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Abstract

In this paper, we use tools from rate-distortion theory to establish new upper
bounds on the generalization error of statistical distributed learning algorithms.
Specifically, there are K clients whose individually chosen models are aggregated
by a central server. The bounds depend on the compressibility of each client’s
algorithm while keeping other clients’ algorithms un-compressed, and leveraging
the fact that small changes in each local model change the aggregated model by a
factor of only 1{K. Adopting a recently proposed approach by Sefidgaran et al.,
and extending it suitably to the distributed setting, enables smaller rate-distortion
terms which are shown to translate into tighter generalization bounds. The bounds
are then applied to the distributed support vector machines (SVM), suggesting
that the generalization error of the distributed setting decays faster than that of the
centralized one with a factor of OpalogpKq{Kq. This finding is validated also
experimentally. A similar conclusion is obtained for a multiple-round federated
learning setup where each client uses stochastic gradient Langevin dynamics
(SGLD).

1 Introduction
A key performance indicator of any stochastic learning algorithm that uses a given finite set of data
points is how well it performs on points that are outside that set, i.e., unseen data. This is often captured
through the so-called generalization error. The questions of what really controls the generalization
error of a given stochastic algorithm, and how to make it sufficiently small, are still not yet well
understood, however. For example, while classic approaches [SSBD14] suggest that algorithms with
over-parameterized models are likely to overfit, it is now known that there exist a few such ones which
do generalize well [ZBH�17]. Common approaches to studying the generalization error of a statistical
learning algorithm often consider the effective hypothesis space induced by the algorithm, rather
than the entire hypothesis space, or the information leakage about the training dataset. Examples
include information-theoretic (mutual information) approaches [RZ16, XR17, HRVSG21, HDMR21,
NHD�20, SZ20], compression-based approaches [AGNZ18, SAN20, HJTW21, BSE�21, KLG�21]
and intrinsic-dimension or fractal based approaches [ŞSDE20, BLGŞ21, HŞKM21]. Recently, a
novel approach [SGRS22] that generalizes the notion of algorithm compressibility by using lossy
covering from source coding concepts was used to show that the compression error rate of an algorithm
is strongly connected to its generalization error both in-expectation and with high probability; and,
consequently, establish new rate-distortion-based bounds on the generalization error. The bounds
of [SGRS22] were shown to possibly improve strictly upon those of [XR17, BZV20] and [SZ20]. The
approach also has the advantage to offer a unifying perspective on mutual information, compressibility,
and fractal-based frameworks.

Another major focus of machine learning research over recent years has been the study of statistical
learning algorithms when applied in distributed (network or graph) settings. In part, this is due to the
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emergence of new applications in which resources are constrained, data is distributed or the need
to preserve privacy [VWK�20, MMR�17, KMY�16, KLN�11]. Reducing the computational com-
plexity by offloading the model training using algorithms such as parallel stochastic gradient descent
is another reason for the popularity of these algorithms. Generally, that results in extra communication
costs, however [ZZ15, AGL�17, CCB�18, LM22, WLC22]. Example such algorithms include the
now popular Federated Learning [YAE�18, KMA�19, LSTS20, RCZ�20, KKM�20, YZR21], the
Split Learning of [GR18], Group Alternating Direction Method of Multipliers [EPB�20], and the
so-called in-network learning of [AZ19, MZ21]. Despite its importance, however, little is known
about the generalization guarantees of distributed statistical learning algorithms. In fact, in the
distributed learning setting the technical challenges are numerous, including the lack of a proper
definition of the generalization error in this case [YMNS22, MSS19]. Notable exception works in this
direction include [YDVP20] and [BDP22]. In [YDVP20], information-theoretic upper bounds on the
generalization error of distributed statistical learning algorithms are obtained merely by viewing the
entire distributed system, from the input data to each (local) algorithm to the output aggregated model,
as a single (centralized) algorithm and applying to it the bounds of [XR17, BZV20]. While somewhat
useful this, however, has left the difference between the bounds for the distributed learning setting
and their counterparts for the centralized learning setting implicit in the involved mutual information
terms. The problem of studying the generalization error of distributed statistical learning algorithms
was further studied in the recent [BDP22]. Therein, using results from [BZV20], the authors establish
bounds on the expectation of the generalization error for two special cases. For the first, linear or
location models with Bregman divergence loss, the proposed bound on the generalization error for
the distributed setup [BDP22, Theorem 4] is shown better (i.e., smaller) than its counter-part for the
centralized learning setting by a factor of Op1{?Kq, where K is the number of clients. This result,
however, relies strongly on the assumed linearity of the loss with respect to the hypothesis. For the
second, Lipschitz continuous loss [BDP22, Theorem 5], similar behavior is shown by reducing the
problem to the centralized case and using the triangle inequality.

In this work, we study the generalization error of distributed statistical learning algorithms. Essentially
we extend suitably the approach of [SGRS22] to establish rate-distortion theoretic upper bounds
on the generalization error. In doing so, we bring the analysis of the distributed architecture of the
learning problem into the bounds. The bounds, which hold with high probability and in-expectation,
allow to only consider the compressibility of each local algorithm – the latter having an effect
with a factor of only 1{K on the aggregated model order-wise. This is shown to result in a more
relaxed distortion criterion for the local algorithm compressibility, smaller rate-distortion terms;
and, in turn, better generalization bounds. Furthermore, we apply our results to the distributed
support vector machines (DSVM). The obtained bounds suggest that for the non-separable data, the
generalization error of the distributed setting decays faster than that of the centralized one with a
factor of

a
logpKq{K. We conducted experiments on DSVM that confirm this finding. We also

consider the related Federated learning setting, and derive bounds on the generalization error in two
setups: when each client applies the stochastic gradient Langevin dynamics (SGLD) method and
locally deterministic algorithms with Lipschitz loss (in Appendix C.1). In all cases, our bounds
suggest a decreasing behavior for the generalization performance as K grows.

Notation. Random variables, their realizations, and their domains are denoted respectively by
upper-case, lower-case, and calligraphy fonts, e.g., X , x, and X . Their distributions and expectations
are denoted by PX and ErXs. The random variable X is called σ-subgaussian if for all t P R,
ErexpptpX � ErXsqqs ¤ exppσ2t2{2q, e.g., if X P ra, bs, then X is b�a

2 -subgaussian. A vector
of m P N numbers (or random variables) px1, . . . , xmq are denoted by either x1:m or txiumi�1, de-
pending on the context, and the vector px1, . . . , xi�1, xi�1, . . . , xmq is denoted by x1:mzi. Similarly
for n,m P N, a vector px1,1, . . . , x1,m, x2,1, . . . , x2,m, xn,1, . . . , xn,mq is denoted by x1:n,1:m or
txi,1:muiPrns, or tx1:n,jujPrms, where rns � t1, . . . , nu. Parts of our results are stated in terms of
information-theoretic quantities: for random variables X and Y , we denote the differential entropy of
X by hpXq, the conditional differential entropy of X given Y by hpX|Y q, and the mutual information
between them by IpX;Y q. Moreover, the Kullback–Leibler (KL) divergence between distributions
Q and P is denoted by DKLpQ}P q. For more details, we refer the reader to [CT06, PW14].

2 Preliminaries and problem setup
For convenience, we start with a brief review of the standard (centralized) statistical learning setup
together with a few definitions and recent results associated with it. Let the input data Z be
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distributed according to an unknown distribution µ over the data space Z . A training dataset
S � pZ1, . . . , Znq � µbn consists of n samples tZiu generated independently each according to µ.
A possibly stochastic learning algorithm A : Zn ÞÑW (e.g., stochastic gradient descent) assigns an
hypothesis ApSq � W chosen from the hypothesis class W � Rd to every S P Zn. The map A
induces a conditional distribution PW |S which together with µ induce the joint dataset-hypothesis
distribution PS,W � µbnPW |S . The quality of the prediction is measured using a loss function
ℓ : Z �W ÞÑ R�. The generalization error of an algorithm A is defined as genps, wq :� Lpwq �
L̂ps, wqwhere Lpwq� EZ�µrℓpz, wqs denotes the population risk and L̂ps, wq� 1

n

°
jPrns ℓpzj , wq

denotes the empirical risk. Note that the generalization error depends on the loss function ℓpz, wq,
underlying distribution µ, the sample size n, and also the learning algorithm PW |S . In the binary
classification context, where Z � X �Y and Y � t�1,�1u, we often consider the 0-1 loss function
ℓ0pz, wq :� 1tyfpx,wq 0u, where the sign of fpx,wq, f : X �W ÞÑ R, is the label prediction by
hypothesis w and 1 is the indicator function. In this setup, it is common to assess the empirical risk
with respect to 0-1 loss function with margin θ P R� defined as ℓθpz, wq :� 1tyfpx,wq θu, while
using 0-1 loss function for the population risk evaluation. We denote the corresponding empirical risk
as L̂θps, wq :� 1

n

°
jPrns ℓθpzj , wq and the generalization error as genθps, wq :� Lpwq � L̂θps, wq.

The exact analysis of the generalization error genpS,W q seems out of reach; and, for this reason,
as already mentioned upper bounds on it were developed using an information-theoretic approach.
Essentially, such an approach connects the generalization error of a statistical learning algorithm A
with the mutual information between the input data sample S and the algorithm output W � ApSq.
For details, the reader may refer to a line of work that was initiated by Russo and Zou [RZ16] and
Xu and Raginsky [XR17] and since then improved by using various conditional versions of mutual
information. Other approaches rely on the observation that the output W can be compressible in
some suitable sense [AGNZ18] or the algorithm might generate a fractal structure [ŞSDE20].

Very recently, an approach [SGRS22] that relies on probabilistic ϵ-covering from source coding
concepts was proposed and shown to possibly improve strictly over the aforementioned, seemingly
unrelated, approaches, while offering a unifying framework to them. The upper bounds of [SGRS22]
are rate-distortion theoretic. Specifically, let Ŵ be the alphabet of the compressed hypothesis and
ℓ̂ : Z�Ŵ ÞÑ R� a loss function (possibly different from ℓ). Accordingly, for ŵ P Ŵ and s P Zn, let
genps, ŵq be defined with respect to ℓ̂. For every distribution Q defined over S�W , the rate-distortion
function with respect to Ŵ is defined as

RDpQ, ϵq� infPŴ |S
IpS; Ŵ q,

s.t. EpS,W q�QrgenpS,W qs�EpS,Ŵ q�QSPŴ |S
rgenpS, Ŵ qs ¤ ϵ. (1)

where QS is the Q-marginal of S, and the infimum is taken over all Markov kernels (conditional
distributions) of a random variable Ŵ P Ŵ given S. Note that PS,W induced by the algorithm A is a
particular case of Q. In the following, we shortly discuss the related intuition and concept behind the
above terms. The reader is referred to Appendix A for more details on this.

