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Abstract

In semi-supervised learning (SSL), a common practice is to learn consistent infor-
mation from unlabeled data and discriminative information from labeled data to
ensure both the immutability and the separability of the classification model. Exist-
ing SSL methods suffer from failures in barely-supervised learning (BSL), where
only one or two labels per class are available, as the insufficient labels cause the dis-
criminative information to be difficult or even infeasible to learn. To bridge this gap,
we investigate a simple yet effective way to leverage unlabeled data for discrimi-
native learning, and propose a novel discriminative information learning module
to benefit model training. Specifically, we formulate the learning objective of
discriminative information at the super-class level and dynamically assign different
categories into different super-classes based on model performance improvement.
On top of this on-the-fly process, we further propose a distribution-based loss to
learn discriminative information by utilizing the similarity between samples and
super-classes. It encourages the unlabeled data to stay closer to the distribution of
their corresponding super-class than those of others. Such a constraint is softer than
the direct assignment of pseudo labels, while the latter could be very noisy in BSL.
We compare our method with state-of-the-art SSL and BSL methods through exten-
sive experiments on standard SSL benchmarks. Our method can achieve superior
results, e.g., an average accuracy of 76.76% on CIFAR-10 with merely 1 label per
class. The code is available at https://github.com/GuanGui-nju/SCMatch.

1 Introduction

As a paradigm to reduce the dependency on a large amount of labeled data, semi-supervised learning
(SSL) has been widely concerned and utilized [1, 2]. Although existing advanced SSL methods [3, 4,
5, 6] could achieve outstanding performance even with less than 1% labels on several datasets (e.g.,
CIFAR-10), the labeling process could still be lengthy, especially when there is a large number of
object categories, which may preclude the deployment of SSL model in those applications. To tackle
this challenge, barely-supervised learning (BSL), a novel paradigm with rising interest [3, 7], has
been proposed recently to explore whether the model can be trained with the extremely scarce label,
e.g., only one label per class.
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Figure 1: We conduct experiments on CIFAR-10 to investigate the test performance of different SSL
methods with few labels. (a). Performance comparisons with different amounts of labeled data. (b).
The predicted class distributions of FixMatch and our method after training the model for 10 and 100
epochs, respectively. Due to the lack of guidance from discriminative information, FixMatch tends to
predict all samples as the same class, while our method alleviates this problem through our proposed
discriminative information learning module.

Unfortunately, current state-of-the-art SSL methods cannot well address the label-scarce challenge
in BSL. As shown in Figure 1(a), many recent SSL methods can achieve auspicious performance
when sufficient labeled data are provided, e.g., higher than 90% accuracy with more than 40 labels
on CIFAR-10. However, these methods will suffer severe performance degeneration when the label
amount is reduced. For example, when only 10 labels are available on CIFAR-10, the test accuracy of
FixMatch will drop sharply by more than 45% compared to that of 40 labels. In order to explore the
reasons for such performance dropping, we then track the predicted class distribution of FixMatch
during the training process. As shown in Figure 1(b), FixMatch will end with the model collapse
after training for 100 epochs, i.e., the model completely cannot distinguish different samples, and all
samples are predicted as a single class.

model

immutability separability

Figure 2: Examples on the immutability and the separability.

To analyze the reasons for above phenomenon, we
prefer to investigate classification models in term of
separability and immutability. Here immutability
refers to the capacity of the model to be robust to
perturbations. It can be mathematically expressed
as argmax pm(y|ui) = argmax pm(y|α(ui)),
where ui is a sample, y is the model prediction,
and α(·) is a random perturbation. Separability, on
the other hand, refers to the capacity of the model
to differentiate two different categories of sam-
ples, i.e., argmax pm(y|ui) ̸= argmax pm(y|uj),
where ui, uj are sampled from different categories.
Figure 2 shows a graphic explanation of these two properties. For SSL classification models, in
common practice, the immutability is often achieved by learning the consistent information of the
unlabeled data, and the separability is achieved by learning the discriminative information of the
labeled data. To achieve good performance, SSL models need to well balance their immutability and
separability. However, such a balance is destroyed in BSL. The insufficient supervision information
from the extremely scarce labels significantly damages the learning for separability, so that the model
performance is dominated by the learning towards immutability. That’s why the model collapse could
be observed when all samples are predicted as one same class.

