Supplementary Material

A Proof of Lemma 1

We first note that $F_{t}(\mathbf{y})$ is 2-strongly convex for any $t=0, \ldots, T$, and Hazan and Kale [2012] have proved that for any β-strongly convex function $f(\mathbf{x})$ over \mathcal{K} and any $\mathbf{x} \in \mathcal{K}$, it holds that

$$
\begin{equation*}
\frac{\beta}{2}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{2}^{2} \leq f(\mathbf{x})-f\left(\mathbf{x}^{*}\right) \tag{21}
\end{equation*}
$$

where $\mathbf{x}^{*}=\operatorname{argmin}_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x})$.
Then, we consider the term $A=\sum_{t=1}^{T} G\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{\tau_{t^{\prime}}}\right\|_{2}$. If $T \leq 2 d$, we have

$$
\begin{equation*}
A=\sum_{t=1}^{T} G\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{\tau_{t^{\prime}}}\right\|_{2} \leq T G D \leq 2 d G D \tag{22}
\end{equation*}
$$

where the first inequality is due to Assumption 2. If $T>2 d$, we have

$$
\begin{align*}
A & =\sum_{t=1}^{2 d} G\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{\tau_{t^{\prime}}}\right\|_{2}+\sum_{t=2 d+1}^{T} G\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{\tau_{t^{\prime}}}\right\|_{2} \\
& \leq 2 d G D+\sum_{t=2 d+1}^{T} G\left(\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{\tau_{t}}^{*}\right\|_{2}+\left\|\mathbf{y}_{\tau_{t}}^{*}-\mathbf{y}_{\tau_{t^{\prime}}}^{*}\right\|_{2}+\left\|\mathbf{y}_{\tau_{t^{\prime}}}^{*}-\mathbf{y}_{\tau_{t^{\prime}}}\right\|_{2}\right) \tag{23}
\end{align*}
$$

Because of (21), for any $t \in[T+1]$, we have

$$
\begin{equation*}
\left\|\mathbf{y}_{t}-\mathbf{y}_{t}^{*}\right\|_{2} \leq \sqrt{F_{t-1}\left(\mathbf{y}_{t}\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right)} \leq \sqrt{\gamma}(t+2)^{-\alpha / 2} \tag{24}
\end{equation*}
$$

where the last inequality is due to $F_{t-1}\left(\mathbf{y}_{t}\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right) \leq \gamma(t+2)^{-\alpha}$.
Moreover, for any $i \geq \tau_{t}$, we have

$$
\begin{align*}
\left\|\mathbf{y}_{\tau_{t}}^{*}-\mathbf{y}_{i}^{*}\right\|_{2}^{2} & \leq F_{i-1}\left(\mathbf{y}_{\tau_{t}}^{*}\right)-F_{i-1}\left(\mathbf{y}_{i}^{*}\right) \\
& =F_{\tau_{t}-1}\left(\mathbf{y}_{\tau_{t}}^{*}\right)-F_{\tau_{t}-1}\left(\mathbf{y}_{i}^{*}\right)+\left\langle\eta \sum_{k=\tau_{t}}^{i-1} \mathbf{g}_{c_{k}}, \mathbf{y}_{\tau_{t}}^{*}-\mathbf{y}_{i}^{*}\right\rangle \\
& \leq \eta\left\|\sum_{k=\tau_{t}}^{i-1} \mathbf{g}_{c_{k}}\right\|\left\|_{2}\right\| \mathbf{y}_{\tau_{t}}^{*}-\mathbf{y}_{i}^{*} \|_{2} \tag{25}\\
& \leq \eta G\left(i-\tau_{t}\right)\left\|\mathbf{y}_{\tau_{t}}^{*}-\mathbf{y}_{i}^{*}\right\|_{2}
\end{align*}
$$

where the first inequality is still due to (21) and the last inequality is due to Assumption 1.
Because of $t^{\prime}=t+d_{t}-1 \geq t$, we have $\tau_{t^{\prime}} \geq \tau_{t}$. Then, from (25), we have

$$
\begin{equation*}
\left\|\mathbf{y}_{\tau_{t}}^{*}-\mathbf{y}_{\tau_{t^{\prime}}}^{*}\right\|_{2} \leq \eta G\left(\tau_{t^{\prime}}-\tau_{t}\right)=\eta G \sum_{k=t}^{t^{\prime}-1}\left|\mathcal{F}_{k}\right| \tag{26}
\end{equation*}
$$

Then, by substituting (24) and (26) into (23), if $T>2 d$, we have

$$
\begin{align*}
A & \leq 2 d G D+\sum_{t=2 d+1}^{T} G\left(\sqrt{\gamma}\left(\tau_{t}+2\right)^{-\alpha / 2}+\eta G \sum_{k=t}^{t^{\prime}-1}\left|\mathcal{F}_{k}\right|+\sqrt{\gamma}\left(\tau_{t^{\prime}}+2\right)^{-\alpha / 2}\right) \\
& \leq 2 d G D+\sum_{t=2 d+1}^{T} 2 G \sqrt{\gamma}\left(\tau_{t}+2\right)^{-\alpha / 2}+\eta G^{2} \sum_{t=2 d+1}^{T} \sum_{k=t}^{t^{\prime}-1}\left|\mathcal{F}_{k}\right| \tag{27}\\
& \leq 2 d G D+\sum_{t=2 d+1}^{T} 2 G \sqrt{\gamma}\left(\tau_{t}-1\right)^{-\alpha / 2}+\eta G^{2} \sum_{t=2 d+1}^{T} \sum_{k=t}^{t^{\prime}-1}\left|\mathcal{F}_{k}\right|
\end{align*}
$$

where the second inequality is due to $\left(\tau_{t}+2\right)^{-\alpha / 2} \geq\left(\tau_{t^{\prime}}+2\right)^{-\alpha / 2}$ for $\tau_{t} \leq \tau_{t^{\prime}}$ and $\alpha>0$. To bound the second term in the right side of (27), we introduce the following lemma.

Lemma 7 Let $\tau_{t}=1+\sum_{i=1}^{t-1}\left|\mathcal{F}_{i}\right|$ for any $t \in[T+d]$. If $T>2 d$, for $0<\alpha \leq 1$, we have

$$
\begin{equation*}
\sum_{t=2 d+1}^{T}\left(\tau_{t}-1\right)^{-\alpha / 2} \leq d+\frac{2}{2-\alpha} T^{1-\alpha / 2} \tag{28}
\end{equation*}
$$