This rate-distortion function RDpQ, ϵq is the adaptation of the rate-distortion function emerged in
the lossy source compression context [Ber75, CT06] to stochastic learning algorithms [SGRS22].
In the lossy source compression context [Ber75, CT06], this function quantifies the fundamental
compression rate of a source X � PX to within some desired average distortion level ϵ. To this end,
infinitely many i.i.d. instances of the source (tXiuiPrms, Xi � PX , and m Ñ 8) are compressed
(quantized) simultaneously. The joint compression approach is known as the block-coding technique.
In the learning context, this term quantifies the lossy algorithm compressibility [SGRS22], with
the following intuition for the case where Z and W are finite sets. Each PŴ |S denotes a learning

algorithm and the distortion criterion ErgenpS,W q � genpS, Ŵ qs ¤ ϵ guarantees that in average
the difference between the generalization error of the original algorithm PW |S and that of the
“compressed” algorithm PŴ |S does not exceed ϵ. The rate-distortion term RDpPS,W , ϵq quantifies
the lossy compressibility of the algorithm PW |S in the following sense: for large m P N and every
admissible PŴ |S , a compressed hypothesis space of size Nm � emIpS;Ŵ q can be found such that,
with high probability, for each m i.i.d. instances of the original algorithm PW |S there exists at least
one compressed hypothesis for which the difference between the average generalization error over
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the m i.i.d. instances of PW |S at hand and that of the found hypothesis does not exceed ϵ. Recall the
tail bound on the generalization error of [SGRS22, Theorem 10].
Theorem 1 ([SGRS22, Theorem 10] ). Suppose that the learning algorithm ApSq induces PS,W

and suppose that for all ŵ P Ŵ , ℓ̂pZ, ŵ) is σ-subgaussian. Then, for any fixed ϵ P R and δ ¥ 0,
with probability at least 1� δ, genpS,W q ¤a

2σ2pRppδ, ϵq � logp1{δqq{n� ϵ, where Rppδ, ϵq�
sup

Q : DKLpQ}PS,W q¤logp1{δq
RDpQ, ϵq and the supremum is over all possible distributions over S �W .

The above bound depends not only RDpPS,W , ϵq but also on RDpQ, ϵq terms for all distributions
Q that are close enough to P . In other words, to guarantee a good generalization performance, the
compressibility of the algorithm under every such small perturbation of PS,W needs to be considered.
Remark 1. The reader may notice two (minor) differences between Theorem 1 as stated here
and [SGRS22, Theorem 10]. First, we here express the rate-distortion terms with respect to the
distortion function dpw, ŵ; sq :� genps, wq � genps, ŵq instead of a possibly smaller distortion
function d1pw, ŵ; sq :� infps1,w1qPsupppQq genps1, w1q � genps, ŵq that was considered in [SGRS22],
where supppQq denotes the support of Q. Even though the latter could possibly lead to stronger
results, we do not consider it here because it is less amenable to computations. Second, in Theorem 1
the loss function ℓ̂pz, ŵq is allowed to differ from the original ℓpz, wq; and this possibly leads to
some (rather small) improvement of the result of [SGRS22, Theorem 10]. The mentioned two small
differences, however, do not require any change in the proof of [SGRS22, Theorem 10].
Remark 2. Similar to [SGRS22, Theorem 10], most of our results that will follow in this paper
require the subgaussianity assumption of the loss function to hold. In both cases the assumption
is used to properly bound the moment generating function (MGF) of a specific zero-mean random
variable using the Hoeffding inequality (see [SGRS22, Section E.6.2] for the details) . Alternatively,
this MGF can be upper bounded using approaches similar to [BZV20].

Problem setup. In this work, we consider a homogeneous distributed learning setup
that exploits the participation of K clients, as described in the following. Each client
i P rKs has access to a training dataset Si � tZi,1, . . . , Zi,nu � µbn of size n,

Figure 1: The considered distributed setup.

drawn independently of each other and indepen-
dently of other clients’ training datasets from the
same distribution µ. The local learning algorithm
Ai at each client picks a hypothesis AipSiq �
Wi P Wi � W according to PWi|Si

. The in-
duced joint distribution of pSi,Wiq is denoted by
PSi,Wi

. The server receives the hypotheses W1:K

and picks the hypothesis W as

W � pW1 � � � � �WKq{K.

We denote the distributed learning al-
gorithm as A1:KpS1:Kq. It induces
the joint distribution PS1:K ,W1:K ,W �
PW |W1:K

±
iPrKs PSi,Wi

, where PSi
� µbn

and PW |W1:K
� 1tW�pW1�����WKq{Ku. Similar

to [YDVP20, BDP22], the population and
empirical risks are defined as

Lpwq� EZ�µrℓpZ,wqs, L̂ps1:K , wq� 1

K

¸
iPrKs L̂psi, wq. (2)

The main goal of the paper is to upper bound the generalization error genps1:K , wq � Lpwq �
L̂ps1:K , wq for the described (one-round) distributed learning setting as well as multi-round extension
of it, i.e., Federated Learning. Results for the latter are stated in Section 5.

3 Information-theoretic bounds on the generalization error

In this section, we establish information-theoretic bounds on the generalization error of any stochastic
distributed learning algorithm defined as in the previous section. It is important to note that the
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bounds hold for W being any stochastic function of W1:K . For the ease of the exposition, however,
we only focus on the deterministic average case. The bounds are applied later for the DSVM and
federated SGLD, suggesting a decreasing generalization error behavior as the number of clients
increases.

3.1 Tail bound

A trivial approach that was already considered and used in [YDVP20] to establish in-expectation
bounds for the problem studied therein consists in thinking of a distributed learning algorithm that is
composed of K local algorithms and an aggregator at the server as a single centralized algorithm.
In other words, to consider the end-to-end system from the input at each local algorithm to the
final aggregated model W as PW |S1:K

. The idea also applies to tail bounds. Hence, known tail and
in-expectation bounds on the generalization error of centralized learning algorithms translate trivially
into (generally loose) counter-part bounds for the distributed learning setting. Accordingly, the next
theorem follows easily using the result of the above Theorem 1.
Theorem 2. Suppose that the distributed learning algorithm A1:KpS1:Kq induces PS1:K ,W and

suppose that for all ŵ P Ŵ , ℓ̂pZ, ŵ) is σ-subgaussian. Then, for any fixed ϵ P R and δ ¥ 0, with
probability at least 1�δ, gen

�
S1:K ,W

� ¤a
2σ2pRppδ, ϵq � logp1{δqq{pnKq�ϵ, where Rppδ, ϵq�

sup
Q : DKLpQ}PS1:K,W q¤logp1{δq

RDpQ, ϵq and the supremum is over all possible distributions over

W �±
iPrKs Si.

In the distributed setup, for every i P rKs only the hypothesis Wi depends on the dataset Si, which
has then the effect with a factor of 1{K on W . The result of Theorem 2, however, does not explicitly
take the structure of the distributed learning problem into account and, instead, it considers the joint
compressibility of all local algorithms and PW |S1:K

. Thus, the dependency of the bound on the
structure of the problem is considered only implicitly, via the conditional distribution PW |S1:K

. In
this work, we establish an alternate bound that is tailored specifically for the considered distributed
setup. First, for every i P rKs we let the compressed hypothesis Ŵ i of W to depend on both Si

and W1:Kzi (recall that W1:Kzi is independent from Si). We then establish an upper bound on the
generalization error in terms of the maximum (over all clients i P rKs) of the minimum achievable
compressibility using P

Ŵ i|Si,W1:Kzi
. The advantage can be exemplified as follows. For i P rKs,

consider only compressing the local algorithm PWi|Si
and pick some Ŵi while keeping W1:Kzi

un-compressed. Let Ŵ i be average of Ŵi and W1:Kzi. As Ŵi has the effect with factor 1{K on

Ŵ , in order to meet the distortion constraint ErgenpSi,W q � genpSi, Ŵ iqs ¤ ϵ a more relaxed
distortion criterion would be needed in compressing the local algorithm PWi|Si

. More precisely, for
example when the loss is L-Lipschitz with L2

2-norm, i.e., |ℓpz, wq � ℓpz, w1q| ¤ L}w �w1}2, a local
distortion of K2ϵ results into only ϵ distortion in the aggregated model.1 Hence, this translates into
smaller rate-distortion terms and, in turn, tighter bounds on the generalization error.

Now, to formally state the result, we introduce some definitions. Let genpsi, wq� Lpwq � L̂psi, wq.
Besides, as in the centralized case, let Ŵ be the alphabet of the compressed hypothesis and ℓ̂ : Z �
Ŵ ÞÑ R� a loss function (possibly different from ℓ). Accordingly, for ŵ P Ŵ and s P Zn, let
genps, ŵq and genpsi, ŵq be defined similarly with respect to ℓ̂. For a distribution Q defined over
W �±

iPrKspSi �Wiq, let

RDipQ, ϵq� inf
P

Ŵi|Si,W1:Kzi

IpSi; Ŵ i|W1:Kziq, (3)

s.t. E
�
gen

�
Si,W

�� gen
�
Si, Ŵ i

	�
¤ ϵ, (4)

where the infimum is taken over all Markov kernels (conditional distributions) of a random variable
Ŵ i P Ŵ given pSi,W1:Kziq. Note that the mutual information and expectations are with respect to

1For non-Lipschitz losses, such as 0-1 loss, the analysis is less trivial. An example can be found in
Section D.2.
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QSi,,W1:Kzi
P
Ŵ i|Si,W1:Kzi

and QP
Ŵ i|Si,W1:Kzi

, respectively, where QSi,W1:Kzi
is the Q-marginal of

pSi,W1:Kziq.
Theorem 3. Suppose that the distributed learning algorithm A1:KpS1:Kq induces PS1:K ,W1:K ,W

and suppose that for all ŵ P Ŵ , ℓ̂pZ, ŵ) is σ-subgaussian. Then, for any fixed ϵ P R and δ ¥ 0, with
probability at least 1� δ,

gen
�
S1:K ,W

� ¤b
2σ2

�
maxiPrKsRppδ, ϵ, iq � logp1{δq�{n� ϵ, (5)

Rppδ, ϵ, iq� sup
Q : DKLpQ}PS1:K,W1:K

q¤logp1{δq
RDipQ, ϵq, (6)

where the supremum is over all possible distributions over
±

iPrKspSi �Wiq.
The theorem is proved in Appendix D.1. In the binary classification setup, the result also holds for
the margin generalization error genθpS1:K ,W q by letting genθ

�
Si,W

�
:� LpW q � L̂θpSi,W q.