Motivated by these observations, in this paper, we aim to enhance the discriminative learning for the
model’s separability under BSL. Since the labeled data are very limited, we explore how to mine
additional discriminative supervision from unlabeled data. Although without label information, the
unlabeled data could still provide some “latent guidance" to complement the process of learning only
from labeled data. We hereby propose a novel module to dynamically form super-classes to “roughly
categorize" unlabeled samples, then the discriminative information is learned by measuring the
similarity between samples and super-classes, which is realized by our newly proposed loss function
on the distribution level. Furthermore, with the improvement of the model, we gradually form more
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Figure 3: Overview of our method. Two different modules are constructed in our method to learn
consistent information and discriminative information, respectively. Each sample ui has two variants,
processed by the weak augmentation α and strong augmentation A. In the consistent information
learning module, pm(y|α(ui)) with confidence above the threshold are then used as the training
targets for the corresponding strongly-augmented variants. In the discriminative learning module,
these features zwi are clustered into K super-classes. The super-class distribution qk for the k-th
super-class is obtained by calculating the average pseudo-labels over unlabeled data gathered in this
cluster. We construct a contrastive-like loss to use these super-class distributions as guidance to
train the model on the strongly-augmented variants. Specifically, the model’s prediction on A(ui)
is encouraged to be closer to its super-class distribution qk with ui ∈ Ck than to other super-class
distributions.

super-classes for finer categorization of unlabeled samples, aiming to provide more fine-grained
discriminative information to guide the model training.

In a nutshell, our proposed method is a simple yet effective way to mine discriminative information
from unlabeled data. Compared to directly assigning pseudo labels to each sample [3, 4], which
could be very noisy in BSL, learning the similarity between super-classes and samples is the softer
guidance, thus reducing the error risk of pseudo labels. We evaluate our method on CIFAR-10,
CIFAR-100, and STL-10, showing that our method outperforms all other SSL and BSL methods by a
large margin. For example, only using one label per class on CIFAR-10, our method successfully
avoided the occurrence of model collapse and achieved an accuracy of 76.76% with a variance of
6.78%.

2 Method

Similar to the setting of SSL, a labeled set X and an unlabeled set U are also given in BSL. X =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where yi denotes the label of the i-th labeled sample xi. Each
sample is classified into one of nk classes denoted as {c1, c2, . . . , cnk

}. U = {u1, u2, . . . , un},
where ui denotes i-th unlabeled sample, and typically |X | ≪ |U|. In BSL, a more challenging setting
is considered, |X | < 4nk, where only few labeled data are available. In the implementation, the
samples are provided on a per batch basis, with a batch of labeled data Bx and unlabeled data Bu. As
discussed before, the key to BSL lies in training a robust and stable model by efficiently leveraging
the unlabeled data together with such scarce labeled data.

Unlike recent state-of-the-art SSL methods that only encourage consistency regularization on unla-
beled data, our method aims to learn consistent and discriminative information from the unlabeled
data simultaneously. As shown in Figure 3, we construct two modules to leverage unlabeled data
accordingly, i.e., the consistent information learning module and the discriminative information
learning module. In the consistent information learning module, we learn the information from the
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samples and their corresponding augmented versions, like [3]. While in the discriminative information
learning module, we develops the super-class distributions by clustering unlabeled samples within a
mini-batch and then uses them to minimize a novel distribution loss on unlabeled samples.

2.1 Consistent information learning module

Like most consistency-based SSL methods, we encourage the model to output the same predictions
on two differently-augmented versions of the same sample. Specifically, we produce pseudo labels
on weakly-augmented samples and use them as training targets for their corresponding strongly-
augmented variants. Of them, the weak augmentation α(·) includes standard flip and shift operations,
while the strong augmentation strategy A(·) consists of RandAugment [8] and CutOut [9]. Formally,
this consistency-based unsupervised loss Lcon is defined as,

Lcon =
1

|Bu|

|Bu|∑
i=1

1(max(pm(y|α(ui))) ≥ τ1)H(pm(y|α(ui)), pm(y|A(ui))) (1)

where H(p1, p2) denotes the standard cross entropy between p1 and p2, and τ1 is a pre-defined
threshold to retain only high-confidence pseudo labels. As discussed in [3], τ1 is commonly set as a
high value to alleviate the confirmation bias in SSL.

2.2 Discriminative information learning module

In addition to relying on labeled data to learn discriminative information, we propose a novel module,
an on-the-fly learning process to first form super-classes and then exploit the similarity between
super-classes and samples to improve the model’s separability.