For the third term in the right side of (27), if $T>2 d$, we have

$$
\begin{align*}
\sum_{t=2 d+1}^{T} \sum_{k=t}^{t^{\prime}-1}\left|\mathcal{F}_{k}\right| & \leq \sum_{t=1}^{T} \sum_{k=t}^{t^{\prime}-1}\left|\mathcal{F}_{k}\right| \leq \sum_{t=1}^{T} \sum_{k=t}^{t+d-1}\left|\mathcal{F}_{k}\right|=\sum_{k=0}^{d-1} \sum_{t=1+k}^{T+k}\left|\mathcal{F}_{t}\right| \tag{29}\\
& \leq \sum_{k=0}^{d-1} \sum_{t=1}^{T+d-1}\left|\mathcal{F}_{t}\right|=d T
\end{align*}
$$

where the second inequality is due to

$$
t^{\prime}-1<t^{\prime}=t+d_{t}-1 \leq t+d-1
$$

By substituting (28) and (29) into (27) and combining with (22), we have

$$
\begin{equation*}
A \leq 2 d G D+2 G d \sqrt{\gamma}+\frac{4 G \sqrt{\gamma}}{2-\alpha} T^{1-\alpha / 2}+\eta G^{2} d T \tag{30}
\end{equation*}
$$

Then, for the term $C=\sum_{t=s}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} G\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{i}\right\|_{2}$, we have

$$
\begin{align*}
C & =\sum_{i=\tau_{s}}^{\tau_{s+1}-1} G\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{i}\right\|_{2}+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} G\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{i}\right\|_{2} \\
& \leq\left|\mathcal{F}_{s}\right| G D+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} G\left(\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{\tau_{t}}^{*}\right\|_{2}+\left\|\mathbf{y}_{\tau_{t}}^{*}-\mathbf{y}_{i}^{*}\right\|_{2}+\left\|\mathbf{y}_{i}^{*}-\mathbf{y}_{i}\right\|_{2}\right) \\
& \leq\left|\mathcal{F}_{s}\right| G D+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} G\left(\sqrt{\gamma}\left(\tau_{t}+2\right)^{-\alpha / 2}+\eta G\left(i-\tau_{t}\right)+\sqrt{\gamma}(i+2)^{-\alpha / 2}\right) \tag{31}\\
& \leq\left|\mathcal{F}_{s}\right| G D+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} 2 G \sqrt{\gamma}\left(\tau_{t}+2\right)^{-\alpha / 2}+\eta G^{2} \sum_{t=s+1}^{T+d-1} \sum_{k=0}^{\tau_{t+1}-\tau_{t}-1} k \\
& \leq\left|\mathcal{F}_{s}\right| G D+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} 2 G \sqrt{\gamma}\left(\tau_{t}-1\right)^{-\alpha / 2}+\eta G^{2} \sum_{t=s}^{T+d-1} \sum_{k=0}^{\tau_{t+1}-\tau_{t}-1} k
\end{align*}
$$

where the first inequality is due to Assumption 2, the second inequality is due to (24) and (25), and the third inequality is due to $\left(\tau_{t}+2\right)^{-\alpha / 2} \geq(i+2)^{-\alpha / 2}$ for $\tau_{t} \leq i$ and $\alpha>0$.
Moreover, for any $t \in[T+d-1]$ and $k \in \mathcal{F}_{t}$, since $1 \leq d_{k} \leq d$, we have

$$
t-d+1 \leq k=t-d_{k}+1 \leq t
$$

which implies that

$$
\begin{equation*}
\left|\mathcal{F}_{t}\right| \leq t-(t-d+1)+1=d \tag{32}
\end{equation*}
$$

Then, it is easy to verify that

$$
\tau_{t+1}-\tau_{t}-1<\tau_{t+1}-\tau_{t}=\left|\mathcal{F}_{t}\right| \leq d
$$

Therefore, by combining with (31), we have

$$
\begin{align*}
C & \leq d G D+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} 2 G \sqrt{\gamma}\left(\tau_{t}-1\right)^{-\alpha / 2}+\eta G^{2} \sum_{t=s}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|^{2}}{2} \\
& \leq d G D+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} 2 G \sqrt{\gamma}\left(\tau_{t}-1\right)^{-\alpha / 2}+\eta G^{2} \sum_{t=s}^{T+d-1} \frac{d\left|\mathcal{F}_{t}\right|}{2} \tag{33}\\
& =d G D+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} 2 G \sqrt{\gamma}\left(\tau_{t}-1\right)^{-\alpha / 2}+\frac{\eta G^{2} d T}{2}
\end{align*}
$$

Furthermore, we introduce the following lemma.

Lemma 8 Let $\tau_{t}=1+\sum_{i=1}^{t-1}\left|\mathcal{F}_{i}\right|$ for any $t \in[T+d]$ and $s=\min \left\{t\left|t \in[T+d-1],\left|\mathcal{F}_{t}\right|>0\right\}\right.$. For $0<\alpha \leq 1$, we have

$$
\begin{equation*}
\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1}\left(\tau_{t}-1\right)^{-\alpha / 2} \leq d+\frac{2}{2-\alpha} T^{1-\alpha / 2} \tag{34}
\end{equation*}
$$

By substituting (34) into (33), we have

$$
\begin{equation*}
C \leq d G D+2 G \sqrt{\gamma} d+\frac{4 G \sqrt{\gamma}}{2-\alpha} T^{1-\alpha / 2}+\frac{\eta G^{2} d T}{2} \tag{35}
\end{equation*}
$$

We complete the proof by combing (30) and (35).

B Proof of Lemma 2

At the beginning of this proof, we recall the standard definition for smooth functions [Boyd and Vandenberghe, 2004].

Definition 2 A function $f(\mathbf{x}): \mathcal{K} \rightarrow \mathbb{R}$ is called α-smooth over \mathcal{K} if for all $\mathbf{x}, \mathbf{y} \in \mathcal{K}$, it holds that $f(\mathbf{y}) \leq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{\alpha}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}$.

It is not hard to verify that $F_{t}(\mathbf{y})$ is 2 -smooth over \mathcal{K} for any $t \in[T]$. This property will be utilized in the following.

For brevity, we define $h_{t}=F_{t-1}\left(\mathbf{y}_{t}\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right)$ for $t=1, \ldots, T+1$ and $h_{t}\left(\mathbf{y}_{t-1}\right)=F_{t-1}\left(\mathbf{y}_{t-1}\right)-$ $F_{t-1}\left(\mathbf{y}_{t}^{*}\right)$ for $t=2, \ldots, T+1$.
For $t=1$, since $\mathbf{y}_{1}=\operatorname{argmin}_{\mathbf{y} \in \mathcal{K}}\left\|\mathbf{y}-\mathbf{y}_{1}\right\|_{2}^{2}$, we have

$$
\begin{equation*}
h_{1}=F_{0}\left(\mathbf{y}_{1}\right)-F_{0}\left(\mathbf{y}_{1}^{*}\right)=0 \leq \frac{8 D^{2}}{\sqrt{3}}=\frac{8 D^{2}}{\sqrt{t+2}} \tag{36}
\end{equation*}
$$

