for multi-task training. We compared our method SOLAR against MetaMorph [Gupta
et al., 2021a]. In this subsection, SOLAR is built upon MetaMorph. Like MetaMorph, SOLAR
incorporates structural information into AMORPHEUS and uses a dynamic replay buffer balancing
technique to deal with the large number of robots. SOLAR can be simply combined with MetaMorph
by modifying its self-attention structure. The training results are shown in Figure 8. SOLAR outper-
forms MetaMorph by a large margin, which suggests that SOLAR is also effective with numerous
different robots.

Table 3: Zero-shot generalization performance of SOLAR compared against MetaMorph in UNI-
MALS Locomotion task.

Variants SOLAR MetaMorph

Dynamics

Armature 1253.39 ± 28.25 843.31 ± 14.80
Density 1654.43 ± 24.55 1089.64 ± 22.64
Damping 1663.64 ± 26.21 1113.04 ± 10.18
Gear 1480.45 ± 30.49 987.29 ± 8.05

Kinematics Module param. 1084.41 ± 13.93 700.43 ± 17.02
Joint angle 477.50 ± 6.83 274.37 ± 6.55

In Sec. 4.3, we test the zero-shot performance of SOLAR on robots with different morphologies.
However, in reality, there are cases where the morphologies are not changed, but the dynamics
(armature, density, damping, and motor gear) and kinematics (module shape parameters and joint
angles) of robots are new in unseen tasks. Thus we also benchmark the zero-shot performance of
SOLAR in these cases. Gupta et al. [2021a] created a test set to test zero-shot performance based
on the 100 training robots of UNIMALS. For each robot in the training set, they create 4 different
variants for each property (regarding the dynamics and kinematics), leading to a total number of

16



Table 4: Zero-shot generalization performance of SOLAR compared against MetaMorph in UNI-
MALS Manipulation task.

Variants SOLAR MetaMorph

Dynamics

Armature 792.69 ± 32.35 685.36 ± 9.03
Density 943.07 ± 57.46 823.20 ± 18.95
Damping 984.19 ± 24.14 860.70 ± 11.24
Gear 862.04 ± 36.90 784.54 ± 12.01

Kinematics Module param. 663.18 ± 12.47 611.43 ± 5.80
Joint angle 314.16 ± 4.95 455.49 ± 11.28

Table 5: Dynamics and kinematics variations to generate the test robot set, reproduced from Gupta
et al. [2021a].

Kinematics
Variation type Value
Limb radius [0.03, 0.05]
Limb height [0.15, 0.45]

Joint angles

[(30, 0), (0, 30), (30, 30),
(45, 45), (45, 0), (0, 45),
(60, 0), (0, 60), (60, 60),

(90, 0), (0, 90), (60, 30)(30, 60)]

Dynamics
Armature [0.1, 2]
Density [0.8, 1.2] × limb density
Damping [0.01, 5.0]
Gear [0.8, 1.2] × motor gear

100 × 6 × 4 = 2400 test variants. Here we reproduce from their paper the sampling ranges of test
variants in Table 5 . Please refer to Gupta et al. [2021a] for more details. Due to the limitation of
computing resources, we reduce the batch size of SOLAR and MetaMorph from 5120 to 128, and
other hyperparameters follow Gupta et al. [2021a].

To evaluate the zero-shot generalization performance, we load our models trained on multi-task UNI-
MALS and show the averaged performance (and variance) over 4 random seeds in Table 3 and Ta-
ble 4 for Locomotion task and Manipulation task, respectively. We find that SOLAR exhibits strong
generalization performance compared to the baseline, which indicates that the synergy clusters and
action transformations learned on the training set are robust to dynamic and kinematic variations.

B.2 Compared with other baselines in single-task

0.0 0.2 0.4 0.6 0.8 1.0
T (mil)

0

1000

2000

3000

4000

Ep
iso

de
 R

ew
ar

d

Unimal A

0.0 0.2 0.4 0.6 0.8 1.0
T (mil)

0

1000

2000

3000

Ep
iso

de
 R

ew
ar

d

Unimal B

0.0 0.2 0.4 0.6 0.8 1.0
T (mil)

0

2000

4000

Ep
iso

de
 R

ew
ar

d

Unimal C
SOLAR (Ours) Amorpheus SMP Monolithic

Figure 9: Multi-Task performance of our method SOLAR compared to AMORPHEUS, SMP and the
final performance of Monolithic.