One of the most intuitive ways to explore discriminative information is to generate class information
for unlabeled data by clustering in the feature space. Ideally, samples of the same category will form
a separate cluster so that the model can discriminate the samples from all other nk − 1 clusters of
samples. However, forming such fine-grained clusters carries a considerable risk of errors, especially
for tasks with a large number of object categories. What’s worse, in the early training stage, due to
the weak feature extraction ability, the model inevitably produces wrong discriminative information,
resulting in severe accumulated errors. To properly explore the discriminative information for
unlabeled data, we propose the following designs,

• First, instead of fine-grained clusters, we simplify the clustering task by allowing a cluster to
contain multiple categories, i.e., a super-class cluster. In this way, the discriminative information is
relatively weakened but more robust to clustering errors.

• Second, it can still be noisy to adopt the super-class label as training targets for unlabeled data.
Therefore, we tend to utilize the similarity between each sample and the super-classes rather than
explicitly assign the training targets for unlabeled data. Concretely, our method encourages the
unlabeled samples to stay closer to the predicted class probability distribution of their corresponding
super-class than those of others. Such a smoothing way can better tolerate the inaccurate prediction
of a single sample as well as potential clustering errors.

• Third, although the discriminative information provided by the coarse-grained clusters is robust, it
will be insufficient when the model’s separability is improved. Thus we propose the progressive
construction of super-classes to gradually increase the clustering number so that our discriminative
information learning module can adapt to the model evolution during the training process. When
the cluster number is small, each super-class provides more moderate discriminative information,
called a low-level super-class. In contrast, a large cluster number can enforce each super-class to
abstract more concrete information, and we call it a high-level super-class.

Super-class representation

As shown in Figure 3, we employ standard K-Means on these features zwi of weakly-augmented
samples within a mini-batch. With a given target number K of super-classes, these features are
gathered into K clusters, and each cluster is denoted by Ck, k = 1, 2, . . . ,K. Each super-class can
then be represented by the mean distribution of all the samples it contains. Given unlabeled sample
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ui, and its predicted class probability distribution pm(y|α(ui)) and pm(y|A(ui)), the super-class
distribution qk for each super-class Ck can be calculated by,

qk =
1

|Ck|

|Ck|∑
i=1

pm(y|α(ui)), withui ∈ Ck (2)

In this way, the super-class distribution can represent the distribution characteristics of the categories
it contains so that it can be well discriminated from other super-classes. As shown in the lower half
of Figure 3, in the automobile-and-airplane super-class, it is possibly not easy to determine the exact
category for a single sample. However, we can find that the sample in this super-class should be closer
to the super-class distribution of the automobile-and-airplane super-class compared to those of other
super-classes. Additionally, the super-class is more robust to the noisy samples. For samples likely
to be misclassified (e.g., samples inside the dashed box), their negative impact on the super-class
distribution is well suppressed by other correctly classified samples.

Discriminative distribution loss

To distinguish the sample from other super-classes, this sample is supposed to be more similar
to its corresponding super-class on distribution. Inspired by [10, 11], we design a contrastive-
like distribution loss to distinguish the sample from other super-classes. Formally, this auxiliary
distribution loss is,

Ldis = −
1

|Bu|

|Bu|∑
i=1

1(max(pm(y|α(ui))) ≥ τ2) log
exp(pm(y|A(ui)) · qk/T )∑K
j=1 exp(pm(y|A(ui)) · qj/T )

(3)

where T is a common temperature parameter, and ui is assigned to super-class Ck. Like in Equation 1,
we adopt a parameter τ2 to control the learned unlabeled data. As mentioned before, the similarity
between samples and super-classes is a weak constraint, so we are conditioned to use a lower threshold
to learn more samples. We provide an empirical value via extensive ablation studies. Notice that we
compute gradients only on strongly-augmented samples.

Progressive super-class construction

Although small K reduces the clustering error, it comes at the cost that the learned discriminant
information is limited. Assuming the extreme case, when K = 1, the amount of information is 0
because all samples belong to one super-class, the model will not discriminate against any samples.

With this point of view, we propose the progressive construction of super-class to adapt to the model
evolution during training. That is, when the model is not well trained at the beginning, we use a
small K to form the coarser super-classes to ease the clustering task and thus attain relatively reliable
discriminative guidance. When the model is better trained, to avoid the training of the model being
stagnant due to the limitation of discriminative information, we gradually increase K to provide
enhanced discriminative guidance.