While the advantage of this result was already stated in part above, it should be noted that the
denominator in the result of Theorem 3 is n, rather than nK in Theorem 2. In fact, none of the two
results of Theorem 2 and Theorem 3 outperforms the other in general. For the case of distributed
SVM which will be considered in the next section, it can be shown that the result of Theorem 3 results
in a bound that decays with K faster than one that uses Theorem 2. Moreover, as it will become
clearer from the sequel the bounds for DSVM require a strict lossy compression, i.e., ϵ � 0, and
do not seem to be obtainable with a lossless compression framework, illustrating the utility of our
rate-distortion based approach in general.
Remark 3. For the ease of the presentation, the results of this work, including Theorem 3, are
stated for the homogeneous case where the underlying data distribution µi is same for all clients.
However, the result can be extended straightforwardly to the heterogeneous case, by considering Si

and RDipQ, ϵq, i P rKs, with respect to µi.

3.2 In expectation bound

Similar to Theorems 2 and 3, we establish upper bounds on the expectation of the generalization error
of any distributed stochastic learning algorithm.
Theorem 4. Suppose that the distributed learning algorithm A1:KpS1:Kq induces PS1:K ,W1:K ,W

and suppose that for all ŵ P Ŵ , ℓ̂pZ, ŵ) is σ-subgaussian. Then, for every fixed ϵ P R we have:

E
�
gen

�
S1:K ,W

��
¤ 1

n
min

$&
% 1

K

¸
jPrns

¸
iPrKs

b
2σ2RDpPZi,j ,W

, ϵq � ϵ,
¸

jPrns

c
2σ2 max

iPrKs
RDipPZi,j ,W1:K ,W , ϵq � ϵ

,.
-

(7)

¤ 1?
n
min

#b
2σ2RDpPS1:K ,W , ϵq{K � ϵ,

c
2σ2 max

iPrKs
RDipPSi,W1:K ,W , ϵq � ϵ

+
. (8)

The first terms of the minimization in (7) and (8) follow easily by an application similar to in
Theorem 2. In particular, setting ϵ � 0 in the first term of the minimization in (7) one recovers
the result of [YDVP20, Thoerem 2] under the assumed subgaussianity. The second terms of the
minimization in (7) and (8) are derived in a manner that is essentially similar to in the proof of
Theorem 3. The details are omitted for brevity.

In Appendix C.2, it is shown that under the assumed subgaussianity, the upper bounds in [BDP22,
Theorems 4 & 5] also can be recovered from Theorem 4. The results of [BDP22] are derived using
the stability approach and by applying the leave-one-out expansion lemma.

4 Distributed support vector machines
In this section, we establish upper bounds on the generalization error of Support Vector Machines
(SVM) [Vap06, CV95] when applied in a distributed learning setting. The algorithm is called hereafter
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as Distributed SVM (DSVM). SVMs are popular and widely used for binary classification problems.
They can be combined with different kernels in a computationally efficient way [BGV92, GKL20].
An easy application of SVM consists in finding a hyperplane based on a training dataset that separates
the data with the smallest possible average margin error. Formally, let Z � X � Y , where X P Rd

and Y � t�1,�1u. The hypotheses are vectors w P Rd, which represent hyperplanes. For the
simplicity of the exposition, we only consider the case with zero bias. The hyperplane predicts a
label of a data x according to the sign of the inner product xx,wy. The 0-1 loss and margin loss
functions are thus defined as ℓ0pz, wq :� 1tyxx,wy 0u and ℓθpz, wq :� 1tyxx,wy θu, respectively. In
the distributed learning setup, each client i P rKs has access to dataset Si and picks the vector Wi;
and the server node computes the aggregated model as W :� pW1 � . . .�WKq{K [Car20]. In this
section, we study the generalization gap, which we denote hereafter as genθpS1:K ,W q, defined as
the difference between the population risk Lpwq calculated using ℓ0 and the margin empirical risk
1
K

°
iPrKs L̂θpSi,W q calculated using ℓθ. It should be noted that the results of [BDP22, Theorems 4

& 5] require the loss function to be either a Bregman divergence or Lipschitz of some order; and, as
such, they are not applicable to the DVSM setup that we consider here. This is because the 0-1 loss
function is neither a Bregman divergence, nor a Lipschitz loss.
Theorem 5. Let d P N� and Pp}X} ¤ Bq � 1 for some B ¡ 0. Consider DSVM with K clients
each using any arbitrary local learning algorithm such that Pp}Wi} ¤ 1q � 1, i P rKs.

i) For any δ ¡ 0, with probability at least 1� δ,

genθ
�
S1:K ,W

� ¤ O

�
� 1

nK
?
K

�
d�

B
Kθ

�2
logpnK?

Kq log�max
�
Kθ
B , 2

��� logp1{δq
n

�
.

ii) Also,

E
�
genθ

�
S1:K ,W

�� ¤ O

�
� 1

nK
?
K

�
d

B2 logpnK?
Kq log�max

�
Kθ
B , 2

��
nK2θ2

�
.

This theorem is proved in Appendix D.2, by bounding the corresponding rate-distortion terms in
Theorem 3 (for the part i.) and in the second term of (8) (for part ii.). To establish such bounds, we
show the existence of a proper P

Ŵ i|Si,W1:Kzi
using techniques and results developed in [GKL20],

and in particular by making use of the Johnson-Lindenstrauss transformation [JL84].

The above bound on the expectation of the generalization error of the DSVM decreases with K with
a rate of logpKq{K. Moreover, it is important to note that the in-expectation bound for K clients
each having n data samples is smaller than that of the counterpart centralized learning algorithm that
has nK input data samples by a factor of order OpalogpKq{Kq. This also holds for the tail bound,
as long as logp1{δq{n is not the dominant term in the square root. Note that in general

a
logp1{δq{n

is very small, corresponding to the generalization error of an dataset-independent algorithm [XR17].
Remark 4. The tail bound in Theorem 5 for K � 1 does not recover the best known upper bound to
the margin generalization error of SVMs. More precisely, for a centralized setup with dataset of size
nK, [GKL20, Theorem 2] states

genθpS,W q ¤ O

�
�B2 logpnKq

nKθ2
�
d�

B
θ

�2
logpnKq � logp1{δq

nK
L̂θpS,W q

�
. (9)

This is particularly important for the separable training dataset, where L̂θps, wq � 0, which makes
the bound of order O

�
B2 lnpnKq{pnKθ2q�. For the non-separable case, this term is asymptotically

lower bounded by L̂θpW�q, where W� is the optimal population risk minimizer when µ is known.
However, in the distributed learning setup, even if L̂θpsi, wiq � 0, L̂θpsi, wq is not necessarily zero.
Remark 5. The proof of Theorem 5 shows how our generalization bounds exploit the particular
topology of the distributed learning setup. In particular, we show that for a fixed non-zero distortion
level ϵ in (4) an upper bound on the rates in (4) scales as O

�plogpKq{Kq2�. When ϵ � 0, a case
for which the rate-distortion approach reduces to the mutual information-based approach (see the
discussion right after Theorem 4), that upper bound scales only as Op1q. In part this explains the
benefits brought up by the rate-distortion approach upon the mutual information-based one.
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5 Federated stochastic gradient Langevin dynamics
In this section, we consider a homogeneous federated learning setup, denoted as FSGLD, where local
learning algorithms use stochastic gradient Langevin dynamics (SGLD) method [WHGC21]. For the
case of the centralized learning algorithm, [WHGC21] has proposed a new tractable upper bound on
the generalization error, that describes well the generalization behavior, by using results of [BZV20]
and by connecting SGLD to the Gaussian channels.

We consider a multiple-round distributed learning algorithm. At beginning of each round t P rT s,
the central server sends the updated hypothesis at the end of the previous round W t�1 P Rd to the
clients, where W 0 is a randomly initialized hypothesis. Then, each client i P rKs performs locally
one iteration of SGLD, as explained later, and outputs Wi,t. The central server upon receiving these
hypotheses choices, let W t :� pW1,t � � � � �WK,tq{K. The final hypothesis W is chosen as a
deterministic function of tW tutPrT s. An example of such choices is Polyak averaging [PJ92], where
W � pW 1 � � � � �WT q{T .

Now, we explain the local SGLD algorithm applied by each client [GM91, WT11, WHGC21]. Each
client i P rKs, partitions its dataset Si into m disjoint mini-batches tSi,1, . . . , Si,mu, each one having
equal size b with elements Si,j � tZi,j,1, . . . , Zi,j,bu. Then, client i at round t, by receiving W t�1

from the central node, let Wi,t be

Wi,t �W t�1 � ηt∇w ℓ̂pSi,jt ,W t�1q �
c

2ηt
βt

V.

Here, ηt is the learning rate, βt the inverse temperature, V a d-dimensional random variable with
distribution N p0, Idq, where Id is the d � d identity matrix, jt P rms is the mini-batch index,
ℓ̂ : Z �W ÞÑ R� is a surrogate loss function, and

∇w ℓ̂pSi,jt ,W t�1q :� 1

b

¸
lPrbs∇w ℓ̂pZi,jt,l,W t�1q.

In the following we use the first term of (7) with ϵ � 0 (which is reduced to the upper bound in
[YDVP20, Thoerem 2]), to derive a bound on the expectation of the generalization error of FSGLD.
Note that the first term of (7) is established by viewing the whole learning algorithm as a black-box,
and hence it applies for the multiple-round federated learning setup as well, by considering S1:K as
the training dataset and W as the chosen hypothesis.