In Sec. 4.5, we compare SOLAR with transformer-based baseline AMORPHEUS, here we also com-
pare our SOLAR with the GNN-style baseline SMP in single-task evaluations in Figure 9 as addi-
tional results.

17



B.3 Synergy clustering results of more morphologies

In Figure 5, we visualize the synergy clustering results of Humanoid++ to analyze the effect of
synergy. In this section, we provide visualizations of synergy clustering results for Hopper++ (Fig-
ure 10), Walker++ (Figure 11), and UNIMALS (Figure 12) as additional results.

A Synergy Cluster Cluster Centers

Hopper 3 Hopper 4 Hopper 5

Figure 10: Synergy clustering results of SOLAR in Hopper++. Different colors represent different
synergy clusters, and joints marked with the same color are in the same cluster. Joints marked with
triangles are the centers of their corresponding clusters.

A Synergy Cluster Cluster Centers

Walker 2 Walker 4 Walker 5 Walker 7

Figure 11: Synergy clustering results of SOLAR in Walker++.

A Synergy Cluster Cluster Centers

Unimal A Unimal B Unimal C

Figure 12: Synergy clustering results of SOLAR in UNIMALS.

These additional results further consolidate our analysis in Sec. 4.4: (1) close joints are more likely
to be in the same synergy cluster, and (2) joints near the torso may be more influential than those
who are far from the torso, and are thus selected as the cluster centers.

B.4 Connection to conventional notion of muscle synergy

Mathematically, conventional muscle synergy studies typically use non-negative matrix factorization
(Rabbi et al, 2020) and aim to solve the following optimization problem:

min
H∈RN×M

+ ,A∈RM×T
+

∥U −HA∥F ,

where U ∈ RN×T is a given matrix of observed electrical control signals. The element at ith row and
tth column of U is the control signal to muscle i at timestep t. In this optimization problem, the num-

18



ber of synergies, M (where M < N ), is typically pre-defined or chosen according to a pre-defined
reconstruction error threshold. By solving this problem, one can discover the synergy structure
by observing matrix H . Conventional muscle synergy studies that use other factorization methods
(PCA, ICA, and FA) share the similar optimization problem with different matrix constraints.

We study a similar optimization problem but with additional constraints:

max
U,H,A

∑
t

γtR(st, Ut)− ∥U −HA∥F .

Here st is the environment state at timestep t, and Ut is the column t of matrix U , i.e., actions at
timestep t. And R(st, Ut) is the reward of choosing action Ut at state st.

The differences are:

1. We additionally maximize the expected return of muscle actions.
2. In our formulation, the number of synergies is not pre-defined but is learned in an unsuper-

vised manner.
3. The matrix U is also not given, but is generate by an attention-based policy. This policy are

optimized to maximize return as well as to minimize the decomposition loss (term 2).

In summary, we share a common optimization object with conventional muscle synergy studies,
which is a decomposition loss. However, we need to additionally learn the number of synergies
and control signals which are inputs in the conventional studies. Structurally, our framework gives
an attention function class that covers a synergy decomposition solution which can minimize the
decomposition loss while enable an efficient control policy.

B.5 Limitations and future works

When generalizing to unseen robots with larger numbers of actuators than training robots, the embed-
dings of testing robots are not learned, which will hamper the zero-shot performance. One possible
future direction will involve designing a more scalable actuator embedding method. Moreover, SO-
LAR is more suitable for robots with large number of actuators. Our approach is able to reduce a
great degree of control complexity for these robots. But for robots with few actuators, SOLAR may
only have a little positive impact and the learning of synergy-aware policy may even damage the
performance.

19


	Introduction
	Background
	Method
	Discovering synergy structure
	Learning synergy-aware low-rank policies

	Experiments
	Experiment setup
	Multi-task with different morphologies
	Zero-shot generalization
	Analysis of synergies
	Single-task with numerous joints

	Conclusions
	Reproducibility
	Environment description
	Implementation details
	Baselines and ablations

	Additional experiments and discussions
	UNIMALS Locomotion task and Manipulation task
	Compared with other baselines in single-task
	Synergy clustering results of more morphologies
	Connection to conventional notion of muscle synergy
	Limitations and future works