In practice, a daunting challenge is that we do not know the most appropriate number of super-class
for the training samples without prior knowledge. To this end, we design a dichotomous method and
set the value range of K by:

Ki ∈ {2, . . . , ⌈nk/4⌉, ⌈nk/2⌉, nk} (4)

The above formula restricts the value of K based on the principle of dichotomy so that frequent
changes of K can be avoided. Especially when there are many classes in the sample set (e.g.,100
classes on CIFAR-100), it would be tedious and pointless to learn all K values. Furthermore, to
ensure that the clustering task with different K can be performed for a certain period, we adopt a
linear-step growth strategy to adjust K dynamically:

K = Ki, if Ki ≤
t

α ∗ ts
< Ki+1, (5)

where t and ts denote the value of the current iteration and the total number of iterations, respectively.
α ∈ (0, 1) and it controls the growth rate of K. With this clustering task, K super-classes are
dynamically formed at each iteration.
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Algorithm 1 Algorithm of our method
Input: Labeled batch Bx = {(xi, yi)}, unlabeled batch Bu = {ui}, weak augmentation strategy
α(·), strong augmentation strategy A(·)
Parameter: threshold τ1, τ2, temperature T , loss weight λcon, λdis

1: compute Lsup =
1

|Bx|
∑|Bx|

i=1 H(pm(y|α(ui)), yi):

2: for t← 1 to ts do
3: for ui ∈ Bu do
4: zwi = Encoder(α(ui)) // record features of weakly augmented samples.
5: pm(y|α(ui)), pm(y|A(ui)) // compute prediction of α(ui) and A(ui).
6: end for
7: Lcon =

1

|Bu|
∑|Bu|

i=1 1(max(pm(y|α(ui))) ≥ τ1)H(pm(y|α(ui)), pm(y|A(ui)))

8: update K.
9: form super-classes by K-Means(K, zwi ).

10: qk = 1/|Ck|
∑|Ck|

i=1 pm(y|α(ui)), ∀ui ∈ Ck

11: Ldis = − 1

|Bu|
∑|Bu|

i=1 1(max(pm(y|α(ui))) ≥ τ2) log
exp(pm(y|A(ui)) · qk/T )∑K
j=1 exp(pm(y|A(ui)) · qj/T )

12: minimizing the total loss L = Lsup + λconLcon + λdisLdis.

13: end for

2.3 Total Loss

Similar to most SSL methods, the supervised loss for a batch of labeled data Bx is obtained by a
standard cross-entropy loss,

Lsup =
1

|Bx|

|Bx|∑
i=1

H(pm(y|α(ui)), yi) (6)

In summary, the total loss in our method is,

L = Lsup + λconLcon + λdisLdis (7)

where λcon and λdis are the weights of Lcon and Ldis, respectively. The full algorithm is provided in
Algorithm 1.

3 Experiments

In this section, we validate the effectiveness of our proposed method by conducting experiments on
widely-used SSL benchmark datasets: CIFAR-10, CIFAR-100 [12], and STL-10 [13].

3.1 Implementation details

To face the challenge of BSL, we randomly sample 1 or 2 labels for each class on these data sets.
We adopt "WideResNet-28-2" and "WideResNet-28-8" [14] as the backbone for CIFAR-10 and
CIFAR-100, respectively, while using "ResNet18" [15] for STL-10. For the consistent information
learned module, we follow the same setting with [3], where τ1 = 0.95, |Bx| = 64, |Bu| = 7|Bx|.
And for the discriminative information learned module, we set T = 1, τ2 = 0.8. In addition, Since
the essence of the three losses of Lsup, Lcon, Ldis is in the form of cross entropy, it’s prefer to set
λcon = λdis = 1 to further reduce of hyperparameters. For CIFAR-10 and STL-10 task, we set the
K ∈ {⌊nk/3⌋, nk/2, nk} = {3, 5, 10}. For CIFAR-100, considering that the samples of each cluster
should be sufficient, we set the K ∈ {nk/20, nk/10, nk/5} = {5, 10, 20}. In fact, the specific
numerical setting of K has little effect on the model performance, and more analysis and experiments
about K will be discussed in the later ablation experiments.
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Table 1: Performance comparisons on CIFAR-10, CIFAR-100, STL-10. Each result is reported as
the average of 5 runs. The results show our method outperforms other baselines in all settings. On
CIFAR-10 and STL-10 with 10 labels, our method outperforms other methods by at least 10%. For
the larger dataset CIFAR-100, our method also outperforms baseline methods by at least 6%.