Theorem 6. Suppose that for each w P W , the loss ℓpZ,wq is σ-subgaussian. The expected
generalization error of FSGLD is upper bounded by

E
�
gen

�
S1:K ,W

�� ¤
?
2bσ

2nK
?
K

¸
jPrms

¸
iPrKs

d ¸
tPTi,j

βtηtVar
�
∇w ℓ̂pSi,j ,W t�1q

	
,

where the set Ti,j contains the indices t such that jt � j at client i, and

Var
�
∇w ℓ̂pSi,j ,W t�1q

	
:� E

����∇w ℓ̂pSi,j ,W t�1q � ei

���2�,
where ei :� E

�
∇w ℓ̂pSi,j ,W t�1q

�
.

This result for the case of K � 1 is reduced in [WHGC21, Theorem 1] and it can be proved for any
K P N along the same lines of the proof of [WHGC21, Theorem 1]. Indeed,

W t �W t�1 � ηt
K

�
� ¸

iPrKs
∇w ℓ̂pSi,jt ,W t�1q

�
� 1?

K

c
2ηt
βt

V 1, (10)

where V 1 is a d-dimensional random variable with distribution N p0, Idq. Now, proceeding similar to
the proof of [WHGC21, Theorem 1] concludes the result. The reason behind the extra factor 1{?K
in the bound is that, when K independent Gaussian noises are added, their variances are added up
linearly with K. Thus, while in (10), the gradient is divided by K, the noise term is divided by

?
K,
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(a) n � 100 (b) n � 300

Figure 2: The generalization error for distributed and centralized SVM

which results in an extra
?
K term in the denominator of the upper bound. The proof is omitted for

brevity.

The established bound is decreasing with K, as far as the variance of the gradient with training data
size nK is not smaller than the variance of the gradient with training data size n, divided by K. Note
that the variance of the gradient is correlated with the sharpness of the loss landscape and becomes
small as the algorithm converges [WHGC21].

6 Experiments

This section aims at showing, through simulations, the evolution of the generalization error of the
distributed SVM with the number K of clients and the size n of each individual training dataset. We
will provide also comparison with the centralized setup, having training dataset of size nk, and also
with the bounds on the generalization error as predicted by our analysis. We also provide further
experiments and discussions on the comparison of the empirical and population risks of the distributed
and centralized SVM. The details of the experiments are explained in Appendix B and here, we
discuss our experimental findings.

On the generalization error: Figure 2 shows the evolution of the generalization error (with zero
margin) of the distributed setup (K clients, each having n data samples) as a function of the number
K of used clients for two values of n, n � 100 (Subfigure 2a) and n � 300 (Subfigure 2b). Also
shown for comparison, the generalization performance of the associated centralized setup with a
dataset of nK samples.

The figure also depicts the evolution of the bound of our Theorem 5 (computed using part ii) of
the theorem and with the value of the parameter θ set to 0.2). For the centralized learning setting,
the theoretical bound is obtained by applying the result of Theorem 5 (part ii) with the substitution
Kc � 1 and nc � nK.

Observe that, as predicted by our theoretical analysis of Section4, the system generalizes better in the
distributed setup.

On the empirical and population risks: While considering the empirical risk L̂ps1:K , wq �
1
K

°
iPrKs L̂psi, wq is motivated by previous works [YDVP20, BDP22], it differs from the average

local empirical risks minimized at clients, i.e.,

L̃ps1:K , w1:Kq� 1

K

¸
iPrKs L̂psi, wiq. (11)

Denote the difference of these empirical risks as

∆L̂ps1:K , w1:K , wq :� L̂ps1:K , wq � L̃ps1:K , w1:Kq. (12)

Then, the population risk can be written as

Lpwq � L̃ps1:K , w1:Kq � genps1:K , wq �∆L̂ps1:K , w1:K , wq. (13)

The first term of the RHS of Eq. (13) can be made sufficiently small by minimizing the local empirical
loss at each client. The second term is the generalization term considered in this paper, which is
shown to decrease faster than the corresponding centralized case. In what follows, we study the
evolution of the last term of the RHS of (13) with K.
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(a) n � 100 (b) n � 300

Figure 3: The population risk and empirical risk differences for distributed and centralized SVM

Indeed, as shown in Fig 3, while the considered generalization error decreases with K, the population
risk of the centralized setup is smaller than the distributed setup. Also, the latter decreases more
slowly with K. This is caused by the increase of term ∆L̂pS1:K ,W1:K ,W q with K (note that this
term is zero for the centralized setting). As it will become clearer from the rest of this section, in the
distributed setup the term genpS1:K ,W q decreases with K as specified by our Theorem 5 and the
term ∆L̂pS1:K ,W1:K ,W q increases with K (the term L̃pS1:K ,W1:Kq � genpS1:K ,W q as defined
by (11) can be made negligible for both centralized and distributed settings if local models are trained
well enough, an assumption which will be made throughout hereafter). For the distributed case, the
net effect is a decrease of the population risk with K, but which is slower than in the corresponding
centralized setup. In what follows, we will show that as K becomes large, if the clients use the
same algorithm, i.e., PWi|Si

� PW1|S1
for all i P rKs, and they are trained well enough to minimize

their respective empirical risks L̂pSi,Wiq then the population risk in the distributed case tends to a
constant that depends only on n and the used local algorithms, but not on K.

More formally, fix a training data size n P N and suppose that all clients use the same local learning
algorithm PWi|Si

� PW1|S1
. This empirical risks difference term is zero for K � 1, as W � W1.

By increasing K, W departs further from Wi. In particular, as K Ñ 8, W Ñ EW1
rW1s, where

the expectation is with respect to the marginal distribution PW1
(induced by PW1|S1

µbn) and the
convergence is almost surely due to the strong law of large numbers. Note the for a fixed data
distribution µ, the marginal distribution PW1

is a function of n and local algorithms PW1|S1
. Hence,

lim
KÑ8

∆L̂pS1:K ,W1:K ,W q a.s.� ES1�µbn

�
L̂
�
S1,EW1�PW1

rW1s
��� EpS1,W1q�PS1,W1

�
L̂pS1,W1q

�
�EZ�µ

�
ℓ
�
Z,EW1�PW1

rW1s
��� EpS1,W1q�PS1,W1

�
L̂pS1,W1q

�
�LpEW1rW1sq � EpS1,W1q�PS1,W1

�
L̂pS1,W1q

�
. (14)

The above is illustrated in Fig.3, where as visible from therein the population risk for the distributed
setting (as computed experimentally) approaches the limit given by the RHS of (14) as K gets large.

7 Concluding remarks

In this work, we established rate-distortion theoretic tail and in-expectation bounds on the generaliza-
tion error of the distributed learning algorithms. Unlike previous approaches to this problem, our
bounds, which are more general comparatively, are tailored specifically for the distributed setup. In
particular, when applied to distributed SVM and FSGLD our results suggest a decreasing behavior
of the generalization error with respect to the number of clients. The conducted experiments on
DSVM are in accordance with the analytical results. Also, we partly investigated the evolution of
the population risk with the number of clients and the size of the dataset. The analysis revealed the
presence of a bias term. Possible directions for future works include (i) further investigation of the
effect of the aforementioned bias term, (ii) study of the tightness of the proposed general bounds
(experimentally), (iii) extension of the results to the setting in which the data distribution is not
identical across the clients or when the training data samples are not independent, (iv) multiple-round
scenarios, and (v) study of associated computational and communication costs.
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Rate-Distortion Theoretic Bounds on
Generalization Error for Distributed Learning

Appendices

The appendices are organized as follows:

• In Appendix A, we briefly recall the main concepts and definitions of the rate-distortion
theory.

• In Appendix B, we provide the details of the considered simulation setups in our experiments.
• In Appendix C, we present the theoretical results that are not stated in the main document

due to lack of space. The results are on
– the generalization error of deterministic algorithms with Lipschitz loss,
– the comparison of Theorem 4 with results of [BDP22].

• Finally, the proofs of the results are given in Appendix D.

A Background on rate-distortion theory

In this section, we recall the concepts and definitions related to the rate-distortion theory. We
first present a brief review of classic lossy source coding [Ber75, CK11, PW14]. This will help
understand better the adaptation of the concepts to the related topic of study of algorithm compress-
ibility [SGRS22].

A.1 Lossy source compression

We start by describing the notion of lossy compression of a source X P X in the information-theoretic
context [Ber75, CK11, PW14]. The goal is to compress (or to quantize) the source X P X as X̂ P X̂
such that i) X̂ requires a smaller number of bits to be saved, and ii) from X̂ , X (or a desired function
of X) can be recovered within a certain allowed level of distortion.

To this end, we first fix a proper compressed alphabet X̂ and consider a suitable distortion function
d : X � X̂ Ñ R�, that measures discrepancies between the symbol x (or a desired function of
it) and a reconstructed version of it. It is assumed that there exists a x̂0 P X̂ such that for every
ErdpX, x̂0qs   8 [Ber75]. Often the set X̂ can be chosen to be a subset of X , but it needs not to be
in general.

Next, we explain the compression scheme. A key idea is to encode and reconstruct block-wise,
i.e, the so-called block-coding technique. Let Xm � pX1, . . . , Xmq P Xm be a block of m i.i.d.
realizations of the source X � PX . The block-coding technique considers the joint compression of
any realizations of xm as a x̂m � px̂1, . . . , x̂mq P X̂m. The distortion between two vectors xm and
x̂m is given by the average of the coordinate-wise distortions,

dpxm, x̂mq :� 1

m

¸
iPrms

dpxi, x̂iq. (15)

Now, we define the pR, ϵq-compressibility of a source X � PX with respect to the distortion
function d, where R is the compression rate and ϵ is the maximum allowed distortion value. The
source X is said to be pR, ϵq-compressible if there exists a sequences of codebooks tCmumPN,
Cm � tx̂j;m � px̂j,1, . . . , x̂j,mq, j P rlmsu � X̂m, such that lm ¤ emR and

lim
mÑ8P

�
min
jPrlms

dpXm, x̂j;mq ¡ ϵ



� lim

mÑ8Pp@j P rlms : dpXm, x̂j;mq ¡ ϵq � 0, (16)

where Xm � PX
bm. The pR, ϵq-compressibility implies that for m sufficiently large one can find a

codebook Cm such that (i) every element of Cm can be represented using mR log2peq bits and (ii)
with high probability, for every Xm there exists at least one element of Cm for which the distortion
from Xm does not exceed ϵ. For example ϵ-net covering can be seen as a special case of the above
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compressibility definition with Cm being the m-times Cartesian product of some ϵ-net covering of X .
However, in ϵ-net covering the more stringent condition P

�
minjPrl1s dpX, x̂j;1q ¡ ϵ

� � 0 is required.
This condition yields P

�
minjPrlms dpXm, x̂j;mq ¡ ϵ

� � 0 for every m P N, which is a stronger
condition than (20). This explains why the ϵ-net covering number is an upper bound on the minimum
achievable rate R.