Then, for any $T+1 \geq t \geq 2$, we have

$$
\begin{align*}
h_{t}\left(\mathbf{y}_{t-1}\right) & =F_{t-1}\left(\mathbf{y}_{t-1}\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right) \\
& =F_{t-2}\left(\mathbf{y}_{t-1}\right)-F_{t-2}\left(\mathbf{y}_{t}^{*}\right)+\left\langle\eta \mathbf{g}_{c_{t-1}}, \mathbf{y}_{t-1}-\mathbf{y}_{t}^{*}\right\rangle \\
& \leq F_{t-2}\left(\mathbf{y}_{t-1}\right)-F_{t-2}\left(\mathbf{y}_{t-1}^{*}\right)+\left\langle\eta \mathbf{g}_{c_{t-1}}, \mathbf{y}_{t-1}-\mathbf{y}_{t}^{*}\right\rangle \\
& \leq h_{t-1}+\eta\left\|\mathbf{g}_{c_{t-1}}\right\|_{2}\left\|\mathbf{y}_{t-1}-\mathbf{y}_{t}^{*}\right\|_{2} \tag{37}\\
& \leq h_{t-1}+\eta\left\|\mathbf{g}_{c_{t-1}}\right\|_{2}\left\|\mathbf{y}_{t-1}-\mathbf{y}_{t-1}^{*}\right\|_{2}+\eta\left\|\mathbf{g}_{c_{t-1}}\right\|_{2}\left\|\mathbf{y}_{t-1}^{*}-\mathbf{y}_{t}^{*}\right\|_{2} \\
& \leq h_{t-1}+\eta G\left\|\mathbf{y}_{t-1}-\mathbf{y}_{t-1}^{*}\right\|_{2}+\eta G\left\|\mathbf{y}_{t-1}^{*}-\mathbf{y}_{t}^{*}\right\|_{2}
\end{align*}
$$

where the first inequality is due to $\mathbf{y}_{t-1}^{*}=\operatorname{argmin}_{\mathbf{y} \in \mathcal{K}} F_{t-2}(\mathbf{y})$ and the last inequality is due to Assumption 1.
Moreover, for any $T+1 \geq t \geq 2$, we note that $F_{t-2}(\mathbf{x})$ is also 2-strongly convex, which implies that

$$
\begin{equation*}
\left\|\mathbf{y}_{t-1}-\mathbf{y}_{t-1}^{*}\right\|_{2} \leq \sqrt{F_{t-2}\left(\mathbf{y}_{t-1}\right)-F_{t-2}\left(\mathbf{y}_{t-1}^{*}\right)} \leq \sqrt{h_{t-1}} \tag{38}
\end{equation*}
$$

where the first inequality is due to (21).
Similarly, for any $T+1 \geq t \geq 2$

$$
\begin{aligned}
\left\|\mathbf{y}_{t-1}^{*}-\mathbf{y}_{t}^{*}\right\|_{2}^{2} & \leq F_{t-1}\left(\mathbf{y}_{t-1}^{*}\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right) \\
& =F_{t-2}\left(\mathbf{y}_{t-1}^{*}\right)-F_{t-2}\left(\mathbf{y}_{t}^{*}\right)+\left\langle\eta \mathbf{g}_{c_{t-1}}, \mathbf{y}_{t-1}^{*}-\mathbf{y}_{t}^{*}\right\rangle \\
& \leq \eta\left\|\mathbf{g}_{c_{t-1}}\right\|_{2}\left\|\mathbf{y}_{t-1}^{*}-\mathbf{y}_{t}^{*}\right\|_{2}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|\mathbf{y}_{t-1}^{*}-\mathbf{y}_{t}^{*}\right\|_{2} \leq \eta\left\|\mathbf{g}_{c_{t-1}}\right\|_{2} \leq \eta G \tag{39}
\end{equation*}
$$

By combining (37), (38), and (39), for any $T+1 \geq t \geq 2$, we have

$$
\begin{equation*}
h_{t}\left(\mathbf{y}_{t-1}\right) \leq h_{t-1}+\eta G \sqrt{h_{t-1}}+\eta^{2} G^{2} \tag{40}
\end{equation*}
$$

Then, for any $T+1 \geq t \geq 2$, since $F_{t-1}(\mathbf{y})$ is 2 -smooth, we have

$$
\begin{align*}
h_{t} & =F_{t-1}\left(\mathbf{y}_{t}\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right) \\
& =F_{t-1}\left(\mathbf{y}_{t-1}+\sigma_{t-1}\left(\mathbf{v}_{t-1}-\mathbf{y}_{t-1}\right)\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right) \tag{41}\\
& \leq h_{t}\left(\mathbf{y}_{t-1}\right)+\left\langle\nabla F_{t-1}\left(\mathbf{y}_{t-1}\right), \sigma_{t-1}\left(\mathbf{v}_{t-1}-\mathbf{y}_{t-1}\right)\right\rangle+\sigma_{t-1}^{2}\left\|\mathbf{v}_{t-1}-\mathbf{y}_{t-1}\right\|_{2}^{2} .
\end{align*}
$$

Moreover, for any $t \in[T]$, according to Algorithm 1, we have

$$
\begin{equation*}
\sigma_{t}=\underset{\sigma \in[0,1]}{\operatorname{argmin}}\left\langle\sigma\left(\mathbf{v}_{t}-\mathbf{y}_{t}\right), \nabla F_{t}\left(\mathbf{y}_{t}\right)\right\rangle+\sigma^{2}\left\|\mathbf{v}_{t}-\mathbf{y}_{t}\right\|_{2}^{2} \tag{42}
\end{equation*}
$$

Therefore, for $t=2$, by combining (40) and (41), we have

$$
\begin{align*}
h_{2} & \leq h_{1}+\eta G \sqrt{h_{1}}+\eta^{2} G^{2}+\left\langle\nabla F_{1}\left(\mathbf{y}_{1}\right), \sigma_{1}\left(\mathbf{v}_{1}-\mathbf{y}_{1}\right)\right\rangle+\sigma_{1}^{2}\left\|\mathbf{v}_{1}-\mathbf{y}_{1}\right\|_{2}^{2} \\
& \leq h_{1}+\eta G \sqrt{h_{1}}+\eta^{2} G^{2}=\frac{D^{2}}{2(T+2)^{3 / 2}} \leq 4 D^{2}=\frac{8 D^{2}}{\sqrt{t+2}} \tag{43}
\end{align*}
$$

where the second inequality is due to (42), and the first equality is due to (36) and $\eta=\frac{D}{\sqrt{2} G(T+2)^{3 / 4}}$.
Then, for any $t=3, \ldots, T+1$, by defining $\sigma_{t-1}^{\prime}=2 / \sqrt{t+1}$ and assuming $h_{t-1} \leq \frac{8 D^{2}}{\sqrt{t+1}}$, we have