CIFAR-10 CIFAR-100 STL-10
Method 10 labels 20 labels 100 labels 200 labels 10 labels 20 labels

Mean-Teacher 15.48 ± 3.19 17.50 ± 1.16 5.17 ± 2.52 8.26 ± 3.43 11.05 ± 6.45 15.99 ± 6.45
MixMatch 17.18 ± 4.45 26.45 ± 8.17 12.85 ± 2.21 21.56 ± 4.84 10.94 ± 5.18 21.48 ± 3.17
ReMixMatch 60.29 ± 15.20 78.56 ± 9.63 26.18 ± 3.79 35.90 ± 3.66 30.86 ± 10.80 45.58 ± 8.36
FixMatch 44.47 ± 24.99 80.46 ± 5.15 25.49 ± 4.37 35.55 ± 1.59 25.75 ± 8.99 48.98 ± 6.46
FixMatch (w/DA) 67.79 ± 15.42 84.16 ± 9.27 31.10 ± 2.29 43.22 ± 1.87 42.08 ± 6.24 54.76 ± 5.44
CoMatch 60.79 ± 12.42 81.19 ± 8.55 27.54 ± 4.25 36.98 ± 2.17 29.11 ± 9.31 50.20 ± 7.57
FlexMatch 66.07 ± 10.58 85.69 ± 6.24 31.50 ± 3.61 38.05 ± 2.66 41.17 ± 6.20 54.30 ± 5.65
SLA 65.87 ± 10.83 81.89 ± 6.77 28.45 ± 2.16 38.65 ± 2.67 32.38 ± 8.32 47.50 ± 6.38

LESS 64.40 ± 10.90 81.20 ± 5.60 28.20 ± 3.00 42.50 ± 3.20 34.25 ± 7.19 48.98 ± 5.19
our method 76.76 ± 6.7876.76 ± 6.7876.76 ± 6.78 88.49 ± 3.2688.49 ± 3.2688.49 ± 3.26 37.50 ± 1.7237.50 ± 1.7237.50 ± 1.72 45.62 ± 1.3945.62 ± 1.3945.62 ± 1.39 52.51 ± 3.2052.51 ± 3.2052.51 ± 3.20 57.98 ± 3.1857.98 ± 3.1857.98 ± 3.18

The model is trained with a total of 220 iterations, and the K increased in the first 30% iterations. We
use an exponential moving average with a decay rate of 0.999 to test our model and repeat the same
experiment for five runs with different seeds to report the mean accuracy.

3.2 Baseline methods

First, FixMatch [3], Dash [16], CoMatch [5], FlexMatch [4] are the advanced semi-supervised models
in recent years, and we compare these methods under the challenge of barely-supervised learning. We
also use FixMatch with the distribution alignment (DA). SLA [6] and LESS [7] are the latest models
on BSL, and we also use them as our comparison method. In addition to this, we also select some
classical semi-supervised methods such as MeanTeacher [17], MixMatch [18] and ReMixMatch [19]
for comparison.

3.3 Experimental results

Performance comparisons. In Table 1, we compare the test accuracy of our proposed method
against recent SSL and BSL methods. It can be seen that our results are state-of-the-art in all settings.
Especially when there is only one label per class, our method compensates for the shortage of
labeled data by mining latent discriminative information from unlabeled data, thus showing enormous
superiority. LESS [7], recent work on BSL, since it generates predictions for samples with low
confidence and then learns more consistent information, still ignores the learning of discriminative
information, it cannot solve the challenges in BSL.

On CIFAR-10 task with 10 labels, our method achieves the mean accuracy of 76.76%, which
outperforms other methods by 10%. On STL-10 task with 10 labels, the recent BSL methods LESS
and SLA achieve the accuracy of 34.25% and 32.38%, respectively, while our method achieves
the mean accuracy of 52.51%, which improved nearly by 20%. For larger dataset CIFAR-100, our
method also outperforms other methods by at least 6% when there is 1 label per class. Besides, we
can see that, regardless of the dataset, the performance of our method when using only 1 label per
class is close to or even exceeds the performance of other methods when using 2 labels per class. On
CIFAR-100 task, LESS and SLA achieve the mean accuracy of 42.50% and 38.65% with 100 labels,
while our method achieves the mean accuracy of 37.50% with half of the labels they use.