It turns out [Ber75, CT06, PW14] that given a distortion threshold ϵ, the fundamental lossy compres-
sion rate R of the source X � PX is determined by the rate-distortion function RDpPX , ϵq, defined
as

RDpPX , ϵq� inf
PX̂|X

IpX; X̂q, s.t. EpX,X̂q�PXPX̂|X
rdpX, X̂qs ¤ ϵ, (17)

where the infimum is taken over all possible Markov kernels (conditional distributions) of a random
variable X̂ P X̂ given X .

For certain source distributions, closed-form expression of the associated rate-distortion function
can be found explicitly [Ber75, CT06, PW14]. For example, for a d-dimensional i.i.d. Gaussian
vector X � N p0, σ2Idq, the rate-distortion function with respect to the squared two-norm L2

2

is given by d
2 logpmaxpσ2{ϵ, 1qq. Besides, for sources of finite cardinality alphabets X , the rate-

distortion function can be computed efficiently using the Blahut-Arimoto algorithm [Bla72, Ari72].
For continuous sources or sources with infinite-sized alphabets, the rate-distortion function can be
estimated by first applying a suitable (fine) quantization technique [EGK11, Proof of Theorem 3.6]
and then using the Blahut-Arimoto algorithm. For small distortion levels ϵ, optimal rate-distortion
tradeoffs can be estimated using appropriate (variational) lower-bounds e.g., [RBK18]. Finally, we
mention that for sources with finite-sized sets an easy upper bound on the rate-distortion function is
given by logp|X |q; whereas for sources whose support set X � Rd is inside a d-dimensional ball of
radius R the function RDpPX , ϵq with respect to the L2 norm is upper bounded by the ϵ-net covering
number of this d-dimensional ball.

The rate-distortion formulation in (17) is asymptotic with respect to the block length m; i.e., as
formulated in (20), the probability that there does not exist a proper x̂j;m within ϵ distortion of
Xm goes to zero, as m Ñ 8. This formulation does not require any condition on the rate of this
convergence to zero. Marton [Mar74] showed that for the finite sets X , to have this probability go
exponentially fast to zero (for large values of m), i.e., at least as fast as δm for some 0   δ   1,
the needed rate R needs to be at least as large as supQ RDpQ, ϵq, where the supremum is over
all distribution Q defined over X such that DKLpQ}PXq ¤ logp1{δq. As it can be observed, the
minimum needed rate depends not only on the rate-distortion term with respect to the underlying
distribution PX but also with respect to all those distributions Q that are close to PX in some sense.
The result has been extended to countably infinite and continuous sets in [Han00, Iri05, BB05].

A.2 Lossy algorithm compression

Now, we are ready to present an adaptation of the rate-distortion concept to the related setting of the
study of the compressibility of statistical learning algorithms which was developed and used for the
first time in [SGRS22, Section 3.1]. Such adaptation is also used extensively in our present work;
and, hence, hereafter we provide a short review for the sake of completeness.

Consider a learning algorithm A which, for a training data set S � tZ1, . . . , Znu P S � Zn picks a
hypothesis W PW according to PW |S . Similar to the source coding context, consider the set Ŵ of
compressed hypotheses and the following distortion measure between any w and ŵ2

dpw, ŵ; sq :� genps, wq � genps, ŵq.

In this work, we consider a slightly extended version of the compressibility framework of [SGRS22]
by allowing the compressed hypothesis space to be assessed with respect to a potentially different
loss function ℓ1 : Z � Ŵ Ñ R�. The generalization error genps, ŵq is then defined with respect to

2Observe that in contrast with classic source coding contexts the distortion measure here depends not only on
the true value of the hypothesis and its estimated fit but also on the given training data set, its distribution and
size n as well as the considered loss function. Also, the values of the incurred distortion are allowed to take
negative values.
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this loss function. However, all results of [SGRS22] hold trivially for this extended framework as
well.

Next, we present an adaptation of the described block coding technique to the study of the generaliza-
tion power of statistical learning algorithms. Let Sm � pS1, . . . , Smq be a block of i.i.d. training
datasets Si � tZi,1, . . . , Zi,nu � µbn, and Wm � pW1, . . . ,Wmq be the block of corresponding
chosen hypothesis, i.e., ApSiq �Wi, i P rms. Similarly, denote the block of length m of compressed
hypothesis pŵ1, . . . , ŵmq by ŵm. While in [SGRS22], different distortion functions between wm

and ŵm given sm are considered, in this work we only consider the following distortion function:

dpwm, ŵm; smq :� 1

m

¸
jPrms

dpwj , ŵj ; sjq. (18)

As in the source coding context, we consider the joint lossy compression of pSm,Wmq as follows. Fix
a hypothesis book Hm :� tŵj;m � pŵj,1, . . . , ŵj,mq, j P rlmsu � Ŵm. For this chosen hypothesis
book, the optimal compression scheme Â�

m : Sm �Wm Ñ Hm assigns for every psm, wmq the
compressed hypothesis vector ŵj;m, j P rlms that has the smallest distortion, i.e.,

Â�
mpsm, wmq � ŵj;m s.t. j � argminjPrlms dpwm, ŵj;m; smq.

Now, we recall the definition of the algorithm compressibility as given in [SGRS22, Definitions 1
and 8]. The learning algorithm A is pR, ϵq-compressible for some R P R� and ϵ P R if there exists
sequences of hypothesis books tHmumPN, Hm � tŵj;m � pŵj,1, . . . , ŵj,mq, j P rlmsu � Ŵm,
such that lm ¤ emR and

lim
mÑ8P

�
min
jPrlms

dpWm, ŵj;m;Smq ¡ ϵ



� lim

mÑ8Pp@j P rlms : dpWm, ŵj;m;Smq ¡ ϵq � 0,

(19)

where pSm,Wmq � PS,W
bm. Furthermore, for 0   δ   1A is pR, ϵ, δq-exponentially compressible

if in addition to (20) the above conditions, we have

lim
mÑ8

�
� 1

m
log

�
P
�

min
jPrlms

dpWm, ŵj;m;Smq ¡ ϵ



�
¥ logp1{δq. (20)

In [SGRS22, Theorems 2 and 9] it is shown that the generalization error of A can be upper bounded
in terms of the compressibility parameters of A. Furthermore, in [SGRS22, Theorems 3, 4, and 10] it
is shown that the compressibility of the algorithm, and consequently its generalization error, can be
upper bounded in terms of an adaptation of the rate-distortion function for the learning algorithm, as
stated in (1). Here, we re-state this: for every distribution Q defined over S �W and every distortion
threshold ϵ P R, the rate-distortion function for A is defined as

RDpQ, ϵq� inf
PŴ |S

IpS; Ŵ q, (21)

s.t. EpS,W q�QrgenpS,W qs�EpS,Ŵ q�QSPŴ |S
rgenpS, Ŵ qs ¤ ϵ. (22)

Here, QS is the Q-marginal of S, and the infimum is taken over all Markov kernels (conditional
distributions) of a random variable Ŵ P Ŵ given S. Note that genpS, Ŵ q is defined with respect to
the loss function ℓ̂pz, ŵq.
Every conditional distribution PŴ |S corresponds to a compressed learning algorithm that picks a

compressed hypothesis Ŵ P Ŵ for S according to PŴ |S . While this compressed learning algorithm
does not depend directly on W , it needs to satisfy the distortion criterion (22) which clearly depends
on W .

Finally, suppose that the loss function is Lipschitz, i.e., there exist some constant L P R� and
distortion function ρ : W � Ŵ Ñ R� such that for every z P Z , w P W and ŵ P Ŵ , it holds that
|ℓpz, wq � ℓ̂pz, ŵq| ¤ Lρpw, ŵq. Under this Lipschitz assumption, in [SGRS22, Corollaries 6 and
11] it is shown that the rate-distortion function (21) can be upper bounded in terms of the classic
rate-distortion function RDpQW , 2ϵ{Lq of W with respect to the distortion function ρ. Here, QW is
the Q-marginal of W .
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Hyperparameter Symbol Value
Initial learning rate η0 0.01

Regularization parameter α 0.00001
Batch size b 1

Kernel parameter γ 0.01
Dimension of the kernel feature space p 2000

Table 1: Hyperparameters

B Details of the experiments

In this section, we describe the details of the performed simulations.

B.1 Tasks description

In our experiments, we simulate a distributed learning setup on a single machine, where each “client”
is an instance of the SVM model, equipped with a dataset and a model to train. We iteratively train
each client’s model. All tasks are performed on the same machine and we do not consider any
communication constraint as it is not of interest in this paper. Once all clients’ models are trained,
their weights are averaged and used by another instance of the SVM model (meant to be the one at
the central server). This is utilized for computing L̂θpS1:K ,W q and LpW q. In particular, LpW q is
estimated using a test set of fixed size.

For comparison, we also consider the associated centralized learning setup consisting of a single
SVM model that needs to be trained on a dataset S of size N � nK. For the distributed learning
setting, the (local) dataset of client # i P rKs, denoted as Si, is composed of n samples that are drawn
uniformly at random from S.

Each experiment is repeated 10 times and only average values are reported.

B.2 Datasets

We consider a supervised learning setup, where the task is binary image classification. More precisely,
in our experiment, we train the SVM model to distinguish digits 1 and 6 from the standard MNIST
[LCB10]. Similar results, that are not reported here, were obtained for distinguishing other pairs of
digits.

B.3 Model

Every client uses SVM with the Gaussian kernel and applies Stochastic Gradient Descent (SGD) for
the optimization.