$$
\begin{align*}
h_{t} & \leq h_{t}\left(\mathbf{y}_{t-1}\right)+\left\langle\nabla F_{t-1}\left(\mathbf{y}_{t-1}\right), \sigma_{t-1}^{\prime}\left(\mathbf{v}_{t-1}-\mathbf{y}_{t-1}\right)\right\rangle+\left(\sigma_{t-1}^{\prime}\right)^{2}\left\|\mathbf{v}_{t-1}-\mathbf{y}_{t-1}\right\|_{2}^{2} \\
& \leq h_{t}\left(\mathbf{y}_{t-1}\right)+\left\langle\nabla F_{t-1}\left(\mathbf{y}_{t-1}\right), \sigma_{t-1}^{\prime}\left(\mathbf{y}_{t}^{*}-\mathbf{y}_{t-1}\right)\right\rangle+\left(\sigma_{t-1}^{\prime}\right)^{2}\left\|\mathbf{v}_{t-1}-\mathbf{y}_{t-1}\right\|_{2}^{2} \\
& \leq\left(1-\sigma_{t-1}^{\prime}\right) h_{t}\left(\mathbf{y}_{t-1}\right)+\left(\sigma_{t-1}^{\prime}\right)^{2}\left\|\mathbf{v}_{t-1}-\mathbf{y}_{t-1}\right\|_{2}^{2} \\
& \leq\left(1-\sigma_{t-1}^{\prime}\right)\left(h_{t-1}+\eta G \sqrt{h_{t-1}}+\eta^{2} G^{2}\right)+\left(\sigma_{t-1}^{\prime}\right)^{2} D^{2} \\
& \leq\left(1-\sigma_{t-1}^{\prime}\right) h_{t-1}+\eta G \sqrt{h_{t-1}}+\eta^{2} G^{2}+\left(\sigma_{t-1}^{\prime}\right)^{2} D^{2} \\
& \leq\left(1-\frac{2}{\sqrt{t+1}}\right) \frac{8 D^{2}}{\sqrt{t+1}}+\frac{2 D^{2}}{(T+2)^{3 / 4}(t+1)^{1 / 4}}+\frac{D^{2}}{2(T+2)^{3 / 2}}+\frac{4 D^{2}}{t+1} \tag{44}\\
& \leq\left(1-\frac{2}{\sqrt{t+1}}\right) \frac{8 D^{2}}{\sqrt{t+1}}+\frac{2 D^{2}}{t+1}+\frac{D^{2}}{2(t+1)}+\frac{4 D^{2}}{t+1} \\
& \leq\left(1-\frac{2}{\sqrt{t+1}}\right) \frac{8 D^{2}}{\sqrt{t+1}}+\frac{8 D^{2}}{t+1} \\
& =\left(1-\frac{1}{\sqrt{t+1}}\right) \frac{8 D^{2}}{\sqrt{t+1}} \leq \frac{8 D^{2}}{\sqrt{t+2}}
\end{align*}
$$

where the first inequality is due to (41) and (42), the second inequality is due to $\mathbf{v}_{t-1} \in$ $\operatorname{argmin}_{\mathbf{y} \in \mathcal{K}}\left\langle\nabla F_{t-1}\left(\mathbf{y}_{t-1}\right), \mathbf{y}\right\rangle$, the third inequality is due to the convexity of $F_{t-1}(\mathbf{y})$, the fourth inequality is due to (40), and the last inequality is due to

$$
\begin{equation*}
\left(1-\frac{1}{\sqrt{t+1}}\right) \frac{1}{\sqrt{t+1}} \leq \frac{1}{\sqrt{t+2}} \tag{45}
\end{equation*}
$$

for any $t \geq 0$.
Note that (45) can be derived by dividing $(t+1) \sqrt{t+2}$ into both sides of the following inequality $\sqrt{t+2} \sqrt{t+1}-\sqrt{t+2} \leq(\sqrt{t+1}+1) \sqrt{t+1}-\sqrt{t+2} \leq t+1+\sqrt{t+1}-\sqrt{t+2} \leq t+1$.
By combining (36), (43), and (44), we complete this proof.

C Proof of Lemma 3

In the beginning, we define $\mathbf{y}_{t}^{*}=\operatorname{argmin}_{\mathbf{y} \in \mathcal{K}} F_{t-1}(\mathbf{y})$ for any $t \in[T+1]$, where $F_{t}(\mathbf{y})=$ $\eta \sum_{i=1}^{t}\left\langle\mathbf{g}_{c_{i}}, \mathbf{y}\right\rangle+\left\|\mathbf{y}-\mathbf{y}_{1}\right\|_{2}^{2}$.
Then, it is easy to verify that

$$
\begin{equation*}
\sum_{t=1}^{T}\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t}-\mathbf{x}^{*}\right\rangle=\sum_{t=1}^{T}\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t}-\mathbf{y}_{t}^{*}\right\rangle+\sum_{t=1}^{T}\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t}^{*}-\mathbf{x}^{*}\right\rangle \tag{46}
\end{equation*}
$$

Therefore, we will continue to upper bound the right side of (46). By applying Lemma 2, we have

$$
\begin{align*}
\sum_{t=1}^{T}\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t}-\mathbf{y}_{t}^{*}\right\rangle & \leq \sum_{t=1}^{T}\left\|\mathbf{g}_{c_{t}}\right\|_{2}\left\|\mathbf{y}_{t}-\mathbf{y}_{t}^{*}\right\|_{2} \leq \sum_{t=1}^{T} G \sqrt{F_{t-1}\left(\mathbf{y}_{t}\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right)} \tag{47}\\
& \leq \sum_{t=1}^{T} \frac{2 \sqrt{2} G D}{(t+2)^{1 / 4}} \leq \frac{8 \sqrt{2} G D(T+2)^{3 / 4}}{3}
\end{align*}
$$

where the second inequality is due to (21) and Assumption 1, and the last inequality is due to $\sum_{t=1}^{T}(t+2)^{-1 / 4} \leq 4(T+2)^{3 / 4} / 3$.
Then, to bound $\sum_{t=1}^{T}\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t}^{*}-\mathbf{x}^{*}\right\rangle$, we introduce the following lemma.
Lemma 9 (Lemma 6.6 of Garber and Hazan [2016]) Let $\left\{f_{t}(\mathbf{y})\right\}_{t=1}^{T}$ be a sequence of loss functions and let $\mathbf{y}_{t}^{*} \in \operatorname{argmin}_{\mathbf{y} \in \mathcal{K}} \sum_{i=1}^{t} f_{i}(\mathbf{y})$ for any $t \in[T]$. Then, it holds that

$$
\sum_{t=1}^{T} f_{t}\left(\mathbf{y}_{t}^{*}\right)-\min _{\mathbf{y} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{y}) \leq 0
$$

To apply Lemma 9, we define $\tilde{f}_{1}(\mathbf{y})=\eta\left\langle\mathbf{g}_{c_{1}}, \mathbf{y}\right\rangle+\left\|\mathbf{y}-\mathbf{y}_{1}\right\|_{2}^{2}$ and $\tilde{f}_{t}(\mathbf{y})=\eta\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}\right\rangle$ for any $t \geq 2$. Note that $F_{t}(\mathbf{y})=\sum_{i=1}^{t} \tilde{f}_{i}(\mathbf{y})$ and $\mathbf{y}_{t+1}^{*}=\operatorname{argmin}_{\mathbf{y} \in \mathcal{K}} F_{t}(\mathbf{y})$ for any $t=1, \ldots, T$. Then, by applying Lemma 9 to $\left\{\tilde{f}_{t}(\mathbf{y})\right\}_{t=1}^{T}$, we have

$$
\sum_{t=1}^{T} \tilde{f}_{t}\left(\mathbf{y}_{t+1}^{*}\right)-\sum_{t=1}^{T} \tilde{f}_{t}\left(\mathbf{x}^{*}\right) \leq 0
$$

which implies that

$$
\eta \sum_{t=1}^{T}\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t+1}^{*}-\mathbf{x}^{*}\right\rangle \leq\left\|\mathbf{x}^{*}-\mathbf{y}_{1}\right\|_{2}^{2}-\left\|\mathbf{y}_{2}^{*}-\mathbf{y}_{1}\right\|_{2}^{2}
$$