As mentioned by [3], the quality of very few labeled data will significantly affect the performance
of the model. Taking the CIFAR-10 task with 10 labels as an example, the variance of advanced
SSL methods and BSL methods are all more than 10%, while the variance of our method is only
6.78%. These results further illustrate that our method can alleviate the dependence on labeled data
by learning discriminative information from unlabeled data.

We also find that the technique of distribution alignment, which forces the alignment of probability
distributions is still an effective technique under BSL. Through the result of FixMatch (w/DA), we
can see that DA successfully helped FixMatch improve its performance significantly. However, DA
is a technique that relies on prior information, and our method does not rely on any prior information
and can achieve better performance than it.

7



3 4 5 7 10

40

50

60

70

ac
cu

ra
cy

(%
)

70.23 72.15
68.54

57.88

45.84

(a) K

0.3 0.4 0.5 0.6 0.7

70

75

80

ac
cu

ra
cy

(%
)

linear-mode
exp-mode
step-mode

(b) α

0.95 0.9 0.8 0.7 0.6

40

50

60

70

80

ac
cu

ra
cy

(%
)

(c) τ2

Figure 4: Abalation study on CIFAR-10 with 1 labeled sample per class. (a) Performance using fixed
K values without dynamical clustering to form super-classes. (b) performance using progressive K
with different growth rate α. (c) Confidence threshold τ2. Appropriately lowering the threshold can
learn more samples, thereby helping model training.

Table 2: Experiments on CIFAR-10 with 10 labels
(1 label per class). FixMatch exhibits volatile per-
formance, while our method greatly improves perfor-
mance and is stable.

seed 1 2 3 4 5
FixMatch 19.15 85.11 52.52 17.09 48.50
our method 81.2881.2881.28 86.1286.1286.12 70.3470.3470.34 74.9074.9074.90 71.1771.1771.17

Stability of the model. First of all, we dis-
cuss the phenomenon of model collapse un-
der the BSL challenge. For a fair compari-
son, we use the same random seed in each
trial for FixMatch and our method. Since
only 1 label per class is available, this SSL
method that depends on labeled data to learn
discriminative information would be volatile.
As shown in table 2, we can see that the per-
formance of FixMatch is extremely unstable, where it can achieve very high accuracy of 85.11% when
seed= 3 but obtain an extremely low accuracy of 17.09% when seed= 4. Differently, integrating
the proposed super-class distribution to provide more discriminative information, our method can
successfully alleviate the model collapse: the accuracy exceeded 70% in all experiments and also
exceeded 80% sometimes.

Table 3: Experiments on CIFAR-10 with more labels. When
there are enough labeled data, our method performs on a par
with SOTA SSL methods.

Method 40 labels 250 labels 4000 labels
ReMixMatch 80.90± 9.64 94.56± 0.05 95.02± 0.11
FixMatch 90.11± 3.01 94.21± 0.61 95.91± 0.02
CoMatch 93.09± 1.39 95.09± 0.33 95.57± 0.20
FlexMatch 95.01± 0.16 95.20± 0.06 96.05± 0.03
SLA 94.83± 0.32 94.98± 0.28 95.59± 0.09
LESS 93.20± 2.10 95.10± 0.80 95.64± 0.29
our method 94.19± 0.41 94.54± 0.27 95.78± 0.08

Performance under SSL settings.
We also analyze our method in stan-
dard SSL settings where sufficient la-
beled data are provided. As shown
in Table 3, we test our method on
CIFAR-10 with 40, 250, and 4000
labels. It can be seen that when
the number of labels increases, our
method is not SOTA, but the gap with
other methods is within 1%. It can
be interpreted as these methods us-
ing other advanced techniques in the
learning consistent information pro-
cess. For example, FlexMatch [4] and SLA [6] both leverage prior knowledge of class proportions,
and CoMatch [5] leverages graph-based contrastive learning, etc.While we study an independent
module for solving BSL, so when the labels are enough, our method does not prevail. However,
though our implementation is based on FixMatch [3], the results show that our method can still
improve slightly when the number of labels is large.