B.4 Training and hyperparameters

All models were trained with the same hyperparameters for up to 200 epochs until the empirical risk
is made smaller than 0.001. The data is scaled and normalized to get zero-mean and unit variance.
The used training hyperparameters are listed in Table 1 Note that we chose an adaptive learning rate,
starting from η0, which is then decreased by 0.2 if the training loss does not increase by more than
0.01 during 10 epochs.

B.5 Hardware and other resources

We performed our experiments on a server equipped with 56 CPUs Intel Xeon E5-2690v4 2.60GHz.

The experiments are conducted using Python language. The open source machine learning library
scikit-learn [PVG�11] is used to implement SVM. In particular, we use SGDClassifier to implement
SGD optimization and RBFSampler for Gaussian kernel feature map approximation. The code
used for the experiments is available at https://github.com/RomainChor/DataScience/tree/
master/Generalization_NeurIPS2022.
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C Other results

Here, we present further analytical results on the generalization error of distributed learning setups.

C.1 Lipschitz loss

Here, we provide an upper bound on the expectation of the generalization error of a distributed learning
algorithm with deterministic local learning algorithms. This upper bound, proved in Section D.3, has
a decreasing behavior in comparison to the corresponding centralized algorithm.
Proposition 1. Suppose the local learning algorithms AipSiq �Wi P Rd, i P rKs, are deterministic
with bounded hypothesis variance σ2

W . Moreover, suppose that for every w PW , the loss ℓpZ,wq is
σ-subgaussian and further ℓpz, wq is L-Lipschitz, i.e., |ℓpz, wq � ℓpz, w1q| ¤ L}w � w1}2. Then,

E
�
genpS1:K , W̄ q� ¤ min

�
2

3

c
2Lσ2σ2

W

nK2
,
2Lσ2

W

K2

�
.

C.2 Comparison with related prior art results

Here, we show that some of the existing results are particular cases of our established bounds.

C.2.1 Comparison with [YDVP20]

As we already mentioned in Section 3.2, under the assumed subgaussianity condition of the loss
function our result of Theorem 4 recovers the upper bound of [YDVP20, Theorem 2]. More precisely,
this is obtained by setting ϵ � 0 in the first term of the minimization in (7).

C.2.2 Comparison with [BDP22]

Hereafter we show that under the assumed subgaussianity condition of the loss function the upper
bounds of [BDP22, Theorems 4 & 5] can be recovered as special cases, and are subsumed by our
Theorem 4. Specifically, the below is obtained by investigating, and comparing with, the second term
of the minimization in (8).

i) [BDP22, Theorem 4]: First, we recall the result. We only focus on the upper bound in [BDP22,
Theorem 4, part ii.] – a similar analysis follows for the part i of their theorem.
Let for Z,W P Rd the loss function ℓpZ,wq be σ-subgaussian for every w PW . Also, similar to
in [BDP22], assume that the loss ℓpz, wq is a Bregman divergence, i.e.,

ℓpz, wq :� F pwq � F pzq � x∇F pzq, w � zy,
for some convex function F : Rd ÞÑ R. Then, as per [BDP22], we have

E
�
genpS1:K ,W q� ¤ 1

K

c
2σ2 maxiPrKs IpSi;Wiq

n
.

Hereafter we show that this result can be obtained as a specific case of our Theorem 4. Specifically,
let ϵ :� maxiPrKs ϵi, where

ϵi :� 1

K

c
2σ2IpSi;Wiq

n
, i P rKs.

Also, let Ŵ i be a constant. Thus, ErgenpSi, Ŵ iqs � 0 and IpSi;W i|W1:Kziq � 0. We have,

E
�
genpSi,W q � genpSi, Ŵ iq

�
�EpSi,W q�PSi,W

�
genpSi,W q�

�EpSi,S̃i,W q�PSi,W
PS̃i

�
L̂pS̃i,W q � L̂pSi,W q

�
� 1

n

¸
jPrns

EpZi,j ,Z̃i,j ,W q�PZi,j ,W
PZ̃i,j

�
ℓpZ̃i,j ,W q � ℓpZi,j ,W q

�
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paq� 1

n

¸
jPrns

EpZi,j ,Z̃i,j ,W q�PZi,j ,W
PZ̃i,j

�
x∇F pZi,jq,W � Zi,jy � x∇F pZ̃i,jq,W � Z̃i,jy

�

pbq� 1

n

¸
jPrns

EpZi,j ,Z̃i,j ,W q�PZi,j ,W
PZ̃i,j

�
x∇F pZi,jq, Wi

K
� Zi,jy � x∇F pZ̃i,jq, Wi

K
� Z̃i,jy

�

pcq� 1

n

¸
jPrns

EpZi,j ,Z̃i,j ,W q�PZi,j ,W
PZ̃i,j

�
x∇F pZi,jq, Wi

K
y � x∇F pZ̃i,jq, Wi

K
y
�

� 1

nK

¸
jPrns

EpZi,j ,Z̃i,j ,W q�PZi,j ,W
PZ̃i,j

�
x∇F pZi,jq,Wiy � x∇F pZ̃i,jq,Wiy

�
pdq� 1

K
ErgenpSi,Wiqs

peq� 1

K

c
2σ2IpSi;Wiq

n
�ϵi,

where S̃i :� tZ̃i,1, . . . , Z̃i,nu and PS̃i
� µbn which is identical to PSi

, paq holds since the
loss is a Bregman loss and by using that ErF pZi,jqs � ErF pZ 1

i,jqs, i P rKs, j P rns, pbq holds
since W � pW1 � � � � �WKq{K and Zi,j is independent of W1:Kzi, and hence distributions of
pZi,W1:Kziq and pZ̃i,W1:Kziq are identical, pcq holds since the marginal distributions of Zi,j and
Z̃i,j are identical, pdq follows by straightforward algebra using the fact that the loss is a Bregman
loss, and finally peq is due to [XR17, Theorem 1].
Moreover,

RDipPSi,W1:K ,W , ϵq ¤ IpSi;W i|W1:Kziq � 0.

Now, using the second term of the minimization in (8) completes the proof.
ii) [BDP22, Theorem 5]: First, we recall the result. Suppose that Z,W P Rd, for every w PW , the

loss function ℓpZ,wq is σ-subgaussian, and the loss is a Lipschitz continuous function of w with
respect to L2-norm, i.e.,��ℓpz, wq � ℓpz, w1q�� ¤ c}w � w1}, @z P Z, w, w1 PW,

for some constant c ¡ 0. Moreover, suppose that for every i P rKs,
Er}Wi � ErWis}s ¤ σW ,

where the expectations are with respect to the marginals PWi
. Then, as per [BDP22] we have

E
�
genpS1:K ,W q� ¤ 2cσW

K
. (23)

We show that this result too can be obtained as a special case of the bound of our Theorem 4.
Specifically, for every i P rKs let

Ŵ i :�
ErWis �

°
j�i Wj

K
.

Hence IpSi;W i|W1:Kziq � 0. This, we have

E
�
genpSi,W q � genpSi, Ŵ iq

� paq
¤2cE

�
}W � Ŵ i}

�
�2c

K
Er}Wi � ErWis}s

pbq
¤ 2cσW

K
�: ϵ,

where paq holds by the assumed Lipschitzness of the loss function and pbq follows by using (23).
Moreover,

RDipPSi,W1:K ,W , ϵq ¤ IpSi;W i|W1:Kziq � 0.

Finally, using the second term of the minimization in (8) completes the proof.
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D Proofs

Here, we state the proofs of the results in the main text and the appendices.

D.1 Proof of Theorem 3

Proof. Similar to [SGRS22, Theorem 9], we use a technique, known as block-coding in information
theory. Consider m P N independent realizations of the datasets and also hypotheses choices!
tSi,j ,Wi,juiPrKs,W j

)
jPrms

, i.e., Si,j :� tZi,j,1, . . . , Zi,j,nu, Zi,j,l � µ, independent of other

tZi1,j1,l1upi1,j1,l1q�pi,j,lq, Wi,j is chosen according to PWi|Si
pwi,j |Si,jq, and W j :� pW1,j � � � � �

WK,jq{K. Fix ϵ P R and δ P R�. Let ∆i :� a
2σ2pRppδ, ϵ, iq � logp1{δqq{n � ϵ and ∆ :�

maxiPrKs∆i. We consider the probability that the generalization error for all j P rms instances of
the algorithm A1:KpS1:Kq being greater than ∆, and upper bound this by the probability that average
of them being greater than ∆. Then, we relate this to the sum of K terms, each only depending on
the training dataset of the client i P rKs. Specifically, we have

P
�
genpS1:K ,W q ¥ ∆

�m � P
�@j P rms : genpS1:K,j ,W jq ¥ ∆

�
¤ P

�
� 1

mK

¸
iPrKs

¸
jPrms

LpW jq � L̂pSi,j ,W jq ¥ ∆

�


paq
¤ K max

iPrKs
P

�
� 1

m

¸
jPrms

LpW jq � L̂pSi,j ,W jq ¥ ∆i

�
, (24)

where paq holds since ∆ ¥ ∆i, i P rKs and using the fact that for every pair of random variables
pX,Y q P R2 and constants pc1, c2q P R2 it holds that PpX�Y ¥ c1�c2q ¤ PpX ¥ c1q�PpY ¥ c2q.
Now, use the following claim the proof of which will follow,

P
� 1

m

¸
jPrms LpW jq � L̂pSi,j ,W jq ¥ ∆i

	
¤ δm, for every i P rKs. (25)

Combining this claim with (24) and taking the mth root of both sides, we get
P
�
genpS1:K ,W q ¥ ∆

� ¤ δelogpKq{m. Finally, letting m Ñ 8 completes the proof. Observe
that the effect of considering m independent instances helped to diminish the effect of the multiplica-
tive term K, and hence avoiding to have the failure probability as Kδ, rather than δ. It remains to
show that (25) holds.

Fix i P rKs. The rest of the proof is as follows. First, we show that 1
m

°
jPrms LpW jq� L̂pSi,j ,W jq

corresponds to the generalization error of an algorithm, which is a concatenation of m i.i.d. instances
of another algorithm. Then, using results of [SGRS22], we establish a rate-distortion theoretic bound
on the generalization error of this concatenated algorithm. The rest of proof follows by showing that
the rate-distortion function of the concatenated algorithm (with parameters ϵ and δm) is not bigger
than the sum of the rate-distortion functions of each instances (with parameters ϵ and δ). A similar
relation is known in the lossy source compression context, and here we show this hereafter for the
adaptation of the rate-distortion functions for statistical leaning algorithms.