According to Assumption 2, we have

$$
\sum_{t=1}^{T}\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t+1}^{*}-\mathbf{x}^{*}\right\rangle \leq \frac{1}{\eta}\left\|\mathbf{x}^{*}-\mathbf{y}_{1}\right\|_{2}^{2} \leq \frac{D^{2}}{\eta}
$$

Then, we have

$$
\begin{align*}
\sum_{t=1}^{T}\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t}^{*}-\mathbf{x}^{*}\right\rangle & =\sum_{t=1}^{T}\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t+1}^{*}-\mathbf{x}^{*}\right\rangle+\sum_{t=1}^{T}\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t}^{*}-\mathbf{y}_{t+1}^{*}\right\rangle \\
& \leq \frac{D^{2}}{\eta}+\sum_{t=1}^{T}\left\|\mathbf{g}_{c_{t}}\right\|_{2}\left\|\mathbf{y}_{t}^{*}-\mathbf{y}_{t+1}^{*}\right\|_{2} \tag{48}\\
& \leq \frac{D^{2}}{\eta}+\eta T G^{2} \\
& \leq \sqrt{2} G D(T+2)^{3 / 4}+\frac{G D T^{1 / 4}}{\sqrt{2}}
\end{align*}
$$

where the second inequality is due to (39) and Assumption 1, and the last inequality is due to $\eta=\frac{D}{\sqrt{2} G(T+2)^{3 / 4}}$.
By substituting (47) and (48) into (46), we complete the proof.

D Proof of Lemma 4

We first consider the term $E=\sum_{t=1}^{T} \frac{3 \beta D}{2}\left\|\mathbf{y}_{t}-\mathbf{y}_{\tau_{t}}\right\|_{2}$. If $T \leq 2 d$, it is easy to verify that

$$
\begin{equation*}
E=\sum_{t=1}^{T} \frac{3 \beta D}{2}\left\|\mathbf{y}_{t}-\mathbf{y}_{\tau_{t}}\right\|_{2} \leq \frac{3 \beta T D^{2}}{2} \leq 3 \beta d D^{2} \tag{49}
\end{equation*}
$$

where the first inequality is due to Assumption 2.
Then, if $T>2 d$, we have

$$
\begin{align*}
E & =\frac{3 \beta D}{2} \sum_{t=1}^{2 d}\left\|\mathbf{y}_{t}-\mathbf{y}_{\tau_{t}}\right\|_{2}+\frac{3 \beta D}{2} \sum_{t=2 d+1}^{T}\left\|\mathbf{y}_{t}-\mathbf{y}_{\tau_{t}}\right\|_{2} \\
& \leq 3 \beta d D^{2}+\frac{3 \beta D}{2} \sum_{t=2 d+1}^{T}\left(\left\|\mathbf{y}_{t}-\mathbf{y}_{t}^{*}\right\|_{2}+\left\|\mathbf{y}_{t}^{*}-\mathbf{y}_{\tau_{t}}^{*}\right\|_{2}+\left\|\mathbf{y}_{\tau_{t}}^{*}-\mathbf{y}_{\tau_{t}}\right\|_{2}\right) \tag{50}
\end{align*}
$$

Because $F_{t-1}(\mathbf{y})$ is $(t-1) \beta$-strongly convex for any $t=2, \ldots, T+1$, we have

$$
\begin{equation*}
\left\|\mathbf{y}_{t}-\mathbf{y}_{t}^{*}\right\|_{2} \leq \sqrt{\frac{2\left(F_{t-1}\left(\mathbf{y}_{t}\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right)\right)}{(t-1) \beta}} \leq \sqrt{\frac{2 \gamma}{(t-1)^{1-\alpha} \beta}} \tag{51}
\end{equation*}
$$

where the first inequality is due to (21) and the second inequality is due to $F_{t-1}\left(\mathbf{y}_{t}\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right) \leq$ $\gamma(t-1)^{\alpha}$.
Before considering $\left\|\mathbf{y}_{t}^{*}-\mathbf{y}_{\tau_{t}}^{*}\right\|_{2}$, we define $\tilde{f}_{t}(\mathbf{y})=\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}\right\rangle+\frac{\beta}{2}\left\|\mathbf{y}-\mathbf{y}_{t}\right\|_{2}^{2}$ for any $t=1, \ldots, T$. Note that $F_{t}(\mathbf{y})=\sum_{i=1}^{t} \tilde{f}_{i}(\mathbf{y})$. Moreover, for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$ and $t=1, \ldots, T$, we have

$$
\begin{align*}
\left|\tilde{f}_{t}(\mathbf{x})-\tilde{f}_{t}(\mathbf{y})\right| & =\left|\left\langle\mathbf{g}_{c_{t}}, \mathbf{x}-\mathbf{y}\right\rangle+\frac{\beta}{2}\left\|\mathbf{x}-\mathbf{y}_{t}\right\|_{2}^{2}-\frac{\beta}{2}\left\|\mathbf{y}-\mathbf{y}_{t}\right\|_{2}^{2}\right| \\
& =\left|\left\langle\mathbf{g}_{c_{t}}, \mathbf{x}-\mathbf{y}\right\rangle+\frac{\beta}{2}\left\langle\mathbf{x}-\mathbf{y}_{t}+\mathbf{y}-\mathbf{y}_{t}, \mathbf{x}-\mathbf{y}\right\rangle\right| \tag{52}\\
& \leq\left\|\mathbf{g}_{c_{t}}\right\|_{2}\|\mathbf{x}-\mathbf{y}\|_{2}+\frac{\beta}{2}\left(\left\|\mathbf{x}-\mathbf{y}_{t}\right\|_{2}+\left\|\mathbf{y}-\mathbf{y}_{t}\right\|_{2}\right)\|\mathbf{x}-\mathbf{y}\|_{2} \\
& \leq(G+\beta D)\|\mathbf{x}-\mathbf{y}\|_{2}
\end{align*}
$$

where the last inequality is due to Assumptions 1 and 2.
Because of (21), for any $i \geq j>1$, we have

$$
\begin{align*}
\left\|\mathbf{y}_{j}^{*}-\mathbf{y}_{i}^{*}\right\|_{2}^{2} & \leq \frac{2\left(F_{i-1}\left(\mathbf{y}_{j}^{*}\right)-F_{i-1}\left(\mathbf{y}_{i}^{*}\right)\right)}{(i-1) \beta} \\
& =\frac{2\left(F_{j-1}\left(\mathbf{y}_{j}^{*}\right)-F_{j-1}\left(\mathbf{y}_{i}^{*}\right)\right)+2 \sum_{k=j}^{i-1}\left(\tilde{f}_{k}\left(\mathbf{y}_{j}^{*}\right)-\tilde{f}_{k}\left(\mathbf{y}_{i}^{*}\right)\right)}{(i-1) \beta} \tag{53}\\
& \leq \frac{2(i-j)(G+\beta D)\left\|\mathbf{y}_{j}^{*}-\mathbf{y}_{i}^{*}\right\|_{2}}{(i-1) \beta}
\end{align*}
$$