3.4 Ablation study

Performance under different strategies of K. We explore the effect of K for different strategies
on the model: (1) fix-mode, the number of super-class remains constant during model training. (2)
linear-mode, the number of super-class increases linearly during model training. (3) exp-mode, the
number of super-class increases exponentially. (4) step-mode, a step-by-step jump growth based on
linear-mode.
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We fixed different K values for experiments in terms of the fixed strategy. As shown in Figure 4(a),
when K is small, the model tends to outperform the larger K. When K is large, the model in the
early stage does not provide high-quality features to perform the formation of high-level super-
classes, so the discriminative information learned has an extremely high risk of error, leading to the
model’s failure. On the other hand, when K is small, our method can learn effective discriminative
information from these low-level super-classes. However, as the model performance improves, this
limited discriminative information provided by low-level super-classes can no longer help the model
learn continuously, so the model’s performance will stagnate. It is worth noting that even if we adopt
the fix-mode with K, the model can learn a certain degree of discriminative from the super-class to
face the challenge of BSL, and its performance also exceeds other methods.

Linear-mode, exp-mode, step-mode can all work well to solve the problem in the fix-mode above,
while there is an additional hyperparameter to control the rate of K growth in these modes. As shown
in Figure 4(b), we conduct experiments for different growth rates, and it turns out that the growth
rate of K does not affect the performance of the model too much. In addition, since this mode can
explore different levels of discriminative information, the performance is significantly better than
that in the fix-mode. Although the performance of these modes is exceptionally close, we prefer
step-mode as it can be more suitable for large data sets, e.g., it is impractical to increase K from 3 to
100 sequentially when we test on CIFAR-100.

Performance under different τ2. We investigate 5 different τ2 values on CIFAR-10 datasets with
10 labels. As shown in Figure 4(c), the test performance achieve the best when τ2 = 0.8. It shows
that appropriately lowering the threshold can learn discriminative information from more samples,
thereby helping model training. However, if the threshold τ2 is too low, the noise of the sample will
increase, which is not conducive to the training of the model.

4 Related Work

Recent popular semi-supervised learning studies can be classified into entropy minimization (ER)
based methods and consistency regularization (CR) based methods. Self training is the typical
representative of ER-based methods. In these methods [1], the model is first trained on the provided
labeled data and then used to generate pseudo-labels for unlabeled data. After that, such methods
add these unlabeled data with high-confidence predictions into the labeled set to retrain the model,
repeating this process until all unlabeled data are involved [20]. Recent studies tend to involve more
advanced techniques in this framework to enhance the SSL performance. [21] introduces multiple
views to provide more robust pseudo-labels. LaSSL [22] and Curriculum Labeling [23] integrate the
contrastive learning and curriculum learning techniques to improve the accuracy of pseudo-labels
further.

As the most widely-used and successful technique in recent SSL methods, CR is the semantics of
a sample should be consistent after data perturbations [24, 17, 18, 25, 26]. FixMatch [3] combines
strong augmentation technology [8, 9] and the labels of weakly augmented samples with high confi-
dence are used to guide the learning of strong augmented samples. Although a major breakthrough
has been made in conventional semi-supervised learning, it still cannot avoid model collapse. [16, 4]
further dynamically adjusts the confidence threshold based on FixMatch. Although it can learn more
low-confidence samples to improve the performance of the model, it cannot cope with the challenge
of lack of discriminative information under BSL.

In the literature, there have been few works on barely-supervised learning. FixMatch [3] initially
came up with the concept of BSL and emphasized that the quality of the labeled data played a crucial
role in the test performance. Our experiment results also demonstrate that its testing results have
a very high variance under the BSL settings. Recent SLA [6] also achieved better performance in
BSL by formulating an optimal transportation problem between samples and labels. It introduced
many extra hyper-parameters and adopted the Sinkhorn-Knopp algorithm to solve the optimization
problem approximately. Differently, our method gets rid of complicated operations but can effectively
improve the BSL performance. Another work [7] argues that the dilemma in BSL is that there are
no pseudo-labels that can be predicted with high confidence, so online deep clustering is used to
supplement the pseudo-labels predicted by the model. Although more pseudo-labels can be used,
it still learns consistent information. [27] is a very recent work that uses the coarse-grained class
labels to guide the SSL model. However, it requires strong prior knowledge about the class hierarchy
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structure in advance; while we are faced with BSL scenarios without any prior knowledge, even the
hierarchy structure may not exist.