Formally, let S :� tSi,jujPrms with Sj :� Si,j , W :�  
W j

(
jPrms, and U �

 
W1:Kzi,j

(
jPrms

with Uj :� W1:Kzi,j . Note that U is independent of S and PW|S,U � ±
jPrms PWj|Si,j ,W1:Kzi,j

.
Finally, for z � pz1, . . . , zmq P Zm, define ℓpz,wq � 1

m

°
jPrms ℓpzj , wjq. Now, consider a

learning algorithm that has access to the dataset S and the randomness U and picks the hypothesis
Waccording to PW|S,U. Then, gen

�
S,W

� � 1
m

°
jPrms LpW jq � L̂pSi,j ,W jq. Hence, showing

(25) is equivalent to showing P
�
genpS,Wq ¥ ∆i

� ¤ δm. Using [SGRS22, Extended Theorem 10
in Appendix D.2.] we get

P

�
gen

�
S,W

� ¥
c

2σ2pRpδm, ϵq � logp1{δmqq
mn

�
¤ δm.
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where Rpδm, ϵq :� sup
Q : DKLpQ}PS,W,Uq¤logp1{δmq

inf
P

Ŵ|S,U

I
�
S;Ŵ|U

	
and the infimum is over all

Markov kernels P
Ŵ|S,U such that

E
�
genpS,Wq � genpS,Ŵq

�
¤ ϵ. (26)

Note that as explained in Remark 1 (and as noted in [SGRS22, Equation (49)]), the above constraint
is stronger than the one needed in [SGRS22, Extended Theorem 10], and hence it is valid. Moreover,
note that the denominator in the square root is mn, as S is composed of mn independent samples.
More precisely, considering the second proof of [SGRS22, Extended Theorem 10 in Appendix D.2.]
for genpS,Wq, “genpŴ2, Sq” in the paragraph before p64q in [SGRS22] would be the sum of mn
i.i.d. variables. Now,

P
�
gen

�
S,W

� ¥ ∆i

� � P

�
gen

�
S,W

� ¥
c

2σ2pmRppδ, ϵ, iq � logp1{δmqq
mn

�

¤ P

�
gen

�
S,W

� ¥
c

2σ2pRpδm, ϵq � logp1{δmqq
mn

�
¤ δm,

where the last step holds by the next lemma the proof of which is deferred to Appendix D.4.

Lemma 1. Rpδm, ϵq ¤ mRppδ, ϵ, iq.

This completes the proof of Theorem 3.

D.2 Proof of Theorem 5

Proof. We establish a proof based on Theorem 3. First, note that for binary classification problem we
have σ � 1. Then, we use the following claim, the proof of which will follow: for every m P N and
non-negative triplet pc1, c2, νq P R3 it holds that

Rppδ, ϵ, iq ¤ m logppc2 � νq{νq, (27)

where

ϵ :� 8e�
m
7 pKθ

4B q2 � 2mνm?
π

e
� pm�1q

2

�
Kθ

4c1νB

	2

� 4e�0.21mpc21�1q � 4e�0.21mpc22�1q. (28)

This claim together with Theorem 3 imply that with probability at least 1� δ we have

genθpS1:K ,W q ¤
c

2m logpc2{ν � 1q � 2 logp1{δq
n

� ϵ.

Letting m � r112
�

B
Kθ

�2
logpnK?

Kqs, c1 � c2 �
b

K2θ2

20B2 � 1, ν � 1{p2c1q completes the proof
of part (i). The proof of the part (ii) follows similarly.

Now, we proceed to show the inequality (27). We show that under any distribution Q defined over
W �±

iPrKspSi �Wiq, there exist proper choices of P
Ŵ i|Si,W1:Kzi

and 0-1 loss function ℓ̂pz, ŵiq
such that

I
�
Si; Ŵ i|W1:Kzi

	
¤ m logppc2 � νq{νq (29)

E
�
genθ

�
Si,W

�� gen
�
Si, Ŵ i

	�
¤ ϵ, (30)

where genpSi, Ŵ iq is computed based on ℓ̂pz, ŵiq. We borrow some ideas and results from [GKL20]
and use them in a new context to show the claim. In particular, similar to [GKL20] we make use of
Johnson-Lindenstrauss transformation [JL84] to make the compression in a space that has a smaller
dimension. More specifically, fix i P rKs and a matrix A P Rd�m. Also, let Ŵ � RdpK�1q�m and
denote each ŵi P Ŵ as ŵi :� pŵi,1, . . . , ŵi,Kq, where ŵi,j P Rd for j � i and ŵi,i P Rm. First,
define the loss function as

ℓ̂pz, ŵiq :� 1ty⟪x,ŵi⟫A θ{2u, where ⟪x, ŵi⟫A :� xAx, ŵi,iy �
°

j�ixx, ŵi,jy
K

.
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Next, we define a proper choice of P
Ŵ i|Si,W1:Kzi

. We impose the Markov chain Si �W1:K � Ŵ i,

and define P
Ŵ i|W1:K

as follows. For j � i, we let Ŵi,j :� Wj , and if }AWi} ¤ c2, we choose

Ŵi,i uniformly over the m-dimensional ball around AWi with radius ν. Otherwise, we choose Ŵi,i

uniformly over the m-dimensional ball around the origin p0, . . . , 0q P Rm with radius ν. This gives

I
�
Si; Ŵ i|W1:Kzi

	 paq
¤ I

�
Wi; Ŵ i|W1:Kzi

	
� hpŴi,iq � hpŴi,i|Wiq

pbq
¤ logpVolmpc2 � νqq � logpVolmpνqq � m logppc2 � νq{νq,

where paq follows by using the Markov chain Si �W1:K � Ŵ i and the data processing inequality;
pbq holds since by using the triangle inequality Ŵi,i is always within the m-dimensional ball with
radius pc2 � νq around the origin p0, . . . , 0q P Rm, the entropy term hpŴi,iq is maximized by the
uniform distribution over the ball; and hpŴi,i|Wiq � logpVolmpνqq since conditionally given Wi

the variable Ŵi,i is distributed uniformly over an m-dimensional ball with radius ν. Note that here
Volmprq denotes the volume of m-dimensional ball with radius r, which is equal to πm{2rm

Γpm{2�1q and
Γp�q is the Gamma function. This shows that (29) holds for any choice of A. Now, we proceed to
show that there exists a proper choice of A such that (30) also holds, using techniques in [GKL20].
Fix a distribution Q such that DKLpQ}PS1:K ,W1:K ,W q   8. Note that the expectation in (30) is with
respect to QP

Ŵ i|W1:K
. This term is bounded in the following lemma, proved in Appendix D.5.

Lemma 2. We have E
�
genθ

�
Si,W

�� gen
�
Si, Ŵ i

	�
¤ DA, where

DA :� EpZ,Wi,Ŵiq
�
1t 1

K |xX,Wiy�xAX,Ŵiy|¡θ{2u
�
� EpSi,Wi,Ŵiq

�
1

n

ņ

j�1

1t 1
K |xXi,j ,Wiy�xAXi,j ,Ŵiy|¡θ{2u

�
,

with pZ,Wi, Ŵiq � µQWi
PŴi|Wi

and pSi,Wi, Ŵiq � QSi,Wi
PŴi|Wi

.

Next, to show the existence of a proper A we consider generating it as in the Johnson-Lindenstrauss
transformation [GKL20]. The following lemma is proved in Appendix D.6.

Lemma 3. . The expectation of DA, when each entry of the matrix A is generated i.i.d. according to
N p0, 1{mq, is upper bounded by

EArDAs ¤ 8e�
m
7 pKθ

4B q2 � 2mνm?
π

e
� pm�1q

2

�
Kθ

4c1νB

	2

� 4e�0.21mpc21�1q � 4e�0.21mpc22�1q � ϵ.

Finally, since the expectation of DA is upper bounded by ϵ there exists at least an A P Rd�m such
that DA ¤ ϵ. Thus, (30) holds by Lemma 2. This completes the proof of Theorem 5.

D.3 Proof of Proposition 1

Proof. Let Vi be a d-dimensional random variable distributed according to N p0, σ2
V Idq, independent

of all other random variables, where Id is the d� d identity matrix. Let Ŵ i :� 1
K

�
Ŵi �

°
j�i Wj

	
,

where Ŵi :�Wi � Vi. Note that

E
�
genpSi,W q � genpSi, Ŵ iq

�
¤ 2LE

�
}W � Ŵ i}2

�
� 2Lσ2

V

K2
�: ϵ.

Hence,

RDipPSi,W1:K ,W , ϵq ¤ IpSi;W i|W1:Kziq
� IpSi; Ŵiq
� IpSi;AipSiq � Viq
paq
¤ 1

2σ2
V

VarpWiq
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¤ σ2
W

2σ2
V

,

where paq is derived due to [WHGC21, Lemma 6].

Now, using Theorem 4, we have

E
�
genpS1:K , W̄ q� ¤

d
σ2σ2

W

nσ2
V

� 2Lσ2
V

K2
.

Letting σ2
V :� 3

b
σ2σ2

WK4

4L2n completes the proof.

In a similar way, let Ŵ i :� 1
K

�
ErWis �

°
j�i Wj

	
. Then,

E
�
genpSi,W q � genpSi, Ŵ iq

�
¤ 2LE

�}Wi � ErWis}2
� � 2Lσ2

W

K2
�: ϵ.

Moreover,

RDipPSi,W1:K ,W , ϵq ¤ IpSi;W i|W1:Kziq � 0.

Hence,

E
�
genpS1:K , W̄ q� ¤ 2Lσ2

W

K2
.