where the last inequality is due to $\mathbf{y}_{j}^{*}=\operatorname{argmin}_{\mathbf{y} \in \mathcal{K}} F_{j-1}(\mathbf{y})$ and (52).
Note that all gradients queried at rounds $1, \ldots, t-d$ must arrive before round t. Therefore, for any $t \geq 2 d+1$, we have $\tau_{t}=1+\sum_{k=1}^{t-1}\left|\mathcal{F}_{k}\right| \geq t-d+1>t-d$ and

$$
\begin{equation*}
\left\|\mathbf{y}_{t}^{*}-\mathbf{y}_{\tau_{t}}^{*}\right\|_{2} \leq \frac{2\left(t-\tau_{t}\right)(G+\beta D)}{(t-1) \beta} \leq \frac{2 d(G+\beta D)}{(t-1) \beta} \tag{54}
\end{equation*}
$$

where the first inequality is due to $t \geq \tau_{t}>1$ and (53).
By combining (50) with (51) and (54), if $T>2 d$, we have

$$
\begin{aligned}
E & \leq 3 \beta d D^{2}+\frac{3 \beta D}{2} \sum_{t=2 d+1}^{T}\left(\sqrt{\frac{2 \gamma}{(t-1)^{1-\alpha} \beta}}+\frac{2 d(G+\beta D)}{(t-1) \beta}+\sqrt{\frac{2 \gamma}{\left(\tau_{t}-1\right)^{1-\alpha} \beta}}\right) \\
& \leq 3 \beta d D^{2}+3 \beta D \sum_{t=2 d+1}^{T} \sqrt{\frac{2 \gamma}{\left(\tau_{t}-1\right)^{1-\alpha} \beta}}+3 D(G+\beta D) d \sum_{t=2}^{T} \frac{1}{t} \\
& \leq 3 \beta d D^{2}+3 \beta D \sum_{t=2 d+1}^{T} \sqrt{\frac{2 \gamma}{\left(\tau_{t}-1\right)^{1-\alpha} \beta}}+3 D(G+\beta D) d \ln T \\
& \leq 3 \beta d D^{2}+3 d D \sqrt{2 \beta \gamma}+\frac{6 D \sqrt{2 \beta \gamma}}{1+\alpha} T^{(1+\alpha) / 2}+3 D(G+\beta D) d \ln T
\end{aligned}
$$

where the second inequality is due to $\left(\tau_{t}-1\right)^{1-\alpha} \leq(t-1)^{1-\alpha}$ for $t \geq \tau_{t}>1$ and $\alpha<1$, and the last inequality is due to Lemma 7 and $0<1-\alpha \leq 1$.
By combining (49) with the above inequality, we have

$$
E \leq 3 \beta d D^{2}+3 d D \sqrt{2 \beta \gamma}+\frac{6 D \sqrt{2 \beta \gamma}}{1+\alpha} T^{(1+\alpha) / 2}+3 D(G+\beta D) d \ln T
$$

Then, we proceed to bound the term $C=\sum_{t=s}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} G\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{i}\right\|_{2}$. Similar to (31), we first have

$$
\begin{equation*}
C \leq\left|\mathcal{F}_{s}\right| G D+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} G\left(\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{\tau_{t}}^{*}\right\|_{2}+\left\|\mathbf{y}_{\tau_{t}}^{*}-\mathbf{y}_{i}^{*}\right\|_{2}+\left\|\mathbf{y}_{i}^{*}-\mathbf{y}_{i}\right\|_{2}\right) \tag{55}
\end{equation*}
$$

By combining (55) with $\left|\mathcal{F}_{s}\right| \leq d$, (51), and (53), we have

$$
\begin{align*}
C & \leq d G D+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} G\left(\sqrt{\frac{2 \gamma}{\left(\tau_{t}-1\right)^{1-\alpha} \beta}}+\frac{2\left(i-\tau_{t}\right)(G+\beta D)}{(i-1) \beta}+\sqrt{\frac{2 \gamma}{(i-1)^{1-\alpha} \beta}}\right) \\
& \leq d G D+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} G\left(2 \sqrt{\frac{2 \gamma}{\left(\tau_{t}-1\right)^{1-\alpha} \beta}}+\frac{2\left(i-\tau_{t}\right)(G+\beta D)}{(i-1) \beta}\right) \tag{56}\\
& \leq d G D+2 d G \sqrt{\frac{2 \gamma}{\beta}}+\sqrt{\frac{2 \gamma}{\beta}} \frac{4 G}{1+\alpha} T^{(1+\alpha) / 2}+\sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1} \frac{2 d G(G+\beta D)}{(i-1) \beta}
\end{align*}
$$

where the first inequality is due to $\left(\tau_{t}-1\right)^{1-\alpha} \leq(i-1)^{1-\alpha}$ for $0<\tau_{t}-1 \leq i-1$ and $\alpha<1$, and the last inequality is due to Lemma $8,0<1-\alpha \leq 1$, and $i-\tau_{t} \leq \tau_{t+1}-1-\tau_{t} \leq\left|\mathcal{F}_{t}\right| \leq d$.

Recall that we have defined

$$
\mathcal{I}_{t}=\left\{\begin{array}{r}
\emptyset, \text { if }\left|\mathcal{F}_{t}\right|=0 \\
\left\{\tau_{t}, \tau_{t}+1, \ldots, \tau_{t+1}-1\right\}, \text { otherwise }
\end{array}\right.
$$

It is not hard to verify that

$$
\begin{equation*}
\cup_{t=s+1}^{T+d-1} \mathcal{I}_{t}=\left\{\left|F_{s}\right|+1, \ldots, T\right\}, \mathcal{I}_{i} \cap \mathcal{I}_{j}=\emptyset, \forall i \neq j \tag{57}
\end{equation*}
$$

By combining (57) with (56), we have

$$
\begin{align*}
C & \leq d G D+2 d G \sqrt{\frac{2 \gamma}{\beta}}+\sqrt{\frac{2 \gamma}{\beta}} \frac{4 G}{1+\alpha} T^{(1+\alpha) / 2}+\sum_{t=\left|F_{s}\right|+1}^{T} \frac{2 d G(G+\beta D)}{(t-1) \beta} \\
& \leq d G D+2 d G \sqrt{\frac{2 \gamma}{\beta}}+\sqrt{\frac{2 \gamma}{\beta}} \frac{4 G}{1+\alpha} T^{(1+\alpha) / 2}+\sum_{t=2}^{T} \frac{2 d G(G+\beta D)}{(t-1) \beta} \tag{58}\\
& \leq d G D+2 d G \sqrt{\frac{2 \gamma}{\beta}}+\sqrt{\frac{2 \gamma}{\beta}} \frac{4 G}{1+\alpha} T^{(1+\alpha) / 2}+\frac{2 d G(G+\beta D)(1+\ln T)}{\beta}
\end{align*}
$$