5 Conclusion

In this paper, we analyze the failure of SSL methods in the face of BSL as insufficient discriminative
information learning. To tackle this problem, we design a discriminative learning module to leverage
unlabeled data for additional discriminative supervision. In this module, super-classes are dynamically
reformed with the model training, and then the discriminative information is learned by measuring the
similarity between samples and super-classes. We conduct our methods on several SSL benchmarks,
and it shows that our method outperforms other methods in BSL.

6 Acknowledgment

This work was supported by the Science and Technology Innovation 2030 New Generation Artificial
Intelligence Major Project (2021ZD0113303), the NSFC Program (62222604, 62206052, 62192783),
CAAI-Huawei MindSpore Project (CAAIXSJLJJ-2021-042A), China Postdoctoral Science Foun-
dation Project (2021M690609), Jiangsu Natural Science Foundation Project (BK20210224), and
CCF-Lenovo Bule Ocean Research Fund.

References
[1] Yassine Ouali, Céline Hudelot, and Myriam Tami. An overview of deep semi-supervised learning. arXiv

preprint arXiv:2006.05278, 2020.

[2] Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine Learning,
109(2):373–440, 2020.

[3] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D Cubuk, Alex
Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-supervised learning with consistency
and confidence. Advances in Neural Information Processing Systems, 2020.

[4] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro
Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. Advances in
Neural Information Processing Systems, 2021.

[5] Junnan Li, Caiming Xiong, and Steven CH Hoi. Comatch: Semi-supervised learning with contrastive
graph regularization. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 9475–9484, 2021.

[6] Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Sinkhorn label allocation: Semi-supervised classification
via annealed self-training. Workshop on challenges in representation learning, ICML, 2021.

[7] Thomas Lucas, Philippe Weinzaepfel, and Gregory Rogez. Barely-supervised learning: Semi-supervised
learning with very few labeled images. the 36th AAAI Conference on Artificial Intelligence., 2022.

[8] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020.

[9] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017.

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pages
1597–1607, 2020.

[11] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3733–3742, 2018.

[12] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Handbook of Systemic
Autoimmune Diseases, 1(4), 2009.

10



[13] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 215–223. JMLR Workshop and Conference Proceedings, 2011.

[14] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British Machine
Vision Conference, 2016.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[16] Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong Jin. Dash: Semi-
supervised learning with dynamic thresholding. In Proceedings of the 38th International Conference on
Machine Learning, 2021.

[17] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. Advances in Neural Information Processing Systems,
2017.

[18] David Berthelot, Nicholas Carlini, Ian Goodfellow, Avital Oliver, Nicolas Papernot, and Colin Raffel.
Mixmatch: A holistic approach to semi-supervised learning. Advances in Neural Information Processing
Systems, 32, 2019.

[19] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and Colin
Raffel. Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring.
In Eighth International Conference on Learning Representations, 2020.

[20] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural
networks. In Workshop on challenges in representation learning, ICML, 2013.

[21] Dongdong Chen, Wei Wang, Wei Gao, and Zhihua Zhou. Tri-net for semi-supervised deep learning. In
International Joint Conferences on Artificial Intelligence, 2018.

[22] Zhen Zhao, Luping Zhou, Lei Wang, Yinghuan Shi, and Yang Gao. Lassl: Label-guided self-training for
semi-supervised learning. In the 36th AAAI Conference on Artificial Intelligence., 2022.

[23] Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, and Vicente Ordonez. Curriculum labeling: Revisiting
pseudo-labeling for semi-supervised learning. In the 35th AAAI Conference on Artificial Intelligence.,
2021.

[24] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In Fifth International
Conference on Learning Representations, 2017.

[25] Chia-Wen Kuo, Chih-Yao Ma, Jia-Bin Huang, and Zsolt Kira. Featmatch: Feature-based augmentation for
semi-supervised learning. In European Conference on Computer Vision, pages 479–495, 2020.

[26] Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, and David Lopez-Paz. Interpolation consistency
training for semi-supervised learning. In International Joint Conference on Artificial Intelligence, pages
3635–3641, 2019.

[27] Ashima Garg, Shaurya Bagga, Yashvardhan Singh, and Saket Anand. Hiermatch: Leveraging label
hierarchies for improving semi-supervised learning. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 1015–1024, 2022.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

11



(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

12


	Introduction
	Method
	Consistent information learning module
	Discriminative information learning module
	Total Loss

	Experiments
	Implementation details
	Baseline methods
	Experimental results
	Ablation study

	Related Work
	Conclusion
	Acknowledgment