D.4 Proof of Lemma 1

Proof. Let Q be product of m i.i.d. Qj , where Qj is a distribution defined over S �W � U . Hence,

DKLpQj}PSj ,W j ,Uj
q � 1

mDKL

�
Q}PS,W,U

	
¤ logp1{δq. Moreover,

Rpδm, ϵq ¤ sup
Qj : DKL

�
Qj}PSj,Wj,Uj

	
¤logp1{δq

inf
P

Ŵ|S,U

IpS;Ŵ|Uq

paq�
¸

jPrms
sup

Qj : DKL

�
Qj}PSj,Wj,Uj

	
¤logp1{δq

inf
P

Ŵj |Sj,Uj

IpSj ; Ŵ j |Ujq

�mRppδ, ϵ, iq.
where paq is deduced to the following claim: under the considered Q (where

 pSj ,W j , Ujq
(
jPrms

are i.i.d.), to study the infimum, it is sufficient to consider Ŵ that can be written as pŴ 1, . . . , Ŵmq,
such that P

Ŵ|S,U � ±
iPrms PŴ j |Sj ,Uj

and E
�
genpSj ,W jq � genpSj , Ŵ jq

�
¤ ϵ. To show this

claim, given a P
Ŵ|S,U, let W̃ :� pŴ 1, . . . , Ŵmq, where Ŵ j , j P rms are chosen based on pSj , Ujq,

according to P
Ŵ j |Sj ,Uj

:� P
Ŵ|Sj ,Uj

, independent of tSj1 , Uj1 , Ŵ j1uj1�j . Then,

IpS;Ŵ|Uq �
¸

jPrms IpSj ;Ŵ|U, S1:j�1q
paq
¥

¸
jPrms IpSj ;Ŵ|Ujq

�
¸

jPrms IpSj ; Ŵ j |Ujq
� IpS;W̃|Uq

where we define S1:0 :� Constant, paq is derived since HpSj |U, S1:j�1q � HpSjq and

HpSj |Ŵ,U, S1:j�1q ¤ HpSj |Ŵ, Ujq. Note that W̃ satisfies the constraint (26), and hence for
studying the infimum it is sufficient to consider W̃. Finally, due to the symmetry, @j P rms,
E
�
genpSj ,W jq � genpSj , W̃jq

�
¤ ϵ. This completes the proof.
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D.5 Proof of Lemma 2

Proof. Let pZ,W,W1:K , Ŵ iq � µQW,W1:K
P
Ŵ i|W1:K

. Note that since DKLpQ}PS1:K ,W1:K ,W q  
8, then under Q also W � pW1 � � � � �WKq{K. Hence, we have

EW

�
LpW q� �EpZ,W q

�
1tY xX,W y¤0u

�
¤EpZ,W,Ŵ iq

�
1!

Y xX,W y¤0,Y ⟪X,Ŵ i⟫A¡θ{2
)
�
� EpZ,W,Ŵ iq

�
1!

Y ⟪X,Ŵ i⟫A ¤θ{2
)
�

�EpZ,W,Ŵ iq

�
1!

Y xX,W y¤0,Y ⟪X,Ŵ i⟫A ¡θ{2
)
�
� E

Ŵ i

�
L
�
Ŵ i

	�

¤EpZ,W,Ŵ iq

�
1!���xX,W y�⟪X,Ŵ i⟫A

���¡θ{2
)
�
� E

Ŵ i

�
L
�
Ŵ i

	�
�EpZ,Wi,Ŵiq

�
1t 1

K |xX,Wiy�xAX,Ŵiy|¡θ{2u
�
� E

Ŵ i

�
L
�
Ŵ i

	�
. (31)

Similarly, and by considering pSi,W ,W1:K , Ŵ iq � µQSi,W,W1:K
P
Ŵ i|W1:K

, with Si �
tZi,1, . . . , Zi,nu, we have

1�EpSi,W q
�
L̂θpSi,W q

�

�EpSi,W q

�
1

n

ņ

j�1

1tYi,jxXi,j ,W y¡θu
�

¤EpSi,W,Ŵ iq

�
1

n

ņ

j�1

1!
Yi,jxXi,j ,W y¡θ,Yi,j⟪Xi,j ,Ŵ i⟫A ¤θ{2

)
�

� EpSi,W,Ŵ iq

�
1

n

ņ

j�1

1!
Yi,j⟪Xi,j ,Ŵ i⟫A¡θ{2

)
�

�EpSi,W,Ŵ iq

�
1

n

ņ

j�1

1!
Yi,jxXi,j ,W y¡θ,Yi,j⟪Xi,j ,Ŵ i⟫A ¤θ{2

)
�
� 1� EpSi,Ŵ iq

�
L̂
�
Si, Ŵ i

	�

¤EpSi,W,Ŵ iq

�
1

n

ņ

j�1

1!���xXi,j ,W y�⟪Xi,j ,Ŵ i⟫A
���¡θ{2

)
�
� 1� EpSi,Ŵ iq

�
L̂
�
Si, Ŵ i

	�

�EpSi,Wi,Ŵiq

�
1

n

ņ

j�1

1t 1
K |xXi,j ,Wiy�xAXi,j ,Ŵiy|¡θ{2u

�
� 1� EpSi,Ŵ iq

�
L̂
�
Si, Ŵ i

	�
. (32)

Combining (31) and (32) completes the proof.

D.6 Proof of Lemma 3

Proof. We start by further upper bounding DA by sum of four terms:

DA �EpZ,Wi,Ŵiq
�
1t 1

K |xX,Wiy�xAX,Ŵiy|¡θ{2u
�
� EpSi,Wi,Ŵiq

�
1

n

ņ

j�1

1t 1
K |xXi,j ,Wiy�xAXi,j ,Ŵiy|¡θ{2u

�

¤EpZ,Wiq
�
1t 1

K |xX,Wiy�xAX,AWiy|¡θ{4u
�
� EpSi,Wiq

�
1

n

ņ

j�1

1t 1
K |xXi,j ,Wiy�xAXi,j ,AWiy|¡θ{4u

�

� EpZ,Wi,Ŵiq
�
1t 1

K |xX,Wiy�xAX,Ŵi�AWiy|¡θ{4u
�

� EpSi,Wi,Ŵiq

�
1

n

ņ

j�1

1t 1
K |xXi,j ,Wiy�xAXi,j ,Ŵi�AWiy|¡θ{4u

�

¤DA,1 �DA,2 �DA,3 �DA,4,
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where

DA,1 :�EpZ,Wiq�µQWi

�
1t 1

K |xX,Wiy�xAX,AWiy|¡θ{4u
�

� EpSi,Wiq�QSi,Wi

�
1

n

ņ

j�1

1t 1
K |xXi,j ,Wiy�xAXi,j ,AWiy|¡θ{4u

�

DA,2 :�EpZ,Wi,Ŵiq�µQWi
PŴi|Wi

�
1t 1

K |xAX,Ŵi�AWiy|¡θ{4u
��}AX} ¤ c1B, }AWi} ¤ c2

�

� ESi�QSi

1

n

ņ

j�1

EpWi,Ŵiq�QWi|Si
PŴi|Wi

�
1t 1

K |xAXi,j ,Ŵi�AWiy|¡θ{4u
��}AXi,j} ¤ c1B, }AWi} ¤ c2

�

DA,3 :�PZ�µp}AX} ¥ c1Bq � ESi�QSi

1

n

ņ

j�1

1t}AXi,j}¥c1Bu

�2PZ�µp}AX} ¥ c1Bq

DA,4 :�PpZ,Wiq�µQWi
p}AWi} ¥ c2q � ESi�QSi

1

n

ņ

j�1

PWi�QWi|Si
p}AWi} ¥ c2q

�2PWi�QWi
p}AWi} ¥ c2q

The proof completes by showing

i. EArDA,1s ¤ 8e�
m
7 pKθ

4B q2 .

ii. EArDA,2s ¤ 2mνm?
π

e
� pm�1q

2

�
Kθ

4c1νB

	2

.

iii. EArDA,3s ¤ 4e�0.21mpc21�1q.

iv. EArDA,4s ¤ 4e�0.21mpc22�1q.

Now, we proceed to show each part of the above remaining claim.

Part i. First, for any x,wi P Rd,

EA

�
1t 1

K |xx,wiy�xAxAwiy|¡θ{4u
�
�PA

�
1

K
|xx,wiy � xAxAwiy| ¡ θ{4



paq
¤4e�

m
7 pKθ

4B q2 ,
where paq is due to [GKL20, Lemma 8, part 2.]. Part i is then proved due to the linearity of the
expectation.

Part ii. Fix A P Rd�m and x,wi P Rd such that }Ax} ¤ c1B and }Awi} ¤ c2. The proof
completes by showing that

EŴi�PŴi|wi

�
1t 1

K |xAx,ŵi�Awiy|¡θ{4u
�
¤ mνm?

π
e
� pm�1q

2

�
Kθ

4c1νB

	2

.

Note that since }Awi} ¤ c2, PŴi|wi
is a uniform distribution over m-dimensional ball of radius ν

with the center Awi. Denote m-dimensional ball of radius r P R� around the origin by Br and the
uniform distribution over this ball by UpBrq.

EŴi�PŴi|wi

�
1t 1

K |xAx,ŵi�Awiy|¡θ{4u
�
�PV�UpBνq

�
1

K
|xAx, V y| ¡ θ{4




�PV�UpBνq

�����x Ax

}Ax} , V y
���� ¡ Kθ

4}Ax}



paq
¤PV�UpBνq

�����x Ax

}Ax} , V y
���� ¡ Kθ

4c1B
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pbq�PV�UpBνq

�
|xe1, V y| ¡ Kθ

4c1B




where e1 :� p1, 0, 0, . . . , 0q P Rm, paq is derived since }Ax} ¤ c1B, and pbq is derived due to
symmetry of the uniform distribution. In other words, the above expectation is bounded by the
probability that the absolute value of the projection of a uniformly chosen random variable over
m-ball Bν on one of the axis becomes greater than Kθ

4c1B
. Let t :� Kθ

4c1νB
. If t ¥ 1, then the above

probability is zero, and the claim is then proved. Suppose that t   1.

PV�UpBνqp|xe1, V y| ¡ tq � 2Γpm{2� 1q?
πΓpm{2� 1{2q

» ν

tν

pν2 � x2qpm�1q{2dx

� 2Γpm{2� 1qνm?
πΓpm{2� 1{2q

» 1

t

p1� y2qpm�1q{2dy

¤ mνm?
π
p1� tqp1� t2qpm�1q{2

¤ mνm?
π
p1� t2qpm�1q{2

� mνm?
π

epm�1q logp1�t2q{2

paq
¤ mνm?

π
e�pm�1qt2{2,

where paq holds for t   1.

Part iii and iv. These parts are direct consequence of [GKL20, Lemma 8, part 1.].
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