Next, we proceed to bound the term $A=\sum_{t=1}^{T} G\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{\tau_{t^{\prime}}}\right\|_{2}$. Similar to (23), if $T>2 d$, we have

$$
\begin{align*}
A & \leq 2 d G D+\sum_{t=2 d+1}^{T} G\left(\left\|\mathbf{y}_{\tau_{t}}-\mathbf{y}_{\tau_{t}}^{*}\right\|_{2}+\left\|\mathbf{y}_{\tau_{t}}^{*}-\mathbf{y}_{\tau_{t^{\prime}}}^{*}\right\|_{2}+\left\|\mathbf{y}_{\tau_{t^{\prime}}}^{*}-\mathbf{y}_{\tau_{t^{\prime}}}\right\|_{2}\right) \\
& \leq 2 d G D+\sum_{t=2 d+1}^{T} G\left(\sqrt{\frac{2 \gamma}{\left(\tau_{t}-1\right)^{1-\alpha} \beta}}+\frac{2\left(\tau_{t^{\prime}}-\tau_{t}\right)(G+\beta D)}{\left(\tau_{t^{\prime}}-1\right) \beta}+\sqrt{\frac{2 \gamma}{\left(\tau_{t^{\prime}}-1\right)^{1-\alpha} \beta}}\right) \tag{59}\\
& \leq 2 d G D+\sum_{t=2 d+1}^{T} 2 G \sqrt{\frac{2 \gamma}{\left(\tau_{t}-1\right)^{1-\alpha} \beta}}+\sum_{t=2 d+1}^{T} \frac{2 G(G+\beta D)}{\beta} \sum_{k=t}^{t^{\prime}-1} \frac{\left|\mathcal{F}_{k}\right|}{\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right|}
\end{align*}
$$

where the second inequality is due to (51) and (53), and the last inequality is due to $\tau_{t^{\prime}} \geq \tau_{t}>1$ and

$$
\frac{\left(\tau_{t^{\prime}}-\tau_{t}\right)}{\left(\tau_{t^{\prime}}-1\right)}=\frac{\sum_{k=t}^{t^{\prime}-1}\left|\mathcal{F}_{k}\right|}{\sum_{k=1}^{t^{\prime}-1}\left|\mathcal{F}_{k}\right|} \leq \sum_{k=t}^{t^{\prime}-1} \frac{\left|\mathcal{F}_{k}\right|}{\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right|}
$$

Then, we introduce the following lemma.

Lemma 10 Let $h_{k}=\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right|$. If $T>2 d$, we have

$$
\sum_{t=2 d+1}^{T} \sum_{k=t}^{t^{\prime}-1} \frac{\left|\mathcal{F}_{k}\right|}{h_{k}} \leq d+d \ln T
$$

By applying Lemmas 7 and 10 to (59) and combining with (22), we have

$$
\begin{equation*}
A \leq 2 d G D+2 d G \sqrt{\frac{2 \gamma}{\beta}}+\sqrt{\frac{2 \gamma}{\beta}} \frac{4 G}{1+\alpha} T^{(1+\alpha) / 2}+\frac{2 G(G+\beta D) d(1+\ln T)}{\beta} \tag{60}
\end{equation*}
$$

Finally, by combining (58) and (60), we complete this proof.

E Proof of Lemmas 5 and 6

Recall that $F_{\tau}(\mathbf{y})$ defined in Algorithm 2 is equivalent to that defined in (12). Let $\tilde{f}_{t}(\mathbf{y})=\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}\right\rangle+$ $\frac{\beta}{2}\left\|\mathbf{y}-\mathbf{y}_{t}\right\|_{2}^{2}$ for any $t=1, \ldots, T$, which is β-strongly convex. Moreover, as proved in (52), functions $\tilde{f}_{1}(\mathbf{y}), \ldots, \tilde{f}_{T}(\mathbf{y})$ are $(G+\beta D)$-Lipschitz over \mathcal{K} (see the definition of Lipschitz functions in Hazan [2016]). Then, because of $\nabla \tilde{f}_{t}\left(\mathbf{y}_{t}\right)=\mathbf{g}_{c_{t}}$, it is not hard to verify that decisions $\mathbf{y}_{1}, \ldots, \mathbf{y}_{T+1}$ in our Algorithm 2 are actually generated by performing OFW for strongly convex losses (see Algorithm 2 in Wan and Zhang [2021] for details) on functions $\tilde{f}_{1}(\mathbf{y}), \ldots, \tilde{f}_{T}(\mathbf{y})$. Note that when Assumption 2 holds, and functions $\tilde{f}_{1}(\mathbf{y}), \ldots, \tilde{f}_{T}(\mathbf{y})$ are β-strongly convex and G^{\prime}-Lipschitz, Lemma 6 of Wan and Zhang [2021] has already shown that

$$
F_{t-1}\left(\mathbf{y}_{t}\right)-F_{t-1}\left(\mathbf{y}_{t}^{*}\right) \leq \frac{16\left(G^{\prime}+\beta D\right)^{2}(t-1)^{1 / 3}}{\beta}
$$

for any $t=2, \ldots, T+1$. Therefore, our Lemma 5 can be derived by simply substituting $G^{\prime}=G+\beta D$ into the above inequality.
Moreover, when Assumption 2 holds, and functions $\tilde{f}_{1}(\mathbf{y}), \ldots, \tilde{f}_{T}(\mathbf{y})$ are β-strongly convex and G^{\prime}-Lipschitz, Theorem 3 of Wan and Zhang [2021] has already shown that

$$
\sum_{t=1}^{T} \tilde{f}_{t}\left(\mathbf{y}_{t}\right)-\sum_{t=1}^{T} \tilde{f}_{t}\left(\mathbf{x}^{*}\right) \leq \frac{6 \sqrt{2}\left(G^{\prime}+\beta D\right)^{2} T^{2 / 3}}{\beta}+\frac{2\left(G^{\prime}+\beta D\right)^{2} \ln T}{\beta}+G^{\prime} D
$$

We notice that $\sum_{t=1}^{T}\left(\left\langle\mathbf{g}_{c_{t}}, \mathbf{y}_{t}-\mathbf{x}^{*}\right\rangle-\frac{\beta}{2}\left\|\mathbf{y}_{t}-\mathbf{x}^{*}\right\|_{2}^{2}\right)=\sum_{t=1}^{T} \tilde{f}_{t}\left(\mathbf{y}_{t}\right)-\sum_{t=1}^{T} \tilde{f}_{t}\left(\mathbf{x}^{*}\right)$. Therefore, our Lemma 6 can be derived by simply substituting $G^{\prime}=G+\beta D$ into the above inequality.

F Proof of Lemma 7

Since the gradient \mathbf{g}_{1} must arrive before round $d+1$, for any $T \geq t \geq 2 d+1$, it is easy to verify that $\tau_{t}=1+\sum_{i=1}^{t-1}\left|\mathcal{F}_{i}\right| \geq 1+\sum_{i=1}^{d+1}\left|\mathcal{F}_{i}\right| \geq 2$. Moreover, for any $i \geq 2$ and $(i+1) d \geq t \geq i d+1$, since all gradients queried at rounds $1, \ldots,(i-1) d+1$ must arrive before round $i d+1$, we have

$$
\begin{equation*}
\tau_{t}=1+\sum_{i=1}^{t-1}\left|\mathcal{F}_{i}\right| \geq(i-1) d+2 \tag{61}
\end{equation*}
$$

Then, we have

$$
\begin{aligned}
\sum_{t=2 d+1}^{T}\left(\tau_{t}-1\right)^{-\alpha / 2} & =\sum_{t=2 d+1}^{\lfloor T / d\rfloor d}\left(\tau_{t}-1\right)^{-\alpha / 2}+\sum_{t=\lfloor T / d\rfloor d+1}^{T}\left(\tau_{t}-1\right)^{-\alpha / 2} \\
& \leq \sum_{i=2}^{\lfloor T / d\rfloor-1} \sum_{t=i d+1}^{(i+1) d}\left(\tau_{t}-1\right)^{-\alpha / 2}+d \leq d+\sum_{i=2}^{\lfloor T / d\rfloor-1} d((i-1) d+1)^{-\alpha / 2} \\
& \leq d+\sum_{i=2}^{\lfloor T / d\rfloor-1} d^{1-\alpha / 2}(i-1)^{-\alpha / 2} \leq d+\sum_{i=1}^{\lfloor T / d\rfloor} d^{1-\alpha / 2} i^{-\alpha / 2} \\
& \leq d+\frac{2}{2-\alpha} d^{1-\alpha / 2}(\lfloor T / d\rfloor)^{1-\alpha / 2} \leq d+\frac{2}{2-\alpha} T^{1-\alpha / 2}
\end{aligned}
$$

where the first inequality is due to $\left(\tau_{t}-1\right)^{-\alpha / 2} \leq 1$ for $\alpha>0$ and $\tau_{t} \geq 2$, and the second inequality is due to (61) and $\alpha>0$.

G Proof of Lemma 8

Because of $\tau_{t}=1+\sum_{i=1}^{t-1}\left|\mathcal{F}_{i}\right|$, we have

$$
\begin{align*}
& \sum_{t=s+1}^{T+d-1} \sum_{i=\tau_{t}}^{\tau_{t+1}-1}\left(\tau_{t}-1\right)^{-\alpha / 2} \\
= & \sum_{t=s+1}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|}{\left(\sum_{i=s}^{t-1}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}} \\
= & \sum_{t=s+1}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|}{\left(\sum_{i=s}^{t}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}}+\sum_{t=s+1}^{T+d-1}\left|\mathcal{F}_{t}\right|\left(\frac{1}{\left(\sum_{i=s}^{t-1}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}}-\frac{1}{\left(\sum_{i=s}^{t}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}}\right) \tag{62}\\
\leq & \sum_{t=s+1}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|}{\left(\sum_{i=s}^{t}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}}+\sum_{t=s+1}^{T+d-1} d\left(\frac{1}{\left(\sum_{i=s}^{t-1}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}}-\frac{1}{\left(\sum_{i=s}^{t}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}}\right) \\
\leq & \sum_{t=s+1}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|}{\left(\sum_{i=s}^{t}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}}+\frac{d}{\left|\mathcal{F}_{s}\right|^{\alpha / 2}} \leq \sum_{t=s+1}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|}{\left(\sum_{i=s}^{t}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}}+d
\end{align*}
$$

where the first inequality is due to (32) and $\left(\sum_{i=s}^{t-1}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2} \leq\left(\sum_{i=s}^{t}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}$.
Let $h_{t}=\sum_{i=s}^{t}\left|\mathcal{F}_{i}\right|$ for any $t=s, \ldots, T+d-1$. Since $0<\alpha \leq 1$, it is not hard to verify that

$$
\begin{align*}
\sum_{t=s+1}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|}{\left(\sum_{i=s}^{t}\left|\mathcal{F}_{i}\right|\right)^{\alpha / 2}} & =\sum_{t=s+1}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|}{\left(h_{t}\right)^{\alpha / 2}}=\sum_{t=s+1}^{T+d-1} \int_{h_{t-1}}^{h_{t}} \frac{1}{\left(h_{t}\right)^{\alpha / 2}} d x \\
& \leq \sum_{t=s+1}^{T+d-1} \int_{h_{t-1}}^{h_{t}} \frac{1}{x^{\alpha / 2}} d x=\int_{h_{s}}^{h_{T+d-1}} \frac{1}{x^{\alpha / 2}} d x=\int_{\left|\mathcal{F}_{s}\right|}^{T} \frac{1}{x^{\alpha / 2}} d x \tag{63}\\
& \leq \frac{2}{2-\alpha} T^{1-\alpha / 2}
\end{align*}
$$

Finally, we complete this proof by combining (62) with (63).

H Proof of Lemma 10

It is not hard to verify that

$$
\begin{aligned}
\sum_{t=2 d+1}^{T} \sum_{k=t}^{t^{\prime}-1} \frac{\left|\mathcal{F}_{k}\right|}{h_{k}} & \leq \sum_{t=s}^{T} \sum_{k=t}^{t^{\prime}-1} \frac{\left|\mathcal{F}_{k}\right|}{h_{k}} \leq \sum_{t=s}^{T} \sum_{k=t}^{t+d-1} \frac{\left|\mathcal{F}_{k}\right|}{h_{k}}=\sum_{k=0}^{d-1} \sum_{t=s+k}^{T+k} \frac{\left|\mathcal{F}_{t}\right|}{h_{t}} \\
& \leq \sum_{k=0}^{d-1} \sum_{t=s}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|}{h_{t}}=d \sum_{t=s}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|}{h_{t}}
\end{aligned}
$$

where the first inequality is due to $s \leq d<2 d+1$, and the second inequality is due to $t^{\prime}-1=$ $t+d_{t}-2<t+d-1$.

Moreover, we have

$$
\begin{aligned}
\sum_{t=s}^{T+d-1} \frac{\left|\mathcal{F}_{t}\right|}{h_{t}} & =\frac{\left|\mathcal{F}_{s}\right|}{h_{s}}+\sum_{t=s+1}^{T+d-1} \int_{h_{t-1}}^{h_{t}} \frac{1}{h_{t}} d x \leq \frac{\left|\mathcal{F}_{s}\right|}{h_{s}}+\sum_{t=s+1}^{T+d-1} \int_{h_{t-1}}^{h_{t}} \frac{1}{x} d x \\
& =\frac{\left|\mathcal{F}_{s}\right|}{h_{s}}+\int_{h_{s}}^{h_{T+d-1}} \frac{1}{x} d x=1+\ln \frac{T}{\left|\mathcal{F}_{s}\right|} \leq 1+\ln T
\end{aligned}
$$

where the last equality is due to $h_{s}=\left|\mathcal{F}_{s}\right|$ and $h_{T+d-1}=T$.
Finally, we complete this proof by combining the above two inequalities.

